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1. Introduction

Evidence of progressive Fe?* to Fe**oxidation in
Fe?*-doped ZnO nanoparticles
"J. G. Parizaka,® E. G. Zela,®
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F. F. H. Aragon, (2% | Villegas-Lelovsky,
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Oxide-diluted magnetic semiconductors have received considerable attention in diverse scientific and
technological fields because they combine the optoelectronic properties of the hosting semiconductor
with the magnetic properties of the metal dopant. In this report, the role of Fe doping on the structural,
vibrational, optical, hyperfine, and magnetic properties of Fe-doped ZnO nanoparticles (Zn;_,Fe,O)
synthesized via a polymeric precursor method is presented. Our findings display that the crystallite size
decreases from ~23 nm (x = 0.000) to ~8 nm (x = 0.200) as the Fe-content (x) is increased. From the
XRD data analysis, our results suggest an isovalent solid solution between Fe2* and Zn?* ions for lower
Fe-content (up to 0.075) and aliovalent solution (Fe** and Zn?* ions) for higher Fe-content. Elliot's
theory was used to assess the band gap energy of E; ~ 3.4 eV, and an exciton binding energy of E, ~
66 meV for the undoped sample. The excitonic peak exhibits a broadening trend with increasing Fe-
content, suggesting disorder enhancement in the ZnO matrix. Besides, FTIR data analysis suggests that
the Zn—-O bond length increases with Fe-content up to 0.075 and decreases above this value. The
intensity ratio of the O—H and Zn-O modes shows a discontinuity as the Fe-content is increased. Room
temperature Mdssbauer spectra carried out for samples with x = 0.050, 0.075, and 0.200 show that the
isomer shift and quadrupole splitting increase with the Fe-content, in agreement with the structural
properties. Magnetic measurements suggest that the iron ions stabilize as Fe?* in samples with low Fe-
content and then as Fe** in samples with high Fe-content. Besides, the occurrence of short-range
antiferromagnetic interactions was determined, which becomes stronger as the Fe-content is increased.

solution combustion,’ sol-gel,”> and hydrothermal.’> The poly-
meric precursor method (Pechine’s method) used in the pre-

Diluted magnetic oxide semiconductor (DMOS) has received
considerable attention because it combines the optoelectronic
properties of semiconductors (oxide semiconductors) with the
magnetic properties of transition metals. In this regard, ZnO
undoped and doped with transition metal ions (such as Fe,
Ni, Co among others) and rare-earth ions (such as Ce, Er,
Gd among others) have been used for several applications.
Moreover, a wide range of methods have been used to produce
Fe-doped ZnO nanostructures, among which we can point out
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sent study, in addition to being a bottom-up synthesis route, is
a highly reproducible approach, which is based on the for-
mation of chelate between mixed cations and citric acid. The
metal ions are chelated, and these chelates are then cross-
linked with ethylene glycol to form a gel by esterification. After
thermal treatment in the air (~ 400 °C), a removal of all organic
substances is accomplished. Subsequently, thermal annealing
at high temperatures (> 400 °C) improves the crystallinity of the
as-synthesized nanoparticles.” However, due to the high tem-
peratures employed in this chemical route, while compared
with other methods (such as hydrothermal and precipitation)
the polymeric precursor method suffers from a lack of mor-
phology control. Regarding their applications, one can high-
light their use in wastewater treatment processes. In this
scenario, Andia-Huaracha et al, reported the photocatalytic
activity (PCA) of ZnO nanoparticles (NPs) synthesized via the
polymeric precursor method and presenting mean crystallite size
in the range of 23-150 nm.” Moreover, the PCA tests of the ZnO
NPs do not show a straightforward dependence on the NPs’ size,
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but it seems to be correlated with the density of defects.” In
addition, Rokhsat et al. reported the PCA of Fe-doped ZnO
nanosheets on the p-nitrophenol degradation under visible light,
revealing the high performance of the Fe-doped sample compared
to the undoped one.? On the other hand, based on the Langmuir
isotherm analysis, ZnO nanocrystals decorated with regenerated
microfibrillated cellulose scaffolds and containing 41 wt% ZnO
were found to be very efficient in removing As(V) from water with
a maximum capacity of 4.421 mg g~ ', at neutral pH (7).°
Importantly, in Fe-doped oxides, iron ions can exist in two
regular oxidation states (Fe** and Fe®"), which could impact
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differently the structural properties of the hosting ZnO nano-
crystal due to differences in their ionic radii. The latter may be
strongly reflected in the physicochemical properties of the Fe-
doped ZnO structure. As a result, determining the oxidation
state of heterovalent elements (such as Fe) is critical for under-
standing how the doped system works. Importantly, the oxida-
tion state of iron ions in Fe-doped ZnO can be strongly
dependent on the synthesis process.” However, several reports
show that iron is usually found as high spin Fe*"-ions sub-
stituting Zn>*-ions.””® It is noteworthy the report of George et al.
regarding the study of Fe-doped ZnO NPs, suggesting that the
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entry of isovalent Fe*' replacing Zn>' leads to minimally
distorted ZnO lattice structure.’ Determination of the iron
oxidation state and the impact on the Fe-doped crystalline
environment can be performed by different experimental
techniques, such as X-ray photoelectron spectroscopy (XPS),
X-ray absorption near-edge structure (XANES), inner-shell
electron energy-loss spectroscopy (ISEELS), and Mossbauer
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spectroscopy.®'®'* The hyperfine parameters obtained from
Mossbauer spectroscopy are commonly used to assess the
oxidation state of iron in iron oxides. It is commonly known
that the isomershift (IS) of Fe*" in pure oxides is around
0.25 mm s~ " and 0.29 mm s for the upper limit in tetrahedral
coordination and lower limit for octahedral coordination,
respectively. These values are lower than those expected for
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Fe”', which are in the range of 1.05-1.20 mm s~ " for octahedral
coordination and in the range of 0.90-1.05 mm s~ for tetra-
hedral coordination. The Mdssbauer spectroscopy, however,
is unusual and costly for most laboratories and, for this
reason, new methods such as XRD and FTIR could be used
instead.

In the present report, the structural, optical, vibrational,
hyperfine and magnetic properties of Fe-doped ZnO nano-
particles are assessed aiming to determine the effect of iron-
ions while entering in the ZnO hosting matrix. Moreover, one
is interested in finding out how the oxidation state of iron-ions
is modulated through the entry of iron in the ZnO hosting
matrix.

2. Samples description and
experimental details

Undoped and Fe-doped ZnO nanoparticles were synthesized by
the polymer precursor chemical method using zinc nitrate
hexahydrate (Zn(NOs),-6H,0), iron nitrate nonahydrate
(Fe(NO3)3-9H,0), ethylene glycol (C,H4(OH),), and citric acid
(C¢HgO). To make the polymer precursor gel, the following
steps were performed: citric acid (47.7%) and zinc nitrate
hexahydrate (31.7%) were dissolved in ethylene glycol (20.6%)
at 70 °C with magnetic stirring, then the temperature was
raised to 120 °C to enhance citric acid and ethylene glycol
polymerization. For iron doping, the amount of iron was
controlled according to the atomic ratio Fe/(Fe + Zn), where x
mol of iron (x mol of the iron nitrate nonahydrate) was mixed
with (1 — x) x Eff mol of the ZnO resin, where Eff is the resin’s
efficiency. After promoting polymerization, the obtained liquid
was pyrolyzed at 450 °C for 4 h. The final carbon-rich powder
was thermally treated at 500 °C for 6 h. Homogeneous and
energetically metastable powders were obtained. X-Ray diffrac-
tion (XRD) measurements at room temperature were performed
using a Rigaku MiniFlex 600 X-ray diffractometer equipped
with Cu Ko radiation (1 = 1.5418 A) and scanning in the 20
range of 20°-80°. The instrumental contribution was removed
using a Si standard sample. UV-Vis spectra were collected using
a Shimadzu UV-1800 UV/Visible Scanning Spectrophotometer,
in a range of measurement from 190 to 1100 nm. Fourier-
transform infrared spectroscopy (FTIR) measurements were
carried out (samples pressed in KBr pellet) using a Bruker
VERTEX 70 FT-IR spectrometer, scanning in the wavenumber
range of 450-4000 cm ™ '. TEM images were performed with a
JEOL microscope, model JEM-2100. Mossbauer measurements
were carried out using a commercial spectrometer (WisselM0ss-
bauer spectrometer) equipped with a >’Co source, operating in
the constant acceleration mode and scanning the velocity in the
range of 10 mm x s *. Using the NORMOS software package,
the Mossbauer spectra were curve fitted by minimizing the chi-
square (3°) parameter. Magnetic measurements were performed
using a commercial SQUID magnetometer (Quantum Design), in
the temperature range of 2-300 K, and applied magnetic fields
up to £ 70 kOe.
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View Article Online

Materials Advances

3. Results and discussions

Fig. 1(a) shows the XRD patterns of the undoped and Fe-doped
ZnO nanoparticles (Zn; ,Fe, O, with x from 0.000 to 0.200).
According to the XRD data, the wurtzite crystal structure is
identified as the crystalline phase in all samples, in agreement
with the Inorganic Crystal Structure Database (ICSD) card No.
34477. Within the XRD equipment’s limit, no secondary phase
was detected, indicating that the materials obtained through the
employed chemical process are single-phase in the Fe-content (x)
range of 0.000-0.200. Besides, a broadening of the XRD peaks is
also detected, which can be correlated with a decrease in the
mean crystallite size ((D)) and/or an increase in residual strain
({e)), which will be discussed later on in this report. It can also be
seen that the (101) XRD peak has the highest intensity, indicat-
ing a high degree of crystallinity in the powder samples. To
assess the structural parameters, the XRD patterns were analyzed
using the Generalized Structure Analysis System (GSAS)
software'> modeling the peaks with Lorentzian shape functions.
Fig. 2(b) shows a typical refinement for the undoped (x = 0.000)
and Fe-doped (x = 0.100, 0.200) samples, where the cross symbol
(+) represents experimental data, the solid red line represents the
theoretical XRD curve, and the solid blue line at the bottom of
the panels represents the difference between them. According
to the refinement quality parameter (S = Rgyy/Rwp, Where the
R-factors Rp,p, and Ry, quantify the quality of the refinement) all
performed refinements (S < 2) are acceptable (see Table 1).
The lattice constants on the undoped ZnO NPs are a = b =
3.2493 £ 0.0001 A and ¢ = 5.2070 = 0.0002 A. The extracted unit
cell volume is V = 47.611 + 0.004 A®. These findings are in
excellent agreement with the values of a = b =3.250 A, ¢ = 5.207 A,
and V = 47.63 A® reported in the literature."® However, for Fe-
doped ZnO NPs, interesting results are observed in regard to the
unit cell volume (V), which displays an increasing trend as the
Fe-content increases up to x =0.075 (see Fig. 2(a)), followed by a
decreasing tendency. Taking into account that within the ZnO
matrix the Zn>*-ions present four-fold coordination, that finding
can be explained by two plausible scenarios. Firstly, at a lower
Fe-content (up to x = 0.075), an entry of Fe*"-ions with an ionic
radius equal to 0.63 A, which is greater than the ionic radius of
Zn>"(0.60 A), explains the increase of the unit cell volume, as it is
displayed in Fig. 2(a). This isovalent solid solution scenery is
energetically more likely. Moreover, at higher Fe-content (above
x = 0.075), the entry of trivalent iron-ions (Fe**) with an ionic
radius equals to 0.49 A (four-fold coordination),"* may lead to a
decrease in the unit cell volume (V), as it is displayed in Fig. 2(a).
As a result of the aforesaid, and taking into account what has
been reported in the literature, doping ions segregate on the
nanoparticle surface, and segregation increases as the doping
content increases.’® Therefore, an alternative and feasible sce-
nario can be built using Fe**-ions in the NP’s core and Fe**-ions
onto the NP’s surface, in accordance with the result reported by
McLeod et al.,'® claiming that Fe-doping in bulk ZnO promotes
isovalent cation substitution (Fe** — Zn>'). Meanwhile, Fe-
doping near the surface induces both isovalent (Fe** — Zn*")
and aniovalent substitution (Fe*" — Zn>")."” Also, this fact may

© 2023 The Author(s). Published by the Royal Society of Chemistry
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be related to the Kataoka et al. report, showing that Fe**-ions
predominate onto the surface of NPs.'® A second possible
scenario is related to the unit cell volume dependence (see
Fig. 2(a)) on the ionic radius of both the Fe*"-ion in six-fold
coordination (0.65 A) and in four-fold coordination (0.49 A),**
respectively larger and smaller than the ionic radius of Zn**-ions

© 2023 The Author(s). Published by the Royal Society of Chemistry

(0.60 A). Within this second scenario, lower Fe-content (up to x =
0.075) favors the entry of Fe*"-ions in six-fold coordination,
whereas higher Fe-content (above x = 0.075) favors the entry of
Fe**-ions in four-fold coordination, as represented by the data
collected in Fig. 2(a). The second model picture could explain
fairly well the observed experimental trends regarding the unit

Mater. Adv., 2023, 4,1389-1402 | 1393
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cell volume. However, the entry of iron-ions in positions other
than the tetrahedral (four-fold coordination) is energetically more
expensive, as this would imply iron-ions entering into interstitial
positions (six-fold coordination), much more unlikely. Meanwhile,
the entry of Fe*"-ions into regions with a high degree of crystalline
disorder (like the surface) plus the coexistence of Fe*'/Fe®*
became more likely as the Fe-content increases, as it is suggested
in the literature."® Fig. 1(b) displays the typical Rietveld refine-
ment for x = 0.000, 0.100 and 0.200 in the Zn,_,Fe,O NPs, where
the symbol (+) represents the experimental data, the solid red line
the calculated XRD pattern data, and in the bottom, the solid blue
line the difference between them. Fig. 2(b) shows the bond length
(J) as a function of Fe-content (x), which is consistent with the unit
cell volume trend shown in Fig. 2(a). Regarding the density, the

Table 1 Lattice constants a, ¢, c/a crystallite size ((D)) and density (p) were
obtained through the Rietveld refinement. S represents the quantitative
value displaying the refinement quality

Fe-content (x) a (A) c(A) cla (D) (nm) p(gem ) §
0.000 3.2493(1) 5.2070(2) 1.6025 23.3 5.68 1.31
0.005 3.2496(1) 5.2078(2) 1.6026 19.8 5.67 1.30
0.010 3.2493(1) 5.2086(3) 1.6030 17.5 5.67 1.27
0.015 3.2499(1) 5.2101(3) 1.6031 15.0 5.66 1.27
0.020 3.2494(1) 5.2099(3) 1.6034 13.6 5.66 1.27
0.025 3.2493(2) 5.2104(4) 1.6035 13.5 5.66 1.27
0.050 3.2498(2) 5.2084(4) 1.6027 11.9 5.64 1.34
0.075 3.2494(3) 5.2135(5) 1.6044 10.2 5.62 1.35
0.100 3.2479(1) 5.2127(3) 1.6049 10.0 5.60 1.36
0.125 3.2472(3) 5.2159(6) 1.6063 11.4 5.59 1.39
0.150 3.2465(4) 5.2168(7) 1.6069 8.9 5.57 1.41
0.200 3.2457(5) 5.2199(9) 1.6082 7.7 5.54 1.43
1394 | Mater. Adv., 2023, 4,1389-1402
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value of the undoped sample is 5.68 g cm >, which is very close to
the theoretical value (5.67 g ecm ™) for ZnO.'® However, a mono-
tonic tendency toward lower density values with increasing Fe-
content is observed (see Table 1); this tendency is linked to atomic
weight losses brought on by the replacement of Zn (65.4 g mol )
atoms with Fe (55.8 ¢ mol ") atom:s.

To extract the mean crystallite size and residual strain, the
corrected linewidths () of the Bragg diffraction peaks are
correlated to the mean crystallite size ((D)) and residual strain
({(e)), through the Williamson-Hall plot (WHP) given by:

fcos(0) = <K—D)> + 4(¢) sin(0)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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where K is a dimensionless factor that depends on the particle
shape (K ~ 0.9 for spherical shape). If one plots fcos(6)
as a function of sin(f), the values of (D) and (¢) can be
estimated from the intercept and slope associated with the
linear function fitting, respectively. The WHP for the undoped
(x = 0.000) and Fe-doped (x = 0.050, 0.150) NPs are displayed
in Fig. 3, clearly showing that the intercept and slope associated
with eqn (1) increase as the Fe-content increases. These
findings suggest a decreasing and increasing tendency in
the mean crystallite size (oc (D)™') and residual strain
(oc (g)), respectively (see Fig. 4). The decreasing tendency in
the mean crystallite size (see Table 1) as the Fe-content
increases is in agreement with previous report of Fe-doped
Zn0."°

In the approach of spherical shape NPs the mean crystallite
radius ((R) = (D)/2) obtained through the WHP is plotted as a
function of the Fe-content (x) in Fig. 4. The observed monotonic
decreasing trend of (R) versus x (see Fig. 4) could be correlated
with a progressive iron-ions enrichment of the NP’s surface,
decreasing the surface energy in agreement with the Ostwald

Fig. 5

View Article Online

Paper

ripening equation given by:*°

2
() ()} = ©)

where (R) is the mean radius, y is the surface energy per unit
area (] m?), c., is the equilibrium solubility, v is the molar
volume of the nanoparticle material, D is the diffusion coeffi-
cient, R, is the ideal gas constant, T is the absolute tempera-
ture, and t is the growth time. As it is suggested in the
literature, the surface energy could be modeled by the phenom-
enological equation y oc exp(—Ax),>* where 4 is an exponential
constant and x is the Fe-content. In this scenario, the crystallite
radius can be expressed as:

(R)* = (R)o® + k" exp(—Ax) ®3)

where (R),, k and A are fitting parameters. Eqn (3) was used to
fit the experimental data as shown in Fig. 4 (see solid red line),
giving the following values: (R), = 4.18 nm, k = 935.65 nm®, and A =
40. As shown in Fig. 4, there is a strong correlation between the
experimental data (open squares) and the model (solid red line).

T T
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(a) TEM for the undoped and (b) Fe-doped ZnO nanoparticles, with their corresponding particle size histograms (c) undoped and (d) Fe-doped

ZnO. In panels (c and d) N means the number of counted particles. The solid lines represent the lognormal fit to each distribution.
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Fig. 6

(a) Absorbance as a function of the optical excitation energy for Fe-undoped (x = 0.000) and Fe-doped (from x 0.005 to 0.200) ZnO NPs. (b and

¢) Experimental data (open symbols) of absorbance versus optical excitation energy and curve fittings (solid red lines) for the ZnO and Zng gFeo O NP
samples, respectively (curve fit using eqn (4)—(6)). (d) Fitted values of Eq and Ey, versus Fe-content (x). (e) Fitted values of I'cont and I'exc versus Fe-content
(x). Dashed lines in (d and e) are guides to the eye. (f and g) Represent theoretical simulations maintaining fix the excitonic (I'exc) and continuous (I'cont)
broadening parameters, respectively. The gray arrows are guides to the eye.

In addition, the crystallite radii are near the ZnO exciton Bohr radius
of 2.34 nm,** suggesting that confinement effects can not be ruled
out in our samples. Besides, the residual strain (see inset of Fig. 4)
shows an increasing trend with progressive iron-doping (x), thus
evidencing the rise of micro deformation induced by the entry of
iron-ions in the ZnO lattice structure.

Fig. 5(a and b) depict the transmission electron microscopy
(TEM) images of undoped and Fe-doped ZnO nanoparticles,
respectively. Importantly, the morphological analysis (shape
and physical size) of the crystallites shows a clear relationship
between crystallite size and Fe-content. The latter suggests that
the incorporation of iron ions suppresses the growth of ZnO
nanoparticles to a large extent. As previously stated, this is
strongly correlated with a progressive iron-ions enrichment of
the NP’s surface, resulting in a decrease in surface energy.
To determine the mean physical size several particles (N) are
counted. Fig. 5(c and d) show the histograms, which are curve-
fitted using the lognormal distribution function, thus assessing

1396 | Mater. Adv., 2023, 4,1389-1402

the mean physical sizes (Dy) of ~31 £ 1 nm and ~12 + 1 nm,
with polydispersity indexes (o) of 0.32 & 0.01 and 0.29 + 0.03,
for the undoped and 10% Fe-doped ZnO, respectively.

The optical properties of undoped and Fe-doped ZnO NPs
were assessed using the UV-Visible absorbance as a function of
wavelength. For this purpose, powder samples were dispersed
in a liquid medium (distilled water) with a concentration of 3
pg mL ™. Fig. 6 shows the spectra for the undoped (x = 0.000)
and Fe-doped (x from 0.005 to 0.200) ZnO NPs. As can be seen
in Fig. 6, a clear and narrow excitonic peak located in the range
of 3.0-3.5 eV is observed, which is correlated with the electron—
hole pair bound formation. Aiming to determine the exact
electronic bandgap and excitonic properties of the as-fabricated
materials, Elliot’s approach was used to model the absorbance
versus energy curves. It is worth mentioning that this approach
has been successfully used to analyze other systems, such as
perovskites.>*! However, to the best of our knowledge, this is the
first time it is used to analyze the Zn, ,Fe,O system. Elliot’s

© 2023 The Author(s). Published by the Royal Society of Chemistry
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approach shows that the optical absorption coefficient (o)
depends on the linear combination of the exciton () plus
continues edge (cond), given by the following relationship:>*

(4)

o= aEXC + aCOHt

The first contribution in eqn (4) correlates with the exciton
formation (electron-hole pair), whereas the second contribu-
tion accounts for the absorption into the free-carrier conti-
nuum. However, two key aspects need to be included in the
description of the samples herein reported and related to the
excitonic transitions. Firstly, the NPs size monotonically
decreases with the Fe-content, as shown in Fig. 4. Secondly,
the entry of the iron ions into the hosting ZnO crystal structure
leads to local distortions in the neighboring iron-ions, thus
increasing the polydispersity of the exciton peak. In this
scenario, the excitonic transition broadening parameter (I'exc)
is included in Elliot’s method:

£y,
< 4p, (™~ (Eg *;T2>

Oexe = 0o 27 Toxe (5)

where E, and Ej, are the bandgap and exciton binding energy,
respectively. On the other hand, the continuous edge contribu-
tion (0cont) is strongly dependent on the free-carrier concen-
tration, which is correlated with the increase of defects
associated with the Fe-content increase, causing a flattening
of the absorption above the band gap energy. This behavior is
pheno