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Elucidating how protein sequence determines the properties of disordered proteins and

their phase-separated condensates is a great challenge in computational chemistry,

biology, and biophysics. Quantitative molecular dynamics simulations and derived free

energy values can in principle capture how a sequence encodes the chemical and

biological properties of a protein. These calculations are, however, computationally

demanding, even after reducing the representation by coarse-graining; exploring the

large spaces of potentially relevant sequences remains a formidable task. We employ an

“active learning” scheme introduced by Yang et al. (bioRxiv, 2022, https://doi.org/

10.1101/2022.08.05.502972) to reduce the number of labelled examples needed from

simulations, where a neural network-based model suggests the most useful examples

for the next training cycle. Applying this Bayesian optimisation framework, we

determine properties of protein sequences with coarse-grained molecular dynamics,

which enables the network to establish sequence–property relationships for disordered

proteins and their self-interactions and their interactions in phase-separated

condensates. We show how iterative training with second virial coefficients derived

from the simulations of disordered protein sequences leads to a rapid improvement in

predicting peptide self-interactions. We employ this Bayesian approach to efficiently

search for new sequences that bind to condensates of the disordered C-terminal

domain (CTD) of RNA Polymerase II, by simulating molecular recognition of peptides to

phase-separated condensates in coarse-grained molecular dynamics. By searching for

protein sequences which prefer to self-interact rather than interact with another protein
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sequence we are able to shape the morphology of protein condensates and design

multiphasic protein condensates.
1 Introduction

Proteins and other biomolecules within cells can phase separate to form liquid-
like droplets.1 Such phase-separated droplet regions provide a unique microen-
vironment essential for several important cellular processes and thus are an
important way of regulating biological function. The human proteome has a very
rich diversity in terms of composition.2 A predictive insight into which protein
sequences could undergo phase-separation would improve understanding of the
pathogenesis of several neurodegenerative diseases including Alzheimer’s
disease,3,4 where protein phase separation and the formation of toxic aggregates
of these proteins have been linked to pathogenesis. Different condensates or
condensates with multiple distinct phases provide a way for biological processes
to be regulated in time and space.5–7 Spatially separating different biochemical
reactions is also a promising blueprint for biotechnological applications.8 This
necessitates efficient strategies to design novel phase separating condensates and
to develop molecules, such as articial proteins, to bind selectively to phase-
separated condensates. However, in other contexts such as designing protein
interaction modules for synthetic biology,9 one might specically want to reduce
the propensity of proteins to interact and form condensates.

Molecular dynamics (MD) simulations have played a major role in our
understanding of protein–protein interactions and protein phase separation.1,10–12

The development of state-of-the-art molecular force elds has enabled accurate
representation of molecular interactions, allowing these simulation models to
successfully predict phase separation propensities of diverse protein
sequences.11,13 Atomistic molecular dynamics simulations can provide essential
insights into molecular driving forces by simplifying the description. However,
building an exact quantitative understanding of a protein sequence–property
relationship, to be able to predict the behaviour of a sequence without the
necessity of a simulation or an experiment, has remained difficult to achieve. This
is in part due to the large space of possible biological sequences, and also how
sequence context will change the interaction characteristics of the amino acids.

One way to model such complicated relationships is via machine learning, and
recently, important progress has been made in learning such relationships and also
applying this progress to the interactions and phase behaviour of exible and
disordered proteins.14–17 A very successful strategy has been to combine physics-based
simulations with machine learning and articial intelligence.16,18,19 Ginell et al. have
trained a neural network with a physics-based simulation model to predict how
different disordered proteins will interact.14 With a physics-based simulation model
von Bülow et al. have successfully trained a neural network to predict the phase
separation propensities of proteins.15 In recent years, protein language models have
been shown to organise protein sequences in biologically meaningful ways.20–23

Language models also seem to encode useful physical and chemical information,
which makes it imperative to see how we can leverage the information encoded in
such models to predict protein behaviour. Language models have been used in
iterative design24 and for proposing entirely novel proteins.23However, a key difficulty
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in mapping sequence–property relationships is the limited availability of “labelled”
data needed for training. The property of interest may require experimental input or
computationally expensive simulations. One must also note that not all labelled data
is equally useful, and some specic examples may be more benecial for training
than others.

Active learning27 is a machine learning paradigmmeant to address exactly this
issue, where the model interacts with the human to suggest which labelled
examples should be provided for training. Within such a framework, Bayesian
Optimisation (BO) can be invoked to rank the most useful sequences in terms of
their potential utility to the model and thus can be used to judiciously direct one’s
resources. These approaches can be utilised to understand how chemical struc-
ture and biological sequences give rise to chemical28 and biological properties.
Recently, An et al.29 used active learning to discover strongly interacting proteins
that tend to phase-separate, while optimising the trade-off between thermody-
namic stability and transport properties. In another context, it was demonstrated
that active learning helps to design molecules selectively interacting with one
phase of a lipid membrane over another phase of this membrane30 and to nd
small molecules binding to a protein.31 Chemical structure and biological
sequences have to be inputted in a way that is amenable to machine learning. One
possibility is to combine various metrics. Deep learning provides a way of
achieving this and promising results based on autoencoder have been obtained.30

For biological sequences, language models may be a natural way of representing
Fig. 1 Schematic overview of the active learning framework for predicting peptides using
Bayesian Optimisation (BO) and Molecular Dynamics (MD) simulations: (A) MD simulations
of protein chains to compute second virial coefficient (B22) and partition free energy (DG)
for model training. This initial sample is fed to the BO package,25 which utilises UniRep
LSTM,24,26 to parse the protein sequence into a feature vector~x. Deep ensemble training on
feature vectors and computed properties to establish sequence–property relationships.
To choose which sequences the model would benefit the most from, an acquisition
function A is used to rank and suggest the next set of sequences. The suggested
sequences are simulated again, generating new data for subsequent training cycles. This
iterative process helps the model learn the sequence–property relationship with fewer
examples and simultaneously explore sequence space regions that contain proteins with
the most extreme values of the property we studied.

This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 235–254 | 237
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sequences and recent advances make it possible to use pre-trained language
models for featurisation.24,25 Language models show a lot of promise for BO, as
exemplied by a recent study by Hoauer and Strodel,17 where the authors
showed that the biochemical knowledge encoded in an advanced pre-trained
language model enables efficient active learning even when only limited data is
available. Yang et al. have developed a very promising workow based on a pre-
trained language model25 and deep ensembles to express the learned relation-
ships. Here we investigated three related questions: (1) Can we identify the
sequence determinants which lead to protein self interactions and phase sepa-
ration? (2) Can we understand and design new sequences which selectively bind
to phase-separated protein condensates? (3) Can we design multiphasic
condensates? To address these important questions in biophysics and physical
chemistry we utilize the BO approach by Yang et al.25 (Fig. 1).
2 Methods

We study the mapping of a protein sequence to one of its properties, as repre-
sented by a numeric quantity f ð~xÞ. As we shall describe later, f(x) could be the
second virial coefficient B22, or another quantity that provides an estimate of the
affinity of a sequence to bind to a condensate. Our scientic problem thus reduces
to training a model to learn the mapping between ~x and f ð~xÞ, while simulta-
neously exploring the protein sequence space to maximise this label. We utilize
the package25 which provides the framework for performing such optimi-
sation tasks implemented here.

Fig. 1 illustrates our workow: We begin with an initial set of protein
sequences and conduct coarse-grainedmolecular dynamics simulations to extract
for instance, B22 or DG values. We initialize a surrogate model within the protein
sequence Bayesian Optimisation (BO) package 25 and provide it with an initial
set of sequences and labels to calibrate the initial sequence–property mapping.
During that, uses UniRep—a multiplicative Long-Short Term Memory
(mLSTM) model24,26 for parsing the amino acid sequence into a feature vector x
that contains the essential protein features in a xed-length numeric vector.

UniRep, trained on 24 million primary amino acid sequences in the UniRef50
database, has shown the ability to accurately partition structurally and evolu-
tionarily similar proteins, even when they share little sequence identity.24 The
resulting feature vectors, combined with the computed labels, serve as input for
training the surrogate models, which in the context of are ensembles of
multi-layer perceptrons (MLPs). Such deep ensembles are appropriate for uncer-
tainty quantication and offer greater expressive power compared to the Gaussian
processes (GPs) that are otherwise typically chosen as surrogates.

Following this initial calibration of sequence–property mapping, the Bayesian
optimiser uses an acquisition function to rank which proteins would serve as the most
useful examples for further training. This process simultaneously explores the
sequence space, in search of regions with proteins that possess the highest values of
the property we are studying. A batch of sequences is drawn from this for the next
cycle of training. Coarse-grained simulations of these sequences are again performed,
and the entire process is repeated for several iterations. In the subsequent sections,
we provide a detailed account of the training and optimisation methodology.
238 | Faraday Discuss., 2025, 256, 235–254 This journal is © The Royal Society of Chemistry 2025
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2.1 Model description and optimisation

As mentioned before, the surrogate model in is an ensemble of feedforward
neural networks (called a deep ensemble32). In such a model, the quantity of
interest f(x) is independently predicted by not one but an ensemble of neural
network models, which in this case is a Multi-Layer Perceptron (MLP). In the
conguration used here, the ensemble comprises of 5 MLPs. UniRep24 parses an
input sequence into a xed-length feature vector of dimension N = 1900.
Therefore, each individual MLP takes an input of dimension 1900, followed by
three layers having 128, 32, and 2 neurons each. The last layer outputs two
numbers: a mean m̂ and a standard deviation ŝ that characterise a normal
distribution N ðbm; bsÞ. The dispersion in the mean values m̂ predicted by the
individual models, and the sum of the variances ŝ2 of this N by the different
models, together give a total uncertainty estimate. All networks layer but the last
one is followed with the SiLU (also known as Swish) activation function. In
addition, standard techniques such as dropout and weight decay are utilised to
reduce overtting. For further technical description about , we refer the
reader to Yang et al., who designed it.25

The advantage of deep ensembles is that neural networks possess more
expressive power than Gaussian processes, while providing a way of uncertainty
quantication. Bayesian optimisation works via ranking sequences using an
acquisition function A . Unless stated otherwise, for most of the work presented
here, we chose the “upper condence bound” (UCB) acquisition function33 which
balances both exploitation of the known maximas and exploration of the
parameter space:

A ðx; lÞ ¼ mðxÞ þ lsðxÞ (1)

here, the exploitation term m(x), represents the current estimate of the value
known to the surrogate, while the exploration term s(x) quanties the uncer-
tainty. The parameter l acts as a control to adjust the balance between exploita-
tion and exploration. l is set to a value 2.

Another commonly used acquisition function is Expected Improvement (EI).
The fundamental principle behind EI is to select the next point to evaluate based
on the current best result. The choice of the acquisition function sensitively
affects which regions of sequence space get explored for, and thus the arrival at,
an optimal solution. Later, in Section 3.1, we will show the impact of this choice as
observed in our study.
2.2 Training and validation

Optimisation of the surrogate model—by asking it to suggest sequences to be
measured in a lab or simulated—requires an initial calibration. For most of the
tasks studied here, an initial set of sequences was drawn from ProtGPT2,23

a protein language model constructed for de novo protein design. Quantities f(x),
either B22 or DG values, were computed from coarse-grained molecular dynamics.
This computed value was treated as the true or expected value of the property of
interest. The length of all sequences used for training was chosen to be 21 amino
acids.

While training, to track the learning of the model, we set aside two sets of
sequences for validation of the model’s predictive ability, which were never used
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 235–254 | 239
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for training. The rst set was drawn the same way as the training data itself, with
42 21-amino acid length sequences drawn from the ProtGPT2 language model,23

spanning a wide range of B22 values. To track how well the approach captures
strongly interacting peptides which are likely only a small fraction of natural
protein sequences, we generated a second set of validation data. We took 22 21-
amino acid sequences with very negative B22 values from the study of An et al.
(2024)29 (see their ESI Tables). The true values of B22 for these validation
sequences were computed in exactly the same way, from coarse-grained simula-
tions. The coarse-grained simulations for calculating B22 were conducted for 10
ms.

For designing peptides that bind to condensates, an initial calibration set of 70
21-mer peptides was selected from An et al. (2024). For validation, 30 peptides
were chosen from ProtGPT2. The simulations involving the condensate and
peptides were performed for 0.6 ms.

Similar to Yang et al.,25 we will refer to an “optimisation step” as being the
usage of one sequence-label pair aer which the model is updated. Subsequent to
each optimisation step, we predicted the numeric label for the validation set
sequences and tracked the mean squared error from the residual between true
(computed from simulations) and values predicted by the model. The exact size of
the calibration and validation sets were chosen separately for the different tasks
studied here (described in their respective subsections). In all that follows, we
shall refer to the initial calibration as iteration 0.
2.3 Specications of the coarse-grained molecular dynamics simulations

Residue-level coarse-grained simulations with the HPS model34 were run in
HOOMD-blue v. 2.9.6 35 extended with azplugins (v. 2.9.2). Simulations were also
conducted with the more recent CALVADOS2 simulation model.13 The second
virial coefficient (B22) was calculated from the simulations of two 21-amino acid
peptide sequences in a cubic box of dimension 8 nm × 8 nm × 8 nm. To deter-
mine the partition free energy, condensate simulations were conducted in a slab
geometry of dimension 15 × 15 × 250 nm. The condensate was simulated with
300 chains of 140-amino acid CTD of RNA Polymerase II, and 30 chains of 21-
amino acid peptides were added to the preformed condensate.
2.4 Computing the second virial coefficient from coarse-grained simulations

The second virial coefficient B22 is used as a measure of protein self interactions.
This is well-reasoned, as B22 is an estimate of the intermolecular forces between
two molecules in dilute solutions.34 It is well established that a negative B22
correlates strongly with the tendency to phase separate, an idea that led An et al.29

to similarly use B22 as a proxy label. We compute it using equilibrium molecular
dynamics simulations with durations of 10 ms. The second virial coefficient is
dened as:

B22 ¼
ðN
0

2pr2½expð �UðrÞ=kBTÞ � 1�dr; (2)

where U(r) is the potential energy at radius r, kB is the Boltzmann’s constant and T
the temperature.

We compute B22 from the radial distribution function g(r)
240 | Faraday Discuss., 2025, 256, 235–254 This journal is © The Royal Society of Chemistry 2025
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B22 ¼
ðN
0

2pr2½gðrÞ � 1�dr: (3)

2.5 Designing binders to a specic condensate

In our simulations, we investigate sequence-specic binding to condensate
formed by the intrinsically disordered C-terminal domain (CTD) of RNA Poly-
merase II. Here we consider two types of CTD condensates: one composed of ideal
140-mer CTD sequences (each containing 20 ideal YSPTSPS heptad repeats), and
another representing the CTD of human RNA Polymerase II.

To quantify the binding affinity of the designed peptides for the condensed
phase, we calculated the partition free energy (DG) from the equilibrium densities
in the coexisting dilute and dense phases. We calculated the partition free energy
of the peptides to the condensate using the expression,36 DG = −RT log(rdense/
(rdilute + 3)), which became the numeric label f(x) we wanted to train for. Here DG
is the binding free energy, R is the gas constant, T is the temperature, rdense is the
density of the peptide in the dense condensate phase, and rdilute is the density of
the peptide in the dilute phase. 3 is a small constant (=10−5) added to the
denominator to prevent the divergence of DG when peptides strongly bind to the
condensate.

2.6 Protein sequence descriptors

In addition to predictability of B22 or DG by the model, we kept track of the amino
acid diversity, sequence properties such as mean hydropathy, fraction of residues
that contribute to disorder or chain expansion, the number of charged residues,
etc. For this, the amino acid compositions and relevant descriptors were esti-
mated with the Python library from Holehouse et al.37

3 Results

As mentioned previously, we trained the model for several different tasks. In the
following, we demonstrate the performance on each of these. Note that for each
task, the model was trained independently from scratch. In Section 3.1, we show
how the model successfully learnt to predict strongly self-interacting proteins,
and suggest sequences that are likely to phase separate. In Section 3.3, utilising
a different property—namely DG, which gives the binding affinity—we trained to
nd peptides that like to bind with pre-formed condensates, using CTD of the
RNA Polymerase II as a test case. The method can be extended to multi-phasic
condensates by dening a suitable tness function to shape the morphologies
of multi-phasic condensates. The success of the model on its ability to perform on
these very different tasks with limited training data shows the generalised
applicability of the method.

3.1 Sequence-determinants of protein self-interaction from active learning

As the training progresses, the deep ensemble (Fig. 1) quickly learns the rela-
tionship between protein sequences and the second virial coefficient B22, quan-
tifying a protein’s tendency to interact with another chain with identical
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 235–254 | 241
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Fig. 2 Accuracy of the learned relationship between protein sequence and B22. (A)
Feedback between ML model and simulations. The shaded areas highlight the transitions
between the sequences 0–50, 50–100, 100–150 and 150–200 in the first, second, and
third iterations of the active learn procedure. The validation set is generated with
ProtGPT2. (B) The same but with a validation set which includes more strongly interacting
sequences from An et al. (C) Predicted B22 from the active learning and computed from
coarse-grained molecular dynamics. After the network was trained with N = 50
sequences. At the second iteration with a total of N = 100. Third iteration with N = 150
sequences (Fig. S1†).
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sequence. In Fig. 2A, we see a rapid decline in the mean squared error (MSE) in its
predictions for B22, on validation sequences the model has never seen during
training, with the MSE dropping from more than 25 to just above 5. The alter-
nating shaded regions mark the different iterations in the active learning process.
Note that in Fig. 2, each optimisation step represents the training and update of
the deep ensemble using one sequence and its corresponding label. The valida-
tion set used in Fig. 2A features sequences which follow the rules of natural
protein sequences as encapsulated by ProteinGPT2.23 Note that while improve-
ment against this set begins to stagnate at around 50 steps, we nd a continued
improvement with the second validation set of 21 mer sequences designed by An
et al.29 (Fig. 2B). This is because, aer the rst 50 steps when the model is
interrogated for suggestion, it already picks up chains with the most negative B22
values (Fig. 3A). Continued training on those sequences therefore does not
improve the predictability of the average sequence, but improvement is seen
against the An et al.29 sequences, which are enriched with more strongly inter-
acting proteins. The MSE decreases from values above 200 to values below 100.
Aer seeing more than 150 sequences, the MSE rises again, which could hint at
overtting. In addition, the decrease in the uncertainty estimate aer 150
sequences in Fig. 2A may also be due to overtting, as this suggests all models
within the ensemble are predicting values closer to each other’s, while not
improving in accuracy. Note that mean-squared error alone is not a complete
indicator of progress during training.

When the model is interrogated for suggesting training examples, we also ask
it to predict B22 values for these sequences. Aer coarse-grained molecular
dynamics simulations of these suggested sequences were performed, we
242 | Faraday Discuss., 2025, 256, 235–254 This journal is © The Royal Society of Chemistry 2025
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Fig. 3 trained to maximise the −B22 values, thereby suggesting interacting
sequences. (A) Distribution of −B22 after each iteration shifts towards more negative
values. (B) The plot depicts the amino acid fractions in each iteration, showing a higher
fraction of isoleucine (I), leucine (L), valine (V), and phenylalanine (F). (C) Analysis of the
amino acid composition of the sequences suggested by the model after each iteration
provides insight into the evolving composition of the optimised sequences. (D) Repre-
sentative simulation snapshot of the protein sequences suggested by in the third
iteration.
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compared how well those forecasts matched with the true values (Fig. 2C). This
improvement is quantitatively reected in the coefficient of determination (R2),
which indicates how well the model predictions match the observed data.
Initially, there is poor agreement between predicted and true estimates, indicated
by R2 = 0.53. The correlation between predicted and expected values continued to
improve in the subsequent iterations as evidenced by the increasing R2 values. By
the fourth iteration, the R2 value had risen to 0.85.

Note that a signicantly longer calibration (e.g. 200 sequences instead of 50) in
the initial training does not improve the overall outcome (see Fig. S1 in the ESI†).
We tentatively conclude that results from the suggested sequences in active
learning are more important, or that there is not much new information in these
additional initial sequences.

As remarked previously, aer just 50 such steps, when the model was interro-
gated to suggest the next batch of sequences to train with, it already picked up
sequences with very negative B22 values. When coarse-grained molecular dynamics
simulations of these sequences were run, we found that the distribution of B22
values had clearly shied from amean value of−2.3 mLmol−1 g−2 to−18.7 mLmol−1

g−2 (see iteration 1 in Fig. 3A). Subsequent iterations of training with examples
requested by the model led to a further shi to even further negative values.

In addition to these quantitative metrics around B22 values, in Fig. 3B we show
that even the amino acid composition of the suggested sequences changed in
biologically meaningful ways. The sequences get enriched with hydrophobic
amino acids such as Ile, Leu, and Val. Charged residues are already lost in the rst
stage of learning. Impressively, all of these biologically and chemically sensible
changes emerged without explicit input regarding information about the charge
or hydrophobicity of the residues during training. We attribute this to the fea-
turisation with the UniRep LSTM, and it illustrates the remarkable ability of the
model to learn and capture relevant physicochemical properties from the
sequence data alone. Many of the sequences we provided initially feature charged
residues (Fig. 3C). While these sequences are not highly charged, with a net
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 235–254 | 243
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charge per residue close to 0, some sequences are enriched in positively or
negatively charged residues. The model seems to learn from the input sequences
that a simple way to enhance protein–protein chain interactions is to eliminate
charged residues. It is important to note that complementary patches of positively
and negatively charged residues can give rise to strong interactions and protein
condensation via complex coacervation.7,38 The input sequence set includes
sequences which feature a third or half of the residues favouring expanded
conformations. As the training progresses, the number of disorder promoting
residues decreases strongly with iteration. At the same time the mean hydro-
phobicity of the suggested sequences increases.

We expect that sequences with large negative values of B22 interact strongly
and phase separate, which we veried by simulating multiple chains for
Fig. 4 Optimisation by maximising −B22 values, where the simulations are conducted
using the CALVADOS force field.13 (A) The distribution of B22 values for 5 iterations of
optimisation. The observed distribution shifts towards increasingly negative values
compared with the HPS model, indicating a trend towards sequences with stronger
interactions. (B) The plot illustrates the fraction of amino acids present in the sequences
suggested by during each iteration of optimisation. Notably, there is a noticeable
increase in the fraction of isoleucine (I), leucine (L), valine (V), and phenylalanine (F) over
successive iterations. (C) Analysis of the amino acid compositions of the sequences
suggested by the model after each iteration.

244 | Faraday Discuss., 2025, 256, 235–254 This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00099d


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 0
3 

au
gu

st
us

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
3-

2-
20

26
 1

5:
48

:4
0.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
a sequence from iteration 3 (Fig. 3D). Multiple chains of this peptide form
a condensate as expected given its favourable inter-chain interactions.
Conversely, for sequences with a positive B22 we expect that the chains are not
interacting with each other and that the chains prefer to stay separate from each
other and do not phase separate as shown for a sequence from the validation data
set (Fig. 3D). We note that the HPS model which underestimates interactions of
Arg residues likely underestimates the self interactions of this peptide.

3.1.1 Inuence of the force eld in the coarse-grained simulations. To
examine how the coarse-grained simulation model we use affects the suggested
sequences, we conducted coarse-grained simulations using the CALVADOS2 force
eld,13,39 which is a reparameterisation of HPS and more accurately describes the
interactions of disordered proteins. We used the same initial set of sequences to
calibrate. The distribution of −B22 from the sequences suggested by training
shied towards larger values (Fig. 4A) of −B22 of close to 0 mL mol−1 g−2 (iteration
0) to approximately 10 mL mol−1 g−2 (iteration 3). The sequences the model
suggested are enriched with Tyr and Trp residues (Fig. 4B). Consistent with BO
employing the HPS model, the fraction of disorder-promoting residues decreases
across the iterations. However, in contrast to the HPS model, the mean hydrop-
athy value of the suggested sequences decreases when using the CALVADOS force
eld (Fig. 4C).13,39 This can be attributed to the increase in the fraction of tyrosine
and tryptophan residues, which have a lower hydropathy index compared to
isoleucine, leucine, valine, and phenylalanine, as reported in the Kyte–Doolittle
hydropathy scale.40

3.1.2 Sensitivity to acquisition function: test with expected improvement.
From the previous discussion, we showed that active learning enabled us to very
efficiently nd strongly interacting sequences. However, the peptide sequences
we suggested are likely to be hydrophobic for the actual realisation of peptide-
based condensate material in a laboratory experiment. For the practical appli-
cation of designing novel peptide-based condensate materials, one likely needs to
perform multi-parameter optimisation to achieve a trade-off between protein
interactions and uidity29 of the resulting materials, and change the acquisition
function accordingly.

Therefore, to potentially identify alternative solutions while exploring the
sequence space, we independently trained the model using sequences ranked
best by the Expected Improvement (EI) acquisition function. The mean squared
error (MSE) between the predicted and expected −B22 of the ProteinGPT2
Fig. 5 Optimisation using Expected Improvement (EI) acquisition function to find the
optimal value of −B22. (A) Evolution of mean squared error (MSE) between the predicted
and expected −B22 of the ProteinGPT2 validation set. (B) Fraction of amino acids in the
sequences suggested by after each iteration. (C) Snapshot of the simulations of
sequences suggested by at the 4th iteration. (D) The sequences with more negative
B22 showed clear phase separation (Fig. S2B†).
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validation set, decreased with each training step (Fig. 5A), similar to what we
observed in the UCB-based model. The model suggests sequences with diverse
amino acid compositions (Fig. 5B). Examining the suggested sequences, we found
that the EI-based optimisation found less strong interactors (smaller −B22 values)
compared to the model trained using the Upper Condence Bound (UCB)
acquisition function (Fig. S2†). The UCB-based optimisation predominantly
predicted sequences with high negative B22 values, while the EI-based model
predicted a wider range of sequences, mostly with negative B22 values and a small
fraction with positive B22 values.

When we simulated the sequences suggested by the model in the 4th iteration,
those with negative B22 values in particularly exhibited clear phase separation—
forming dense, condensed phases (see Fig. 5C and D). The phase-separating
sequence not only features aromatic residues such as Trp and Phe and hydro-
phobic residues such as Val, but also negatively charged Asp and positively
charged Arg at its C-terminal end. Interactions of positively and negatively
charged amino acids can also contribute to phase separation,38,41 provided the net
charge of the sequence is low to moderate.38 Overall the optimisation using UCB
led to the identication of sequences with stronger interactions than EI. However,
we note that, in the search for an optimal solution, UCB had led to less diverse
sequence structures. On the other hand, the sequences ranked by EI were more
diverse in amino acid composition but this came at the cost of not touching the
sequence space of the most negative B22 chains. These differences are evident in
the distributions shown in Fig. S2.†
3.2 Designing peptides that do not interact

Employing the same approach, we can design peptides which do not interact with
copies of themselves. For many biotechnological applications, one would want to
minimise the interactions between proteins, e.g., to reduce the aggregation of
therapeutic antibodies.42 Non-interacting sequences can be useful building
blocks in protein design,9 for example when combining protein domains with
different functionalities. To decrease the propensity for protein self-interaction,
we maximise B22 rather than −B22, as previously done for promoting interactions.

As the BO proceeds, suggested sequences tend to have more positive B22 values
(Fig. 6A) than the initial set of sequences we have used to start the BO (referred to
as “Iteration 0”). Interestingly, at the rst iteration, the proposed sequences
feature a combination of negatively charged amino acids, such as glutamic acid
(Glu) and some aspartic acid (Asp) residues, as well as positively charged amino
acids, including lysine (Lys) and arginine (Arg) (Fig. 6B and C). In the subsequent
second, third and fourth iterations, Arg residues become highly enriched
(Fig. 6B). Note that the enrichment in Arg residues may be partially due to the
specic choices made in the parameterisation of the coarse-grained simulation
model we employ. While Arg is positively charged and increasing the net positive
or negative charge of a peptide can prevent phase separation,38 Arg residues have
a very low tendency to interact with other protein residues in the version of
residue-level coarse-grained HPSmodel34 we employ here. Tesei et al., have shown
that a higher interaction strength of Arg for other amino acids leads to a better
overall description of disorder proteins, their phase behaviour and properties.13,39

The net charge per residue increases as the training progresses (Fig. 6C). Residues
246 | Faraday Discuss., 2025, 256, 235–254 This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Design of non-interacting sequences using , by training to maximise +B22

values, thereby suggesting sequences with minimal intermolecular interactions. (A)
Distribution of B22 values for the sequences suggested by after each iteration,
showing a shift towards higher B22 values, indicating the evolution of non-interacting
sequences. (B) Amino acid composition of the suggested sequences, exhibiting an
increasing fraction of the positively charged amino acid arginine (Arg) after each iteration.
(C) Analysis of amino acid composition in the suggested sequences. The fraction of
positively charged residues increases with each iteration, while the mean hydropathy
decreases, reflecting the enrichment of charged residues. (D) Simulation conducted with
the sequence suggested by after the 4th iteration. The simulation reveals that the
suggested sequence does not undergo phase separation, remaining uniformly distributed
throughout the simulation box.
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tend to favour extended rather than collapsed conformations. The fraction of
negatively charged amino acids in the selected sequences becomes negligible
aer the rst iteration (Fig. 6C). Concurrently, the fraction of amino acids asso-
ciated with favouring extended rather than collapsed conformations increases
compared to the initially input sequences. Analogously, the fraction of disorder
promoting residues increases with each iteration. However, in the third iteration,
there is a temporary drop in the fraction of disorder promoting residues, but this
trend is reversed in the fourth iteration, where a high level of disorder-promoting
residues is observed once again. Conversely, the mean hydrophobicity decreases
as there are almost no aromatic residues (Phe, Tyr, and Trp) present in the
sequences suggested by the active learning process.

To test whether these sequences actually interact with each other or not, we
observed their behaviour in our CG simulations. In Fig. 6D, we show a snapshot of
such a simulation of protein with B22 = 4.0 mL mol g−2. Clearly, the suggested
sequence remains uniformly distributed throughout the simulation box, prefer-
ring to not interact with its identical chains and therefore not showing any sign of
phase separation.

3.3 Designing peptides binding to phase-separated condensates

To investigate the ability of peptides to interact with pre-formed condensates, we
initiated 70 simulations with peptides and a pre-formed condensate of the C-
terminal domain of RNA Polymerase II (CTD).7

By optimising the peptide sequences to maximise the magnitude of the
negative partition free energy (−DG), our active learning approach effectively
identies peptides with an enhanced propensity to interact with the condensed
phase. Just like for the B22 task, the performance of the model was evaluated using
the mean squared error (MSE) calculated for a validation set of peptides.
Remarkably, the MSE showed a signicant decrease aer just 50 training steps—
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 235–254 | 247
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similar to other tasks studied here—with MSE dropping from above 200 to less
than 50 indicating that the model could effectively capture the underlying
patterns and characteristics of the peptide-CTD condensate interactions. In the
second iteration hydrophobic residues such as Cys, Phe, Leu, and Trp residues are
very prominently enriched (Fig. 7C, S4A and B†). Aer four iterations of the
Bayesian optimisation cycle, peptides are highly enriched in Trp residues. At this
stage, peptides are uniformly distributed in the dense condensate phase. At the
same time sampling the dilute concentration of the peptides becomes very
challenging and long simulations are required for proper equilibration of the
peptides between the dilute and condensate phases. Once the peptides are
interacting strongly with the condensates and the dilute concentration becomes
Fig. 7 Designing peptides which bind to a phase-separated condensate of CTD. (A) Grey
CTD chains. Light blue peptide chains. (Top) Peptide weakly interacting with condensate.
(Bottom) Peptide from BO, which interacts strongly. (B) Progress of the training by
comparison to the validation data set. Each training step corresponds to an additional
sequence and corresponding binding propensity being processed by . (C) Changes in
the amino acid composition of sequences binding with ideal CTD condensate after each
iteration. (D) For human CTD condensate. (E) AlphaFold (Q95XN0) structure of LIN65. The
intrinsically disordered region is shown in pink, and the ordered regions, excluded from the
analysis, are shown in grey. A 20-mer sequence from the disordered region is shown in
blue. (F) Correlation plot of predicted and computed DG values for LIN-65 fragments and
peptides suggested by in iteration 7.
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difficult to sample further, so enhancing the interactions of the peptides with the
condensates becomes difficult. However, at this stage, the design task has in some
sense been successfully completed as strongly interacting protein sequences have
been found. We note that the lack of sequence diversity means that these peptides
are likely too hydrophobic to be useful for biochemical and biotechnological
applications, but our investigation shows that it is possible to quickly identify
sequences which bind to condensates given a coarse-grained simulation model.

We also performed iterative optimisation to identify sequences that bind
effectively to human CTD condensates.43 The human CTD (hCTD) sequence
deviates from the ideal CTD sequence, which consists of a consensus repeat of
heptad motifs. During the training process with ,25 the algorithm suggested
peptide sequences with a similar composition to the sequences found in the
previous case, but featuring a higher fraction of the following amino acid resi-
dues: Trp, Phe, Leu, and Cys (Fig. 7D, S4C and D).†

Once trained, such a model can quickly evaluate many novel sequences for
their potential to interact with specic condensates without requiring time-
consuming simulations for each sequence. It can generalize from learned
patterns to predict the interaction propensity of sequences different from those in
the training set. For instance, we used the trained model to investigate interac-
tions between LIN-65 and RNA Polymerase II (Pol II). In C. elegans, LIN-65 (Fig. 7E)
is an important regulator of chromatin organisation by supporting the formation
of heterochromatin which represses the transcription of genes. Given that the
CTD of RNA Pol II is critical for transcription, but LIN-65 is associated with the
repression of transcription, we surmised that disordered sequences in the LIN-65
disordered regions may be disfavoured from binding to CTD condensates and
this preference encoded in the sequence of LIN-65 could contribute to its speci-
city in separating transcribed genes from heterochromatin. Since the model is
trained on 20-mer sequences, we divided the intrinsically disordered region of
LIN-65 into 20-mer fragments (Fig. 7E, pin and blue regions). We then predicted
the propensity of LIN-65 fragments to be recruited to CTD condensates using the
trained model. The correlation plots shown in Fig. 7F, indicate that the recruit-
ment propensity of LIN-65 fragments is lower than that of sequences suggested by

aer the seventh iteration, as the DG is lower for LIN-65 fragments compared
to the sequences suggested (Fig. S4E and F†). This predictive ability without
new simulations showcases the powerful application of machine learning in
studying protein–condensate interactions.
3.4 Design of multiphasic condensates

To explore the nature of sequences that can be recruited to CTD condensates
while forming multiphasic structures, we employed a strategy based on the
second virial coefficient (B22). We calculated B22 for a given sequence interacting
with itself and with a 21-mer CTD sequence. The residue-level coarse-grained HPS
force eld we employ for these simulations captures the interactions of 21-mer
CTD sequences well, as established through comparisons to all-atom simulations
with explicit solvent.7 The tness function, DB22 = −B22[seq–seq] + B22[seq–ctd],
was optimised using , aiming to identify sequences that interact more
strongly with sequences of the same type than with CTD. Through this optimi-
sation process, suggested highly hydrophobic sequences that exhibited
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 235–254 | 249

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00099d


Fig. 8 Designing multiphasic condensates using . (A) Amino acid composition of the
sequences suggested by after each iteration of optimising the fitness function. (B)
Simulation with 300 chains each of the optimised sequence and CTD, illustrating the
formation of a mixed condensate when the B22 values of sequence–sequence and
sequence–CTD interactions are comparable. The corresponding density profile is shown
in (G). (C) Formation of a remixed phase when B22 of the sequence–sequence is notably
lower than sequence–CTD. The corresponding density profile is shown in (D). (D–F)
Density profile showing the formation of multiphasic condensate when the DB22 is higher,
indicating stronger sequence–sequence interactions compared to sequence–CTD
interactions. (G–I) Density profile in the case of mixed phase condensate formedwhen the
DB22 is lower, suggesting weaker sequence–sequence interactions relative to sequence–
CTD interactions.
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stronger interactions with themselves compared to their interactions with the
CTD sequence (Fig. 8 and S3).† To validate the formation of multiphasic
condensates, we conducted simulations with a system comprising 300 chains of
the 21-mer CTD sequence and 300 chains of the highly hydrophobic sequences
suggested by (Fig. 8B and C). Analysis of the density proles from these
simulations revealed a distinct phase separation, where the highly hydrophobic
sequences formed the core of the condensate, while the comparatively less
hydrophobic CTD sequences formed a surrounding shell (Fig. 8C–F). For lower
DB22 values, the density prole shows a mixed condensate(Fig. 8G–I). This
observation suggests that the highly hydrophobic sequences identied through
the optimisation process have the propensity to be recruited to CTD condensates
while maintaining a distinct phase separation, leading to the formation of
a multiphasic condensate structure with a hydrophobic core and a CTD-rich shell.

4 Conclusions

While modelling sequence–property relationships remains a difficult challenge,
here we showed it is possible to train neural network models with molecular
dynamics simulations to design disordered proteins to: (1) self-interact and phase
separate and (2) to bind to phase separated condensates and (3) even shape the
morphologies of phase-separated condensates. For this we employed the
approach developed by Yang et al.25 that utilises appropriate featurisation from
pre-trained sequence models,24,25,44 and Bayesian Optimisation (BO) for sampling
250 | Faraday Discuss., 2025, 256, 235–254 This journal is © The Royal Society of Chemistry 2025
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the candidates most useful for training and protein design (Fig. 1). For these
design tasks a limited number of sequences, with numeric labels from molecular
dynamics, are sufficient, e.g., 50–100 sequences with labels are enough to predict
B22 with reasonable accuracy (Fig. 2C). Even when no explicit information about
the hydrophobicity and charge of individual amino acids is given,20 approaches
based on pre-trained language models are able to learn biologically and chemi-
cally relevant information from the sequence data alone.

Active learning provides a signicant advantage when individual computations
are expensive and an efficient way of traversing a large parameter space is needed.
While training and optimising for certain tness criteria, one must appropriately
tune the balance between exploration and exploitation. The improvement using
CALVADOS force-eld13,39 highlighted the importance of the availability of state-of-
the-art molecular force elds. The sequences identied from the coarse-grained
simulations could be further explored with atomistic resolution along with
explicit solvent, to include the role of water, ions and secondary structure formation
and provide further insight into the molecular driving forces.30

A key limitation of the present work is that many of the peptides we suggest
here may be too hydrophobic to be realised in a laboratory experiment. Recent
work shows that one could explicitly consider the synthesizability of peptides in
a neural network.45 As pointed out by An et al.,29 optimising interaction strength
comes with a trade-off in terms of transport properties of the material and
considering this in multi-parameter optimisation will yield protein sequences
that are more balanced with regards to hydrophobic and non-hydrophobic resi-
dues. While we have not attempted to perform multi-parameter optimisation, for
future practical applications to inform the design of novel materials underpinned
by protein phase separation, multi-parameter optimisation is likely benecial.

Data availability

All codes and datasets related to this study can be accessed at the following
GitHub repository: https://github.com/cartilage-w/active-learning.
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