Three-state fluorescence hydrochromism of a fluorophore–spacer–receptor system with variations in relative humidity†
Abstract
The uptake of atmospheric moisture by hygroscopic materials can have marked effects on a material's physical and chemical properties. This is true of materials that go on to incorporate waters of hydration in their molecular structural lattice, forming stable hydrates with fluctuations in relative humidity (RH). Nevertheless, RH remains relatively uncontrolled for a variable that can fluctuate widely depending on geographical climate, weather fluctuations, and building HVAC system stability. Herein, we report a processable 1,8-napthalimide-based fluorophore–spacer–receptor system that unexpectedly exhibited reversible three-state fluorescence hydrochromism with changes in RH due to RH-induced solid state molecular rearrangement. Care should be taken to evaluate the impact of variations in RH when characterising the solid state emission properties of charged fluorescent materials.
- This article is part of the themed collection: Chemosensors and Molecular Logic