Volume 201, 2017

Efficiently mapping structure–property relationships of gas adsorption in porous materials: application to Xe adsorption

Abstract

Designing better porous materials for gas storage or separations applications frequently leverages known structure–property relationships. Reliable structure–property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure–property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous “pseudomaterials”, for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure–property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
27 jan 2017
Accepted
17 mar 2017
First published
21 jun 2017

Faraday Discuss., 2017,201, 221-232

Efficiently mapping structure–property relationships of gas adsorption in porous materials: application to Xe adsorption

A. R. Kaija and C. E. Wilmer, Faraday Discuss., 2017, 201, 221 DOI: 10.1039/C7FD00038C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements