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Analyzing drop coalescence in microfluidic
devices with a deep learning generative model

Kewei Zhu,a Sibo Cheng, *b Nina Kovalchuk, c Mark Simmons,c Yi-Ke Guo,b

Omar K. Matard and Rossella Arcuccie

Predicting drop coalescence based on process parameters is crucial for experimental design in chemical

engineering. However, predictive models can suffer from the lack of training data and more importantly,

the label imbalance problem. In this study, we propose the use of deep learning generative models

to tackle this bottleneck by training the predictive models using generated synthetic data. A novel

generative model, named double space conditional variational autoencoder (DSCVAE) is developed for

labelled tabular data. By introducing label constraints in both the latent and the original space, DSCVAE

is capable of generating consistent and realistic samples compared to the standard conditional

variational autoencoder (CVAE). Two predictive models, namely random forest and gradient boosting

classifiers, are enhanced on synthetic data and their performances are evaluated based on real

experimental data. Numerical results show that a considerable improvement in prediction accuracy can

be achieved by using synthetic data and the proposed DSCVAE clearly outperforms the standard CVAE.

This research clearly provides more insights into handling imbalanced data for classification problems,

especially in chemical engineering.

1 Introduction

Drop coalescence is of high industrial importance as it deter-
mines emulsion stability. Extensive effort has been devoted to
comprehending and predicting coalescence under diverse
hydrodynamic conditions, with many investigations seeking
to minimize or maximize the likelihood of coalescence based
on a specific application. Typical areas of industrial interest
where coalescence should be avoided are the prediction and
maximization of foam/emulsion shelf life (mild hydrodynamic
conditions) or product stability during transportation (more
challenging hydrodynamic conditions, including, for example,
shaking). On the other hand, coalescence is desirable in
separation processes, such as the elimination of aqueous
droplets that contaminate an oil.

Microfluidics provide a unique opportunity to study drop
coalescence under well-controlled hydrodynamic conditions
and if necessary to account for the fate of each formed doublet.
The use of microfluidic platforms allows for the exploration of
thousands of coalescence instances with minimal material
usage and energy consumption. Drop coalescence is used in

microfluidics for triggering/quenching chemical reactions
within a drop or for cell screening. Various designs of micro-
fluidic chambers are used depending on the aim of investi-
gation.1–4

Considering that the Machine Learning (ML) technique has
widely succeeded in chemistry and chemical engineering5 with
applications spanning from quantum chemistry research6 to
molecular reaction kinetics,7 we believe that an effective ML
model can also predict the probability of drop coalescence in a
microfluidic device, enabling a considerable reduction of time
and cost spent on optimization of microfluidic designs includ-
ing the cost of energy as well as expensive and hazardous
materials used in photo-lithography.

For microfluidic drop reactions or cell screening relying on
coalescence, it is obligatory that the rate of drop coalescence is
close to 100%. In such scenarios, the composition of coalescing
drops is set as a priority, and there are usually very limited
possibilities for adjusting the properties of the continuous
phase. Therefore, accurate prediction of drop coalescence
based on geometrical and hydrodynamic conditions is pivotal
for effective experimental design. In this study, the experi-
mental dataset comprises outcomes of either ‘‘coalescence’’
or ‘‘non-coalescence’’ when two drops interact in a microfluidic
coalescence chamber, contingent on process parameters, such
as drop size and flow rate.

Here, ML can be used for the optimization of parameters of
the coalescence chamber and geometry of microfluidic devices
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in general, as well as flow characteristics maximizing the drop
coalescence probability. By construction, different ML methods
are able to deal with various types of information in chemistry,
such as images for phenomena, videos for processes, texts
for descriptions, and tabular data for numerical records. For
example, Lasso regression and Random Forest (RF) have been
employed to predict drop coalescence based on experimental
data.8 Moreover, the usage of neural networks has helped
parameterize the collision merging process9 and surrogate
models based on Deep Learning (DL) models are developed
to predict the dynamics of drop interactions based on recorded
videos of experiments.10 Using effective ML protocols providing
an accurate prediction of coalescence in combination with
microfluidics enables, in this case, a considerable reduc-
tion in material and energy consumption during formulation
optimization.

Despite the success in a large range of applications, it is
widely noticed that imbalanced training data can lead to poor
prediction/classification performance in ML.11 Examples can
be found in the assessment of chemical-disease relation12 and
in the classification of drug-induced injury.13 To tackle the data
imbalance problem, multiple advanced tree-based algorithms14–17

are developed. These approaches mainly consist of building sub-
models trained by partial data to alleviate the risk of overfitting
caused by data imbalance. However, in the case of extreme data
imbalance, the size of the training datasets in each sub-model is
limited due to the constraint of label balance.18

Generative models are developed as a method of data
augmentation.19 From this extension, they are employed to
address the issue of data imbalance. Generative adversarial
network (GAN)20 is a common method to generate artificial
data, of which the generator is used to generate data, and then
the discriminator judges if the synthetic data are similar to the
real. Although GANs reach obvious improvement on imbalance
data issue,21 the implicit posterior distribution is difficult to
optimize and requires large-scale data to converge.22 Another
method to create synthetic data is variational autoencoder
(VAE).23 It is proposed with an explicit posterior distribution,
whereas VAE cannot generate data with class-level conditions.
To enable VAEs to generate class-specific data, a conditional
variational autoencoder (CVAE)24 is developed with an extra
classifier in the original space. Thanks to the constraint, CVAE
can learn conditional representations explicitly in the original
space and implicitly in the latent space simultaneously. Bene-
fiting from the conditional representation, CVAE can generate
synthetic data separately and substantially to decrease the
impact of imbalanced data issue.25–27 However, the latent
space of CVAE still lacks conditional constraint. Therefore, it
is unable to explicitly learn latent conditional representation,
which pushes more information stored in the decoder rather
than the latent space.28 The recent work of Chagot et al.29

generates synthetic data to mitigate the issue of imbalanced
data but the challenge associated with latent conditional
representation remains. To improve the performance of gen-
erative models, some studies have begun to focus on latent
spaces.30,31 GET-3D32 in 3D modeling area does not constrain

the outputs only. It is proposed to add an extra constraint in
latent space to improve the consistency of outputs. However, all
outputs from GET-3D are not according to specific labels due to
the target task. For example, GET-3D is capable of generating
vivid 3D cars, but there is no label-specific constraint involved.
GET-3D just guides the generator to generate similar data
without focusing on their class differences.

In this work, we aim to handle an experiment-based classi-
fication problem using ML methods. This study is conducted
based on tabular data, which have a relatively small sample size
and the results (i.e., ‘‘coalescence’’ or ‘‘non-coalescence’’) cor-
respond to a very similar distribution of conditional values.
By predicting drop coalescence in the microfluidic device, we
explore a new implementation to solve the dilemma of tabular
data imbalance. To accomplish the prediction tasks, we use ML
methods of RF and XGBoost for their interpretability and
strengths in processing small sample-sized datasets. To address
the data imbalance for better predictive performances, we use
generative models based on variational autoencoder (VAE) to get
more synthetic data. In this stage, we propose a double space
conditional variational autoencoder (DSCVAE) consisting of a
standard VAE and two explicit constraints on both the latent
space and the original space. Its novel latent constraint guides the
latent space to learn conditional representation and enables the
latent space of DSCVAE to become more informative. After gen-
erating more training data using DSCVAE, the accuracy of the
predictive models improved by 7.5% and 8.5%, respectively.
Through sensitivity analysis based on Shapley addictive explana-
tions (SHAP) values, the contribution of these synthetic data
to predictive models is more consistent with microfluidics
experiments.

The rest of the paper is organized as follows. Section 2
describes the experimental process and the initial data that
originated from the experiment. Section 3 introduces the
machine learning methods involved in this task, including
two tree-based predictive algorithms for predicting coalescence
results and our novel DSCVAE model for synthetic data. Section
4 exhibits the results of our numerical experiments. Starting
with implementation details, we trace the training process of
generative models, discuss the performance of predictors, and
analyze the impact of the initial and generative datasets on the
predictors via SHAP.

2 Experiments and dataset
2.1 Experiments

Coalescence experiments were carried out in a microfluidic
device with rectangular channels made of PDMS using stan-
dard soft lithography.33 Aqueous drops (double distilled water
from water still Aquatron A 4000 D, Stuart) in a continuous
phase of silicone oil (5 cSt, Aldrich) were formed using flow-
focusing34 in two symmetrical cross-junctions and met within a
coalescence chamber shown in Fig. 1. Drop movement and
coalescence were recorded using a high-speed video camera
Photron SA-5 connected to an inverted microscope Nikon Eclipse
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Ti2-U at 1000 frames per second and spatial resolution of
2 mm per pixel. The images were processed using ImageJ35 to
find drop sizes.

The chamber has two entrances or input channels (top and
bottom channel in Fig. 1) and two exits or output channels
(left and right channel in Fig. 1) of width 315 � 5 mm and depth
140 � 5 mm. The chamber size, L, shown in Fig. 1b was in the
range of 901 � 11 mm. The flow field in the chamber and
adjacent channels is shown in Fig. 1a, with the velocity magni-
tude shown in mm s�1. It was measured using ghost particle
velocimetry, a non-invasive technique using the speckle pattern
produced by light scattered by particles smaller than the
diffraction limit as a tracer.36,37 As Fig. 1a shows, there is a
stagnation point in the centre of the chamber due to flow
symmetry. Drops arrive into the chamber with various time
delays between them caused by fluctuations in the flow rate of
continuous and dispersed phases supplied by syringe pumps
(Al-4000, World Precision Instruments), inevitable deviations in
the channel size, and fluctuations in channel resistance due to
drop presence.

In an ideal situation, the drops move along the symmetry
axis of input channels and the first drop arriving in the
chamber is trapped at the stagnation point until the arrival of
the second drop. In reality, the flow fluctuations and effect of
the second drop on the flow field in the chamber result in drop
encounters at various positions around the stagnation point.
Following an encounter, the drops form a doublet, i.e., start to
move together. If the doublet axis coincides with that of the
input channels, which is also one of the chamber symmetry
axes, the doublet is trapped in the compression flow provided
by the continuous phase. In this case, the coalescence prob-
ability is 100% and compositions of continuous and dispersed
phases affect only the time span between the doublet formation
and coalescence. Because of ever-present fluctuations as well as
the inevitable small asymmetries of real devices, the doublet
begins to rotate/translate to one of the output channels;

a doublet rotated and moved from its initial position as shown
in Fig. 1b. Doublet rotation results in its transfer from a region
of compression flow to one of extensional flow when its axis
coincides with the axis of output channels. The extensional flow
leads to drop detachment resulting in a non-coalescence event.

In general, the outcome of the drop encounter depends on
the relative time scales of drainage of the continuous phase
from the film separating the drops and the transition of the
doublet from the region of compression flow to that of exten-
sional flow: if the doublet does not rotate at all, the coalescence
probability is 100%; if it rotates very fast, the coalescence
probability is zero, i.e., the coalescence probability increases
with decreasing flow rate. However, the very slow flows are
incompatible with the requirement of high throughput being a
measure of the efficiency of microfluidic devices. Moreover, in a
certain range of flow rates, the drainage time decreases with an
increase of the continuous phase flow rate due to diminishing
inertial effects38, or possibly even reversing, the dependence of
the coalescence probability on the flow rate.

Therefore, process optimization is necessary to determine
the conditions under which coalescence probability remains
large while maintaining a sufficiently high throughput. The
optimization parameters include xflow, the total flow rate; xdrop1

and xdrop2, the drop diameters; and xdt, the time delay between
drops. The total flow rate is calculated as the sum of the flow
rates of continuous and dispersed phases, with a syringe pump
dispensing accuracy of �1%. The drop sizes are determined
from their area in the plane of observation, S1 and S2 in Fig. 1b,
with a maximum error of �1%. The drop diameters are normal-
ized by the chamber width. The time delay, xdt between drops
has an uncertainty of 2 ms.

2.2 Dataset

The experimental dataset consists of 1531 samples in total,
including one label y, influenced by four features Xfeatures =
[xflow,xdrop1,xdrop2,xdt] in various ranges. Label y has two classes:

Fig. 1 Drop coalescence experiments in a microfluidic device.
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‘‘coalescence’’ and ‘‘non-coalescence’’. The features are scaled
for their comparability by min-max normalization according to

xscaled ¼
x� xmin

xmax � xmin
; where x 2 xflow; xdrop1; xdrop2; xdt

� �
(1)

here xmax and xmin are the maximum value and minimum value
of x, and xscaled for their normalised outcomes.

The statistical characteristics of binary classifications are
given in detail in Fig. 2. Fig. 2a shows the imbalance percen-
tages of ‘‘coalescence’’ and ‘‘non-coalescence’’ samples, where
‘‘coalescence’’ accounts for 76% and ‘‘non-coalescence’’ only
accounts for 24%. The value distributions of four features
compared between two labels are shown in Fig. 2b. Fig. 2c
shows the median, quartiles and whiskers of Xfeatures. These
values of the two types of labels under each feature are not
significantly different. Fig. 2d shows that Xfeatures values are not
subject to the standard normal distribution, and confirms
again that the distributions are similar with different labels.
To sum up, Xfeatures is imbalanced in volume regarding two
opposite classes, though identical distributions. In other
words, there are significantly more samples of ‘‘coalescence’’
compared to ‘‘non-coalescence’’ in the training dataset, and it
is difficult to separate the two classes of data by simply looking
at their input distributions. The latter makes the prediction
task even more challenging.

ML models must be evaluated using data that have not been
used for training. Moreover, a validation set is needed for
tuning the hyperparameters of the predictive models. As there
is no dominant experimental result in actuality, the dataset is
split into a balanced test set and a balanced validation set
(‘‘balanced’’ here means with the same number of ‘‘coales-
cence’’ and ‘‘non-coalescence’’), instead of being divided pro-
portionally. The remaining samples are used as the training set.
The imbalanced ratio (IR) here is equal to the number of major
results (‘‘coalescence’’) divided by the number of minor results
(‘‘non-coalescence’’). Thus, the whole dataset is split into three

mutually-independent sets, namely the balanced training data-
set, validation dataset and test dataset, for subsequent proce-
dures (shown in Table 1). It is worth mentioning that all
comparative models in this paper are trained on this balanced
training set to avoid overfitting.

After dataset splitting, IR becomes larger from 3.15 of the
total experimental set to 4.62 of the training dataset which
makes the classification task more difficult.

3 Methods

In this section, we introduce two advanced tree-based models,
RF and XGBoost, to make predictions for coalescence results.
In addition, we design a VAE variant, DSCVAE, to solve the
aforementioned insufficiency and imbalance problem by
generating synthetic data.

3.1 Predictive models

Tree-based models belong to the class of widely-used algorithms
for assessing tabular data, which outperform neural networks
for small and intermediate-sized datasets.39 Therefore, they are
applied to process the small-scale data of this study. The
Decision Tree (DT) is a classical ML algorithm and has natural
interpretability. It has been used in ML models for classifica-
tion and regression.40,41 To avoid overfitting, some parameters,
such as max depth dmax, should be set to enhance its
robustness.42 Nevertheless, since minor changes may lead to
an entirely disparate tree,43 some variants combined with
ensemble learning approaches, such as RF (see Section 3.1.1)
and XGBoost (see Section 3.1.2), have been utilized to make
predictions. The former and latter adopt ‘‘bagging’’ and ‘‘boost-
ing’’ algorithms, respectively.

3.1.1 Random forest. RF is a widely applied model focus-
ing on imbalanced data thanks to the ‘‘bagging’’ technique44

(Fig. 3a). Here, the term ‘‘Bagging’’ corresponds to the abbre-
viation of ‘‘Bootstrap aggregation’’, that is, multiple models
trained by bootstrap sampling in a parallel process.45,46 An RF
selects an irregular portion of samples from the training set
with put-backs and randomly selects some features for training;
the number of sub-models is nestimators. The results of sub-
models vary, because of different sub-datasets. After that, a
prediction is made by taking a majority vote on classification
trees. The benefit of this approach is that it not only settles the
over-fitting problems but also helps to reduce prediction errors
in general.47

3.1.2 XGBoost. Unlike ‘‘bagging’’ where submodels expand
in parallel, ‘‘boosting’’ is a sequential structure. It has beenFig. 2 Experimental dataset characteristics.

Table 1 Dataset split

Coalescence Non-coalescence IR Total

Total dataset 1162 369 3.15 1531
Training dataset 1012 219 4.62 1231
Balanced training dataset 219 219 1 438
Validation dataset 50 50 1 100
Test dataset 100 100 1 200
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used in Gradient Boosting Decision Tree (GBDT) to decrease
variance and bias of tree models.48 The new tree is built on
the basis of the previous one, to decrease the residuals to the
target. XGBoost is an efficient implementation of GBDT
(Fig. 3b) based on a gradient boosting algorithm.49 It is also
robust to over-fitting. Its important parameters also include
dmax and nestimators, similar to RF.

3.1.3 Metrics. In order to evaluate the prediction perfor-
mance from different perspectives, and equip data charac-
teristics with interpretability, several common approaches were
chosen in this study.

To introduce model-performance measures for binary
classification, we used the following metrics to evaluate the
classification performance, including accuracy, precision
(eqn (2)) from an actual perspective, recall (eqn (3)) from a
predictive perspective, F1 score (eqn (4)), and confusion matrix
(Table 2).
� Confusion matrix includes four categories. Here, true

positive (TP) and true negative (TN) indicate correctly classified
labels, and false positive (FP) means the amount of incorrectly
predicted positive results, and vice versa, false negative (FN)
shows incorrectly classified negative results.
� Precision or positive predictive value:

Precision ¼ TP

TPþ FP
(2)

� Recall or true positive rate:

Recall ¼ TP

TPþ FN
(3)

� F1 score is the harmonic mean of precision and recall:

F1score ¼
2

1

Precision
þ 1

Recall

¼ 2� Precision� TPR

PPVþRecall
(4)

SHAP values (SHAP) are based on the classical Shapley value in
game theory.50,51 It is used in this study to interpret feature
influences toward predictive results by accounting for how each
feature affects the tree model.

3.2 Generative model

The imbalance (Fig. 2a and b) between the two classes of labels
caused a preference in the tree model prediction. Moreover,
balancing the data (i.e., deleting the excess) reduces the num-
ber of majority samples and thus the total number of samples,
which could make the training dataset insufficient for predic-
tive models. This is the reason that the number of samples
should be increased with the generative model.

Generative models, namely variational autoencoders, are
employed in this study to address data imbalance by generating
data with different labels separately. These data are then used
as inputs for predictive models to enhance performance.

3.2.1 Variational autoencoder (VAE). The Autoencoder (AE)
is a feed-forward neural network belonging to unsupervised
learning.52 A typical AE contains symmetrical architectures as
shown in Fig. 4a. The input x is encoded to obtain the latent
variable z, from which the synthetic output x̂ is decoded.
Therefore, an encoder E and a decoder D are represented by

z = E(x) and x̂ = D(z) (5)

This network is trained by minimzing the reconstruction error
L(x,x̂) between x̂ and x, usually using Mean Square Error (MSE):

LMSEðx; x̂Þ ¼
1

N

XN

i¼0
x� x̂ið Þ2 (6)

This loss shows the efficiency of the data compression strategy.
It is used to compare the difference between model output and
input. Thus, AEs are traditionally used for dimensionality
reduction53,54 and feature extraction55 instead of data generation.

VAE stems from AE, and starts to focus on the distribution of
z in the latent space (Fig. 4b),23 which equips VAE with
generation capability. Unlike AE, VAE constructs the distribu-
tion of z in the latent space and resamples z0 over the distribu-
tion. Thus, the whole process of VAE can be expressed as

z = E(x) and x̂ = D(z0) (7)

Latent distribution q(z|x) is trained to be subjected to
a posterior distribution p(z|x), usually assumed Gaussian.
The approximation between q(z|x) and p(z|x) is measured by
Kullback–Leibler Divergence (KLD) loss as

LKLDðqðzjxÞ k pðzjxÞÞ ¼ �
1

2

X
1þ logðs2Þ � m2 � s2
� �

(8)

KLD loss is used to regularize the distribution of hidden
variables q(z|x) in the latent space to converge to a Gaussian
distribution p(z|x). Thus, VAE enables the model with
interpretability.

Resampled latent variables z0 can be characterized by a
normal distribution with mean m and variance s denoted as

Fig. 3 Flowchart of the predictive models.

Table 2 An example of the confusion matrix

Real

Prediction

Negative Positive

Negative TN FP
Positive FN TP
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N(m,s2), with e sampled from a Gaussian distribution as

z0 � mþ e � s; where e �Nð0; IÞ (9)

To sum up, the total loss function of VAE56 presents as

L = LMSE(x,x̂) + LKLD(q(z|x)8p(z|x)) (10)

VAE can be used not only like AEs for dimensionality reduction,
but also to generate ‘‘consistent’’ data that are different from
inputs because of their latent state representation.29 Here, by
‘consistent’, we refer to the generated data whose statistical
properties mimic those of the original dataset. However, it is
also an unsupervised learning method and cannot handle
condition-specific samples57 (e.g., ‘‘coalescence’’ and ‘‘non-
coalescence’’ in this study) because conditional prerequisites
are involved neither in the encoding nor decoding processes.

3.2.2 Conditional variational autoencoder (CVAE). To mod-
ulate the latent distribution according to prior conditions, a
CVAE24 is devised to generate data with its conditional infor-
mation. CVAE concatenates feature inputs x with auxiliary
condition y, thus, it becomes a supervised learning model.

In addition, in our study, labels y are not put directly into the
encoder with Xfeatures together to prevent label leakage during
training. In other words, the label y is not given to the encoder
when constructing latent variables. As shown in Fig. 4c, firstly,
Xfeatures are used as inputs for the encoder only. Then, their

corresponding labels y are used as the target of artificial neural
network (ANN) classifier results ŷ, and this ANN classifier is
jointly trained with the entire VAE network. The difference is
measured by predicted labels ŷ A (0,1) and probability V via
cross entropy (CE) loss according to

Loriginal
CE = �(ŷ logV + (1 � ŷ)log(1 � V)) (11)

Thus, the total loss can be described as

L = LMSE(x,x̂) + LKLD(q(z|x,y)8p(z|x,y)) + Loriginal
CE

(12)

CVAE helps generate synthetic data by conditions, and it changes
the distribution of the latent space indirectly. However, it is not
sufficient to distinguish distributions that are very similar in the
original space based on its conditional restrictions.

3.2.3 Double space conditional variational autoencoder
(DSCVAE). Inspired by the latent discriminator from GET-
3D,32 we propose our DSCVAE. DSCVAE should be a more
robust generative model to finely discriminate the difference
between similar distributions of conditions. The constraint
only at the original space enforces more information stored
in the decoder according to ref. 28. In contrast, DSCVAE
ensures the consistency of generated data by simultaneously
assigning conditions to both the latent distribution and the
original-space distribution, which is a crucial factor in the
quality determination of generative models.

In DSCVAE, we first adopt two classifiers at two spaces to
classify the latent representation z0 and the original space
reconstruction x̂ respectively according to their common label.
Double space conditions are implemented by adding another
ANN classifier for resampled variables z0 (shown in Fig. 5), of
which classification error is still measured by CE loss as

Llatent
CE = � (ŷ0 logU + (1 � ŷ0)log(1 � U)) (13)

where, the latent-space predicted label is ŷ0 and probability
is U.

These two classifiers contribute to distinguishing different
labels, more than judging the similarity of outputs in conven-
tional generative models. Furthermore, our novel latent classi-
fier promotes DSCVAE to learn a more informative latent space
than generative models with only original-space conditions.
Thus, DSCVAE should better solve the conditional inputs

Fig. 4 Existing VAE structures.

Fig. 5 Double space CVAE (DSCVAE).
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(‘‘coalescence’’ or ‘‘non-coalescence’’ here) with considerable
noise and similar distributions for different labels.

The total loss function can be written as

L = LMSE(x,x̂) + LKLD(q(z|x,y)8p(z|x,y)) + Loriginal
CE + Llatent

CE

(14)

where LKLD and Llatent
CE both regularise the latent distribution,

making the latent space more interpretable.

4 Numerical results and analysis

In this section, we compare and analyze the performance of
different generative and predictive methods. Ablation tests
are performed to demonstrate the strength of the proposed
DSCVAE model. The SHAP value is used as a metric to interpret
the model performance.

4.1 Implementation details

In the generation phase, the balanced training set (shown in
Table 1, named initial dataset hereafter) is employed in gene-
rative models as inputs and also used to inspect and validate
these models. When training the generative neural networks,
the parameters are set as follows: batch size is 73, the learning
rate is 10�3, the optimizer is Adam, the scheduler is CosineAn-
nealing LR,58 and the training epoch is 5000. For all generative
methods, z0 is resampled from the distribution, and added to a
random four-dimensional Gaussian noise for regularizing pur-
poses. The sum is put into the decoder to get output x̂. The
samples of different labels are generated separately. Totally, we
generate 6570 balanced samples from each generative model.

We then use the predictive models to evaluate the generated
synthetic data. The training datasets are set as Table 3, and the
validation set and test set are also shown in Table 1.

The algorithms for assessments are Random Forest
(mentioned in Section 3.1.1) and XGBoost (mentioned in
Section 3.1.2). The key hyperparameters nestimators and dmax

are chosen from a grid search. All the numerical experiments
are implemented on the Google Colab platform. The DL gen-
erative models are performed on a single Tesla K80 GPU.

4.2 Training loss of the generative models

The losses of MSE, KLD and classifiers both in the original space
and the latent space are plotted in Fig. 6. The MSE loss and the KLD
loss are the basic loss functions used to build the VAE (Fig. 4b). As
shown in Fig. 6a, MSE losses of both models tend to converge.
Fig. 6b shows that the plots of KLD losses vary significantly between
CVAE and DSCVAE. The classifiers are used to discriminate the
conditions (i.e., the label ‘‘coalescence’’ or ‘‘non-coalescence’’).
Fig. 6c shows the classifiers of the CVAE and DSCVAE set for

decoder outputs at the original space, while Fig. 6d shows the
classifier of DSCVAE for the resampled variables in the latent space.
The classifier losses all decrease slightly before stabilization since
the classifiers are used as regularizers in CVAEs.

The classifier of the latent space in DSCVAE has a direct
impact on the construction of the latent distribution and
indirectly affects the classification and reconstruction of the
original space. Because the latent-space classifier affects the
latent distribution, unsurprisingly we find that the KLD loss
of DSCVAE is more unstable than CVAE, as shown Fig. 6b.
In addition, the double-space classifiers make the reconstruc-
tion training converge faster, as Fig. 6a shows that the MSE loss
of DSCVAE decreases faster than the MSE loss of CVAE. This
may be due to the fact that the classifier of the latent space also
guides the data reconstruction.

4.3 Hyperparameter tuning

The parameterization of machine learning algorithms impacts
their generalization ability and prediction accuracy. In this
study, the balanced validation dataset is used to find the
appropriate hyperparameters, namely nestimators and dmax.
As shown in Fig. 7, the dark blue areas indicate high prediction
accuracy in the validation set. For the RF predictors, the
heatmap of DSCVAE (Fig. 7e) has the largest dark areas,
signifying higher prediction accuracy in this validation dataset.
As for XGBoost predictors, CVAE (Fig. 7d) and DSCVAE (Fig. 7f)
both lead to significantly more accurate predictions compared
to solely using the original dataset (Fig. 7b). Overall, the
predictive models training on DSCVAE synthetic data show a
more significant improvement in RF compared to XGboost in
the validation dataset.

We fix nestimators and dmax that perform the best on the
validation dataset (according to Fig. 7) since the test dataset should
not be used for tuning hyperparameters. These hyperparameters
are used for predicting the test data. The exact values of these
tuned hyperparameters are shown in Table 4.

Table 3 Training dataset

Initial Synthetic Total

Initial dataset 438 — 438
CVAE mixed dataset 438 438 � 15 7008
DSCVAE mixed dataset 438 438 � 15 7008

Fig. 6 Losses of the generative models.
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4.4 Predictive results

Table 5 shows the prediction results based on different syn-
thetic training datasets for RF and XGBoost. To further examine
the necessity of training two classifiers jointly in DSCVAE, we
set up another CVAE (L) as an ablation experiment. The CVAE
(L) mixed dataset combines the initial dataset and the synthetic
data generated from the CVAE with only one classifier in the
latent space. It has the same hyperparameter tuning process on
the predictive model as the other three sets.

As displayed in Table 5, the predictors trained by DSCVAE
mixed (synthetic and initial) dataset have the best test results in
terms of all metrics investigated. In fact, all generated datasets
improve the accuracy of predictive models. Compared to the
predictive models only trained on the initial dataset, DSCVAE
substantially enhances the prediction accuracy by 7.5%
and 8.5% for RF and XGBoost, respectively. The predictive
models trained by DSCVAE mixed dataset also have the best

performance in precision, recall and F1 score. In addition,
DSCVAE helps to reduce predictors over-fitting between valida-
tion results and test results. As shown in Table 5, DSCVAE
synthetic data narrows the gap between validation accuracy and
testing accuracy from 8.5% to 5% (RF) and from 6% to �0.5%
(XGBoost) compared to the initial dataset.

We consider ‘‘coalescence’’ as positive samples and ‘‘non-
coalescence’’ as negative samples. Shown in Table 6 is the
number of correct and incorrect predictions. The accurate
predictions for both types increase compared to the predictive
models trained on the initial dataset. The true positive rates
increase by 7.4% and 12.5% respectively, and the true negative
rates increase by about 17% for both RF and XGBoost. It is
worth mentioning that the prediction accuracy of 66% for
DSCVAE might still present some limitations for the practical
use of the predictive model. However, increasing the accuracy
from 58% to 66% for a binary classification problem is still
significant and it clearly demonstrates the strength of the
proposed generative model. With this model, we predict the
outcome, ‘‘coalescence’’ or ‘‘non-coalescence’’, of each forming
doublet. Due to the dependence on the local process para-
meters, the probability of drop coalescence varies between
0 and 1, leaving some cases indeterminable. As a result, the
predictability of the model cannot be very high. On the other
hand, the reliable generation of a considerable amount of
synthetic data will enable the prediction of coalescence prob-
ability for the prescribed set of data. Furthermore, a more
accurate predictive model results in a more meaningful inter-
pretability analysis as detailed in the following section.

4.5 Intrepretability

We use the SHAP value here to reveal the contributions of
samples in training datasets. The values can be analyzed both

Fig. 7 Validation heatmaps for the tuning hyperparameters of the various
generative models.

Table 4 Validation results for hyperparameter tuning

Evaluative method Generative method Accuracy (%) Precision (%) Recall (%) F1 score (%) nestimators dmax

RF None 67.00 67.34 67.00 66.84 80 12
CVAE 66.00 66.10 66.00 65.95 105 8
DSCVAE 71.00 71.01 71.00 71.00 125 9

XGB None 64.00 64.09 64.00 63.94 60 5
CVAE 68.00 68.12 68.00 67.95 60 6
DSCVAE 66.00 66.03 66.00 65.99 50 5

Table 5 Test results using Initial or mixed datasets

Evaluative
method

Generative
method

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

RF None 58.50 58.57 58.50 58.42
CVAE 63.00 63.13 63.00 62.91
CVAE (L) 60.50 60.59 60.50 60.42
DSCVAE 66.00 66.42 66.00 65.78

XGB None 58.00 58.01 58.00 57.98
CVAE 63.00 63.01 63.00 63.00
CVAE (L) 61.50 61.59 61.50 61.42
DSCVAE 66.50 66.58 66.50 66.46
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in global and local aspects. The bar plots (Fig. 8(a)–(f)) show the
mean of SHAP values of each feature. The models trained on
the DSCVAE mixed (i.e., synthetic and initial) data have more
similar SHAP values for different inputs. In Fig. 8c and f, the
SHAP values of all four features are relatively close compared to
other approaches, indicating that the contributions of these
features to the predictive models are similar. For example, the
two features ‘‘drop1’’ and ‘‘drop2’’, in Fig. 8b and e show a large
gap between them, which may be caused by overfitting in CVAE.
Whereas, as shown in Fig. 8c and f, the SHAP values of ‘‘drop1’’
and ‘‘drop2’’ are more similar, and thus, more realistic.

In addition, scatter plots (Fig. 8(g)–(l)) combine feature
importances and feature effects. Each point on the scatter plot
is a SHAP value of the feature in a training sample. The position
on the x-axis is determined by the SHAP value which represents
the feature contribution. The colours of the scatter points
represent the feature values (red/blue for positive/negative
contribution to ‘‘coalescence’’). Most of the points in Fig. 8i
and l are clustered, indicating that their SHAP values are closer.
This means that the individual samples in each feature con-
tribute similarly to the model, which improves the model’s
robustness. Also, it can be seen from Fig. 8(i) and (l) that the
contribution of ‘‘drop1’’ and ‘‘drop2’’ are reversed. That is, the
higher size of ‘‘drop1’’ contributes negatively to the probability
of ‘‘coalescence’’, while the higher size of ‘‘drop2’’ contributes

positively to the probability of ‘‘coalescence’’. In fact, it can be
noticed from Fig. 2 that in general, the average size of ‘‘drop1’’
is larger than that of ‘‘drop2’’. In addition, when the sizes of
‘‘drop1’’ and ‘‘drop2’’ are close, the drops have a higher
probability of coalescence. To further confirm this trend, we
plot in Fig. 9 the impact of the drop size difference (i.e., |xdrop1 �
xdrop2|) on the model predictions of RF and XGBoost. It can be
concluded that smaller differences in drop sizes can lead to a
significantly higher probability of drop coalescence. In other
words, to obtain a higher drop coalescence in experiments, one
should minimize the drop size difference. This explains the
opposite contribution of ‘‘drop1’’ size and ‘‘drop2’’ size in Fig. 8
and also confirms the consistency of DSCVAE since both the RF
and the XGBoost here are trained using the synthetic data. For
the predictive models trained on the initial and DSCVAE
datasets, it can be seen that the impact of xdt on model output
is limited. It is worth mentioning that we consider here only the
case when two drops form a doublet. For large xdt, drops can
proceed as singlets, without forming a doublet and therefore
are not included in the consideration.

In summary, DSCVAE mixed data outperforms the initial
dataset and CVAE mixed dataset in training predictors in classi-
fication tasks. It not only reduces the overfitting gap between
validation accuracy and test accuracy, but also increases overall

Table 6 Confusion matrices for RF and XGBoost. Here, ‘TP’ and ‘TN’, and
‘FP’ and ‘FN’ correspond to true positive and true negative predictions, and
false positive and false negative predictions, respectively, where ‘‘positive’’
and ‘‘negative’’, in turn, correspond to coalescence and non-coalescence
events, respectively

Evaluative
method

Generative
method

Validation Test

TP TN FP FN TP TN FP FN

RF None 30 37 20 13 54 63 46 37
CVAE 31 35 19 15 58 68 42 32
CVAE (L) 30 38 20 12 56 65 44 35
DSCVAE 35 36 15 13 58 74 42 26

XGB None 30 34 20 16 56 60 44 40
CVAE 32 36 18 14 62 64 38 36
CVAE (L) 28 38 22 12 57 66 43 34
DSCVAE 32 34 18 16 63 70 37 30

Fig. 8 SHAP values for training dataset.

Fig. 9 ‘‘Gap’’ comparison according to predictive labels from DSCVAE
enhanced predictors.
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predictive performance. By analyzing XGBoost values of each
predictive model, we find that DSCVAE mixed dataset contributes
to features’ homogeneity, allowing features to be treated equally.

5 Conclusions

In this study, we propose a novel generative model named the
double space conditional variational autoencoder for generating
synthetic tabular data. Compared to traditional generative
models, the proposed model utilizes two classifiers in the latent
and original spaces to regularize the data generation process. The
DSCVAE model is applied to generate synthetic data for training
predictive models of drop coalescence in a microfluidics device.
Numerical results show that the predictive models, namely RF
and XGBoost, achieve substantially more accurate and robust
predictions than those trained on purely experimental data in
terms of several metrics. With the help of DSCVAE synthetic data,
both RF and XGBoost manage to obtain a prediction accuracy of
about 66%, which is about 8% higher than using only the
experimental data. It is worth mentioning that, from a prediction
perspective, this is an extremely challenging task due to the
following reasons: firstly the imbalanced dataset, and more
importantly, the similar input distributions of ‘‘coalescence’’
and ‘‘non-coalescence’’ samples. These predictive models are
valuable for optimizing experimental design, and insightful ana-
lysis is provided through the computation of Shapley addictive
explanation (SHAP) values. The results show that reducing the gap
between two drop sizes increases the probability of coalescence.
Moreover, ablation tests demonstrate the strength of DSCVAE
compared to non-conditional VAE and standard CVAE (with
constraints either in the latent or the original space).

This study offers a paradigm for addressing classification
problems with limited and imbalanced tabular data. It also
highlights the potential of data-driven methods for predicting
microfluidic drop coalescence. The proposed methodology can
be applied to other materials and devices. Future work may
include further improving the interpretability and robustness
of DSCVAE, for instance, by imposing physical or chemical
constraints. The future work will also aim at extending the
model parametric space to include viscosities of continuous
and dispersed phases, interfacial tension, dynamic surfactant
effects, and the presence of surfactants in different phases.

Code and data availability

The computational part of this study is performed using Python
language. The code is available at: https://github.com/DL-WG/
dscvae-for-drop-coalescence.

Experimental data are available upon reasonable request to
Dr Nina Kovalchuk (n.kovalchuk@bham.ac.uk).

Acronyms

AE Autoencoder
ANN Artificial neural network

CE Cross entropy
CVAE Conditional variational autoencoder
DL Deep learning
DSCVAE Double space conditional variational

autoencoder
DT Decision tree
FN False negative
FP False positive
GAN Generative adversarial network
GBDT Gradient boosting decision tree
IR Imbalanced ratio
KLD Kullback–Leibler divergence
ML Machine learning
MSE Mean square error
RF Random forest
SHAP Shapley addictive explanations
TN True negative
TP True positive
VAE Variational autoencoder
XGB XGBoost
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