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What is the role of acid—acid interactions in
asymmetric phosphoric acid organocatalysis? A
detailed mechanistic study using interlocked and
non-interlocked catalysts+i
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Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of
organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have
a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now
established that catalyst—catalyst interactions can be suppressed by using macrocyclic catalysts, which
react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional
catenane, which reacts mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found
a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways.
Based on a detailed experimental analysis, DFT-calculations and direct NMR-based observation of the
catalyst aggregates, we could demonstrate that intermolecular acid—acid interactions have a drastic
influence on the reaction rate and stereoselectivity of asymmetric transfer-hydrogenation catalyzed by

rsc.li/chemical-science chiral phosphoric acids.

Introduction

Many organocatalysts, such as amines, diols, amino-acid
derivatives, (thio)ureas or phosphoric acids are highly func-
tionalized organic molecules, oftentimes featuring hydrogen-
bond donor and acceptor moieties or even Brgnsted-acidic and
Bronsted-basic functional groups within the same molecule.
Also, many organocatalytic reactions rely on the use of high
catalyst loadings and are performed in aprotic organic
solvents.>* This makes the formation of aggregates highly
likely, be it catalyst-catalyst aggregates or higher-order cata-
lyst-catalyst-substrate aggregates. The comprehension and
control of such aggregation processes would not only enable
a better understanding of organocatalytic processes, but also
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open up new possibilities in catalysis, when such catalyst
aggregates can be designed and applied in a controlled fashion.

In previous studies, aggregation of organocatalysts was
observed in a few cases: in urea-catalysis, Jacobsen has shown
that catalyst-catalyst interactions can be both detrimental and
beneficial.> The identification of cooperative substrate activa-
tion in a catalyst-catalyst-substrate complex led to the devel-
opment of tethered® and macrocyclic’” bis-urea catalysts.
Supramolecular catalyst aggregation has also been observed for
chincona-alkaloid based organocatalysts, in this case leading to
catalyst deactivation and decreased enantioselectivities.® In the
case of BINOL-based phosphoric acids,” Gong showed that
acid-acid interactions lead to a different solubility of the
racemic and homochiral catalyst species, resulting in strong
nonlinear effects.’® Phosphoric acid aggregation has also been
proven by spectroscopic means: dimers and trimers of dime-
thylphosphoric acid were identified by NMR" and Hunger
could show the presence of multimers for complexes of
diphenyl phosphoric acid and a quinoline.”” For chiral phos-
phoric acids (CPA) with a BINOL-backbone, extended aromatic
surfaces allow additional weak non-covalent interactions, which
further  stabilize = hydrogen-bonded  catalyst-substrate
complexes,’™ and can also enable the formation of higher
aggregates, such as dimers of CPA-imine complexes.*

We recently found that integration of two BINOL-phosphoric
acids in a catenane structure'® leads to drastic changes both in
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Scheme 1 Key questions for this investigation.

reaction rates and stereoselectivities for the transfer-hydroge-
nation of quinolines. DFT-calculations suggested that
a hydrogen-bond mediated acid-acid interaction”** leads to
a more stereoselective dimeric catalyst pathway (featuring two
acids and both substrates), as opposed to a less stereoselective
monomeric pathway (involving one acid and both substrates).

We thus concluded that the mechanical interlocking of two
phosphoric acids is an effective means to channel the reaction
through the dimeric pathway, but of course other factors that
lead to increased acid-acid interactions (such as higher catalyst
loadings) might have a similar effect (Scheme 1). This could
impact the outcome of a large range of asymmetric trans-
formations that are mediated by chiral Brgnsted-acids.

For this reason, we have now performed a detailed mecha-
nistic study, trying to shed light on these effects. We investi-
gated the influence of the catalyst structure and loading, using
catenated, macrocyclic and acyclic phosphoric acids as catalysts
(catalysts 1/2/3, Scheme 2). This enabled us to understand how
the competing catalytic pathways impact the catalytic reaction
in terms of reaction rates and stereoselectivities, thus demon-
strating the importance of acid-acid interactions in Brgnsted-
acid organocatalysis.

5 /—or\ohol;xo
(.

o o
o o{_/o’-f
p—y
(S)-2alble (n=0,12) (513

Scheme 2 Catenated catalysts (S,5)-1a/b/c, macrocyclic catalysts (S)-
2a/b/c and acyclic catalyst (S)-3 used in this study.
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Results and discussion
General approach

The reactivity and stereoselectivity of the three different cata-
lysts were investigated using the reduction of 2-phenylquinoline
4 with dihydropyridine 7 (Hantzsch-ester) to give tetrahy-
droquinoline 6 and pyridine 8 (Table 1). The reaction was
carried out in toluene at 25 °C, as established previously."”

Time-resolved data were obtained by NMR-spectroscopy.
Rate constants were determined by both nonlinear fitting" and
linear fitting of the conversion plots, which gave almost iden-
tical results (ESI Tables S4-S7} and chapter 9). We also per-
formed reaction progress kinetic analysis (RPKA) based on
different and same excess measurements.”® Mechanistic infor-
mation was obtained by variable time normalization analysis
(VTNA, see the ESI] chapter 4.4).">

Influence of the catenane ring sizes

As a starting point, we employed catenanes 1a/b/c with varying
ring-sizes, assuming that the ring-size will influence the
(mechano)intramolecular acid-acid interactions, thus affecting
reaction rates and stereoselectivities. In addition to the previ-
ously reported hexaethyleneglycol-based species 1b/2b,'*
generated the smaller, pentaethyleneglycol-based systems 1a/2a
and the larger, heptaethyleneglycol-based systems 1c/2¢ (ESIE
chapter 2). Interestingly, there is a clear increase in yields of
both catenanes and macrocycles with increasing ring size (5%/
7%/10% for 1a/b/c and 8%/11%/15% for 2a/b/c),® suggesting
that the longer linkers have a sufficient length for the intra-
molecular ring-closing metathesis, while the shorter linkers
lead to increased formation of oligomeric byproducts.

In catalysis, the catenanes 1a/b/c show drastically enhanced
stereoselectivities in comparison to the macrocycles 2a/b/c (as
earlier reported for the 1b/2b pair).'” However, the was no
impact of the ring-sizes on stereoinduction: Enantiomeric
excesses were in the range of 81-84% in favor of the (R)-product
for catenanes (S,S)-1a/b/c, while the macrocycles (S)-2a/b/c
consistently favored the (S)-product with 12-17% ee. However,

Table 1 Results of the transfer-hydrogenation of 2-phenylquinoline
with catalysts la/b/c and 2a/b/c

(S,S)-1a/b/c H
or (S)-2a/b/c \

toluene, \

S
N”>Ph
rt R R H

4 | = 6

Catalyst® ee? [%] vo[107" M s Catalyst® ee’ [%]
(5,5)1a 81 3.7 (S)-2a -17
(S,5)-1b 84 3.1 (S)-2b —12
(5,5)-1¢ 82 2.0 (S)-2¢ -17

2.5 mol% catalyst, 5 mM quinoline. * Determined by chiral HPLC.

Values given for the excess of (R)-6

This journal is © The Royal Society of Chemistry 2020
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the reaction rates of 1a/b/c clearly depend on the ring-size, with
the smaller catenanes showing higher rates (v, = 3.7 x 107 7/3.1
x 1077/2.0 x 1077 M s~ ' for 1a/b/e at 10% catalyst loading).
This suggests that the geometry of the stereodetermining
transition-states is not influenced by the ring-sizes, but the
reaction rates are decreased. This might be due to intra-
molecular hydrogen bonding of the P(O)OH-unit to the ethylene
glycol units (as found in our earlier DFT work"”), which might be
more prevalent in the larger systems.

First reduction step: kinetic analysis

The mechanism for the phosphoric acid catalyzed transfer-
hydrogenation of quinolines involves two steps (Scheme 3):
first, quinoline 4 is reduced to the corresponding 1,4-dihy-
droquinoline 5, followed by reduction to the chiral 1,2,3,4-tet-
rahydroquinoline 6. Both steps involve activation of the
substrate by protonation, followed by Hantzsch-ester coordi-
nation, hydride-transfer and product-dissociation. Like other
phosphoric acid-catalyzed reactions, the stereoselectivity of
such transfer-hydrogenation strongly depends on the nature of
the phosphoric acid, with bulky 3,3'-substituents allowing for
high stereoselectivities.” Thus, excellent selectivities were ach-
ieved even at low catalyst loadings for 2-arylquinolines** or
benzoxazines* using a phosphoric acid with phenanthryl-
groups in the 3,3'-positions.

This catalytic mechanism®** closely resembles the related
transfer-hydrogenation of imines.”® Our recent DFT results
support this mechanism and suggest that the rate-limiting
transition state occurs in the first reduction of 4 to 5, namely in
the protonation of the 1,4-dihydroquinoline-species. In
comparison, the subsequent stereoselective second reduction
towards 6 has a lower barrier. Moreover, our DFT-results
suggest an additional mechanistic pathway involving two
phosphoric acids, which we assume in the case of the catenane-
catalysts 1."

However, to the best of our knowledge, an experimental
elucidation of these mechanisms has not been reported. To
probe the suggested mechanism, we firstly determined the
reaction orders for substrates 4 and 7 (reaction orders m, n) and
the role of product inhibition. Secondly, the order of the catalyst
(reaction order p) was determined for the catalysts 1c/2¢/3

d[g]
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Scheme 3 Two-step transfer-hydrogenation of quinolines 4 to tet-
rahydroquinolines 6.
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The first analysis of the time-resolved NMR-data (ESI Fig. S2/
S31) shows that the reduction of 4 to 6 occurs selectively with no
side products. The intermediate 1,4-dihydroquinoline was not
observed in any of our experiments, mainly due to its high free
energy (low concentration) as suggested by our recent DFT-
calculations.'” Since the reduction of 4 to 5 is rate-limiting, the
reaction orders p, m, n describe the first reduction step from 4 to
5.

Substrate orders and product inhibition

For the catenated catalyst 1c, rate measurements at different
concentrations of quinoline 4 and Hantzsch-ester 7 indicated
linear dependence of the reaction rate on the substrate
concentrations. In the resulting In vo/In[substrate] plots (Fig. 1a
and b), we could determine reaction orders of 0.8 (for 4) and 0.7
(for 7), respectively. This is in good agreement with the VINA-
plots (Fig. 1c and d, see Fig. S71 for other values of m/n), which
show excellent overlap of all curves for substrate orders of 1 for
both the quinoline and the Hantzsch-ester.

Accordingly, the substrate orders for the macrocyclic catalyst
and acyclic catalysts 2¢/3 were determined based on VITNA only.
It was found that both substrates have a reaction order of close
to 1 for both catalysts (ESI Fig. S11/S15%). Thus, there is no
difference with regard to the substrate orders for the different
catalysts 1c¢/2¢/3. In addition, we performed same excess
experiments in order to investigate potential catalyst deactiva-
tion or product inhibition (ESI Fig. S10/514/S19%). In all cases,
we observed only minor differences so that there seems to be
neither catalyst deactivation nor product inhibition for all three
catalysts 1c/2¢/3.

Catalyst orders and aggregation

The reaction orders of the catalysts were determined in a series
of experiments with different concentrations of catalysts 1¢/2¢/
3. For the catenated and macrocyclic catalysts 1c/2c, the v, vs.

a) - b) -8
) y=0.82x - 11.0 ) y =0.69x - 13.1
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Fig.1 Substrate order determination by different excess experiments
for quinoline 4(a, c) and Hantzsch-ester 7 (b, d) in the case of catenane
1c: In vo/In[substrate] plots (v in Mt 57, substrate concentrations in
M) (a, b) and VTNA-plots (c, d).
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Fig.2 Catalyst order determination for catalysts 1c (a, b, ¢) and 2c (d, e, f): initial rates (all at 1.66 mM quinoline 4 and 3.93 mM Hantzsch-ester 7)

(a, d), In vo/ln[catalyst] plots (v in M~ st

[catalyst] plots (Fig. 2a and d) show a linear increase in rate
upon increasing the catalyst loading in a range of 5-50 mol%.
Thus, we could determine the order of catalysts based on
respective double logarithmic plots (Fig. 2b and e), resulting in
catalyst orders of 0.82 (for the bifunctional catenane 1c¢) and
0.91 (for the monofunctional macrocycle 2¢). Once again, the
first order dependence is also found by VINA, which shows
good overlap for p = 1 in both cases (Fig. 2c and f, for other
values of p see the ESI Fig. S9/S131).

For the macrocyclic catalyst 2¢, the linear rate vs. loading
behaviour and the catalyst order of p = 1 shows that this system
reacts via the monomeric pathway, independent of the catalyst
concentration. As for the catenane 1c, the linear rate vs. loading
relationship also indicates that this system consistently follows
one catalytic mechanism only, although the catalyst order (p =
1) alone does not allow us to conclude if the monomeric or
dimeric catalyst pathway is dominating. However, the initial
rate of the catenated catalyst 1c is significantly lower than that
of the macrocyclic catalyst 2¢ (e.g. vo = 0.88/1.5 x 107’ M s~ * for
1c/2c at 0.07 mM catalyst loading), despite the fact that the
catenated catalyst features two phosphoric acid units. This is in
line with the DFT-calculated lower rate for a dimeric catalyst
pathway. Based on these combined data, we assume that the
dimeric catalysis pathway is dominating for the catenated
catalyst 1c in the first, rate-determining reaction step.

In contrast to catalysts 1c/2¢, the acyclic phosphoric acid 3
shows a nonlinear behavior: in the v, vs. [3] plot (Fig. 3a);
increase of catalyst loading leads to a much stronger rate
increase at lower loadings than it does at higher loadings.
Looking at the normalized initial rates v,/[3] (Fig. 3b), we found
that the normalized rate decreases initially, before it reaches
a plateau at higher loadings. In order to see if the nonlinear
behavior of the rate is due to a change in the catalyst order, we
performed VINA. While we find an order of p = 1.25 at low
catalyst loadings, the VINA shows a larger order of p = 1.75 at

4384 | Chem. Sci., 2020, 11, 4381-4390

, catalyst concentrations in M) (b, d) and VTNA-plots (selected catalyst concentrations only) (c, f).

high catalyst loadings (Fig. 3c and d, for other values of p see the
ESI Fig. S17/S18%). Thus, we believe that the nonlinear behavior
of 3 can be interpreted based on competing reaction mecha-
nisms: At low catalyst concentrations, the monomeric pathway
is dominating, although the dimeric pathway still contributes.
Vice versa, the dimeric pathway, which involves two phosphoric
acids in the rate-determining transition state, dominates at
higher catalyst loadings.

In order to relate these orders of catalysts to the overall
observed reaction rates (as shown in Fig. 3a), it must be noted
that the rate not only depends on the relative concentrations of
the competing rate-determining intermediates (involving one or

a) o R
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- & » -
e =3
40 20 o
: T 2 25%
p -
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S 20 o ONS . .
> o e
.
0.0 o
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Fig. 3 Catalyst order determination for catalyst 3: initial rates (a) and
normalized initial rates (b) (all at 1.66 mM quinoline 4 and 3.93 mM
Hantzsch-ester 7) and VTNA-plots at low (c) and high (d) catalyst
concentrations (selected catalyst concentrations only).

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc01026j

Open Access Article. Published on 07 april 2020. Downloaded on 31-1-2026 20:07:51.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

two catalyst molecules), but also on the corresponding reaction
rates of the monomeric and the dimeric pathways.

Normalized reaction rates and influence of dimerization

The normalized initial rates v,om = vo/[Cat] (Table 2; also see
the ESI Fig. S20f) are almost constant for different catalyst
loadings in the case of 1¢/2¢ (Vnorm (1€) = 1.04 x 10 s~ " and
Vnorm (2€) = 2.06 x 10~* s 1), as would be expected based on the
linear rate vs. loading relationship. In the nonlinear case of
catalyst 3, the maximum initial rate, equivalent to the rate
constant for the purely monomeric pathway, can be obtained as
the y-intercept in a linear extrapolation for low catalyst loadings
(Vmax = Ynorm(3mono) = 22.7 x 1072 s7%). In turn, the maximum
rate for the dimeric pathway can be estimated from the plateau
for high catalyst loadings (Vnorm(3pi) = <6.29 x 1073 s ).

This shows that there is a smaller difference in normalized
initial rates for the macrocycle/catenane pair (Vnorm(2¢)/
Vnorm(1€) = 1.98) than for the monomeric/dimeric pathway for
catalyst 3 (Vnorm(3mono)/Vnorm(3pi) = 3.61). The difference
between the macrocyclic and acyclic catalysts is even more
pronounced (Vnorm(3pi)/Vnorm(1€) = 6.05 and Vhorm(3mono)/
Vnorm(2¢) = 11.0), showing that the ethylene-glycol chains
significantly reduce the reaction rate (as already seen for the
different sized catenanes 1a/b/c).

Detailed analysis of the acyclic phosphoric acid 3

As detailed above, the nonlinear rate-behavior for the acyclic
catalyst 3 can be attributed to both concentration effects and
a change in the rate constant. At higher concentrations,
a smaller number of active species is present (since two mole-
cules of 3 are needed in the dimeric pathway), together with
a smaller rate constant for this pathway (Vorm(3mono)/Vnorm(3pi)
= 3.61, vide supra). Thus, the total rate data (Fig. 3) were
analyzed in order to determine the mole fractions of catalysts
that act via the monomeric and the dimeric pathway, respec-
tively (ESI{ chapter 5). The resulting speciation plot* (Fig. 4a)
reveals that under the employed conditions (1.66 mM quino-
line, 3.93 mM Hantzsch-ester, toluene solvent), the crossing
point of both curves lies at ca. 0.25 mM catalyst (15 mol%).
However, taking into account the lower relative rate for the
dimeric pathway, the impact of catalyst-dimerization on the
total rate is less significant (Fig. 4b), and only above 0.4 mM, the
contribution of the dimeric pathway exceeds that of the
monomeric pathway.

Table 2 Normalized initial rates for 1c/2c/3

Catalyst vo/[Cat] [107% s7]
1c 1.04°

2¢ 2.06°

3p; (>0.6 mM) <6.29"

3mono (<0.25 mM) 22.7¢

@ Mean value for all catalyst concentrations. * Mean value for catalyst
concentrations >0.6 mM. ° Determined as the y-intercept in the v,/
[Cat] plot for loading <0.25 mM.

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Mole fractions (a) and vo contributions (b) for the monomeric
and dimeric pathway for different concentrations of catalyst 3 for the
first reduction step [x(3ono): Mole fraction of monomeric catalyst,
X(3pj): mole fraction of phosphoric acid 3 bound in a dimeric catalyst].

Second reduction step: influence of aggregation on
stereoselectivity

The rate analysis does not give any insight into the second,
stereodetermining reduction step. Thus, we investigated the
influence of the overall concentration and catalyst loading on
the enantiomeric excess of the tetrahydroquinoline product 6
since this gives direct information about the second reduction.

Firstly, we found that at higher overall concentrations (5.0
mM instead of 1.66 mM quinoline) but identical absolute
catalyst concentrations, stereoselectivities shift towards (R)-6
(e.g. +20%/-22% ee at 25 mM catalyst, meaning 1.5/0.5 mol%
loading at 1.66/5.0 mM quinoline concentration, Fig. S21bf).
However, for identical relative catalyst loadings, we find
almost identical stereoselectivities (e.g. +72%/+71% ee at 50
mol%, meaning 0.83/2.5 mM catalyst concentration at 1.66/
5.0 mM quinoline concentration, Fig. S21c}). Thus, the ster-
eoselectivity depends mostly on the substrate/catalyst ratio,
which would be in line with competing monomeric and
dimeric catalyst pathways: high substrate concentrations
favour the formation of catalyst-dihydroquinoline-Hantzsch-
ester complexes at the expense of higher-order
catalyst- catalyst-dihydroquinoline - Hantzsch-ester complexes,
thus shifting the reaction towards the less stereoselective,
monomeric pathway.

Secondly, we checked whether there is a dependence of
stereoselectivity on conversion since changing concentrations
of substrates 4/7 and products 6/8 might influence the distri-
bution between monomeric and dimeric pathways based on
different association constants. However, no change in stereo-
selectivity was found between 15 and 95% conversion at 1 mol%
catalyst loading (ESI Table S11 and Fig. S251).

Thirdly, we investigated the influence of catalyst loading over
a broad concentration range (0.0017 mM to 0.83 mM catalyst
concentration, meaning 0.1 to 50 mol% at 1.66 mM quinoline).
We observed that there is a drastic change in enantioselectivity
(Fig. 5): At low catalyst concentrations, the (S)-product enan-
tiomer is favored (—30% ee), while at high catalyst concentra-
tions the selectivity reaches up to 72% ee in favor of the (R)-
isomer.

This means that the monomeric catalyst and the dimeric
pathway not only have different, but actually inverted
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stereoselectivities. This reflects the enantioselectivities of the
macrocyclic and catenated catalysts 2¢/1c (—17% ee/+84% ee),
which underpins their predominant reactivity via monomeric
(for 2¢) and dimeric (for 1c) catalytic pathways. A control
experiment using 1 mol% phosphoric acid 3 plus 49 mol%
benzoic acid (+10% ee, ¢f. +13% ee for 1 mol% 3 only) showed
that the dimeric pathway requires high concentrations of
phosphoric acid and the same effect cannot be easily achieved
when using carboxylic acids as assisting Brensted-acids (ESI
Table S11).

The strong curvature of the ee vs. [3] curve suggests that the
dimeric (more stereoselective) pathway has a stronger contri-
bution in the second reduction step than in the first reduction
step. This is in line with our previous DFT-results, which indi-
cate that for the stereodetermining step, the dimeric pathway
actually possesses a lower barrier than its monomeric coun-
terpart (6.8 kcal mol™' vs. 8.5 kcal mol ')."” To generate the
corresponding speciation plot, we estimated the relative rates of
the monomeric and dimeric pathway based on the DFT-data
(k(3pi)/k(3mono) = 17.7, according to AE, = 1.7 kcal mol )"
since these data are not directly available experimentally. The
resulting plot shows a different distribution of monomeric and
dimeric pathways in comparison to the first reduction step
(Fig. 6a). The mole fraction of the catalyst acting via the dimeric
pathway is lower, and the crossing of both curves is observed at
ca. 0.5 mM catalyst loading (30 mol%). However, the impact of
the dimeric pathway on the second reduction (and thus on the
stereoselectivity) is significantly enhanced by its higher relative
rate (Fig. 6b). Only below a catalyst concentration of 0.012 mM
(0.7 mol%), the enantioselectivity is dominated by the
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Fig. 6 Mole fractions (a) and ee contributions (b) for the monomeric
and dimeric pathway for different concentrations of catalyst 3 for the
second reduction step.
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monomeric pathway, leading to overall preference for the (S)-
product. At 0.17 mM (10 mol%) loading, the stereoselectivity
already reaches 61% ee for the (R)-isomer, which is close to the
highest stereoselectivity of 72% observed at 0.83 mM (50 mol%)
loading. This demonstrates the relative importance of the
dimeric pathway in terms of stereoselectivity, even at low cata-
lyst loadings.

NMR-spectroscopic investigation of catalyst dimerization

Model systems and experimental conditions. Next, detailed
NMR-spectroscopic studies were performed to elucidate the
structural space including the dimeric reaction pathway for
acyclic catalyst 3. Temperatures between 180 and 200 K were
used to sufficiently slow down exchange processes and to detect
separated hydrogen bonded protons (ESI Fig. S26%). Since in
toluene 3 was nearly insoluble at these temperatures, CD,Cl,
was used, which provided sufficient solubility and signal
dispersion (for spectra and solvents see the ESI Fig. 5271).%” In
addition, DFT-calculations at the TPSS-D3/def2-QZVP +
COSMO-RS//TPSS-D3/def2-SVP + DCOSMO-RS level of theory*
showed that analogous species should be present in CD,Cl, and
toluene (ESIf chapter 7). Experimentally, we verified that in
dichloromethane there is also a strong influence of catalyst
loading on enantioselectivities. As expected by DFT, the abso-
lute stereoselectivities in dichloromethane are lower (—33% to
—6% ee for 1-50 mol% catalyst loading, ESI Fig. S281), never-
theless showing that competing monomeric and dimeric path-
ways are also operating in dichloromethane.

For structural NMR-investigations, quinolines 4b-d (Fig. 7A)
were selected as model substrates as they possess suitable
probes for 'H and '’F NMR spectroscopy. Furthermore, they
modulate the basicity of the quinoline and thus allow for
alteration of the hydrogen bond strength. Samples with a 1:1

or 2:1 stoichiometry of 3:4b-d at NMR suitable
A) 3:Qu 3+3-Qu
Cl, Ll "
o o o®
N Ar N Ar N
: & 4b: R = OCH;
Oop/oo O\‘ ,O' 2= ‘H..O\ ’/O 4C: R=F
Ar0" “OAr A0 OAr  AfO" OAr  4d:R=CF;3
H 1‘
- I [ |
B) 3:4b ratio __)\A\_,_LM | ,-" | Al
2:1 = A A B kv
/m’ iﬁ/f T 1.7
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H-bond region aromatic region aliphatic region

Fig. 7 (A) Schematic structures of the 3-Qu and 3-3-Qu complexes
and substituents of quinolines 4b—d. (B) Spectral resolution of the H
spectra of complexesof 3and4batal: lor?2: 1stoichiometry at 200
K and 600 MHz in CD,Cl,. In the 1:1 system, only one H-bond is
detected, presumably of the 3-4b complex. For the 2 : 1 system, three
major H-bonds are observed at 16.76 (H1), 16.51 (H2) and 15.27 ppm
(H3), most likely of the 3-4b (H1) and 3-3-4b (H2 and H3) complex.
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concentrations (10-50 mM of 3) were employed to study the
structures of the complex 3-Qu or the complex 3-3-Qu,
respectively.

1 : 1 stoichiometries (3-Qu complexes). To shed light on the
structures involved in the monomeric catalysis pathway,
samples of 3 and 4b-d with a 1 : 1 stoichiometry were investi-
gated. For 4b, only one hydrogen bond proton signal was
detected at 16.83 ppm (Fig. 7B), which is a typical chemical shift
for protons in strong hydrogen bonds and is similar to the
hydrogen bond signals in CPA-imine complexes.** The
detection of magnetization transfer between the H-bond proton
and both quinoline and CPA further corroborated the assign-
ment of this hydrogen bond signal (ESI Fig. S30%). The presence
of the 3-4b complex was further validated by diffusion ordered
spectroscopy (DOSY) measurements. Similar hydrodynamic
radii for 3 (9.11 + 0.17 A) and 4b (7.2 + 1.62 A) revealed the
dominant presence of the complex and are in the same order as
the radii of CPA-imine complexes.* Using different homo- and
heteronuclear 2D spectra, chemical shift assignment of 3-4b
(ESI Fig. S29%) as well as in-depth NOE analysis could be
accomplished (ESI Fig. $327). Two different conformations with
a =180° rotated orientation of the quinolines were identified,
which are in a fast exchange on the NMR time scale****° (ESI
Fig. S32% for a more detailed description of the structures and
exchange pathway).”> One of the conformations validated the
previously computed structure of the 3-Qu complex.”

Similar "H spectra were obtained for quinolines 4c and 4d.
Decreasing the basicity of the quinoline resulted in low field
shifted proton signals (4b: 16.83 ppm, 4c: 17.42 ppm, 4d: 18.08
ppm; ESI Fig. S31%), which corresponds to an increase in
hydrogen bond strength.** Thus, similar to CPA-imine com-
plexes,'***” CPA-Qu complexes are present as hydrogen bond
assisted ion pairs anchored by a strong, charge assisted
hydrogen bond.**** At 1 : 1 ratios, higher aggregates, such as
3:3:Qu complexes are below the NMR-detection limit. In
summary, monomeric 3-Qu complexes are analogous to the
previously investigated CPA-imine systems**>***3*® and are at
least for the monomeric pathway a representative of cata-
lyst-substrate complexes in CPA catalyzed transformations.

2 : 1 stoichiometries (3-3-Qu complexes). In order to popu-
late and characterize the 3-3-Qu complex (Fig. 7A), samples of 3
to 4b-d with a 2 : 1 stoichiometry were investigated. For quin-
oline 4b, three dominant hydrogen bonded protons with a ratio
of H' : H*: H®> = 1:2.4: 2.4 were observed (Fig. 7B).*> Proton
H' corresponds to the 3-4b complex as it has a nearly identical
chemical shift as the H-bond proton in the respective sample
with a 1 : 1 stoichiometry (Ad(*H) = 0.07 ppm). Protons H> and
H? have similar integrals, which fits the expected hydrogen
bonding situation for the 3-3-4b complex. Protons H' and H*
showed exchange signals in the NOE spectrum (ESI Fig. S331).
In addition, both protons show similar low field shifts with
quinolines 4c and 4d, i.e. a similar modulation of the H-bond
strength (ESI Fig. S317).

Thus, proton H* is assigned to the PO~ ---H-N" hydrogen
bond (Fig. 7B, highlighted in blue) and proton H? to the PO -+
H-OP hydrogen bond (Fig. 7B, highlighted in red) of the 3-3-4b
complex. The significant high field shift of proton H® compared
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to proton H' reveals a weaker PO ---H-N* hydrogen bond, i.e.
a stronger proton transfer on the quinoline in the 3-3-4b
complex compared to the 3-4b complex.** This weakening is
often found in bifurcated hydrogen bonds*** and can be ratio-
nalized by the compensation of an increasing negative partial
charge on the phosphate by the additional PO™---H-OP
hydrogen bond enabled by the second CPA.

For CPA-imine systems, a correlation between hydrogen bond
strength and reactivity has been observed previously, giving lower
reactivities for weaker hydrogen bonds.** This trend is also re-
flected for the monomeric and dimeric reaction pathways in the
investigated quinoline systems, as the dimeric reaction pathway
featuring a weaker PO~ ---H-N' hydrogen bond shows lower
reaction rates than the monomeric pathway (Fig. 8).

Moreover, additional hydrogen bond signals were observed
in the "H spectrum at a 2:1 stoichiometry, which are less
populated and/or have severe line broadening (Fig. 7b, magni-
fied H-bond region). EXSY signals in the NOESY spectrum
revealed that these signals are in chemical exchange with the
PO~ ---H-N" or PO ---H-OP hydrogen bond protons of the 3-4b
and 3-3-4b structures, thus suggesting the presence of
different/higher aggregates of 3 and 4b. Additional detailed
NMR-structural analysis of the 3-3-4b complex could not be
achieved due to strong line broadening and signal overlaps (see
the aromatic region in Fig. 7b).

Similar 'H spectra were obtained for quinolines 4c and 4d
(ESI Fig. S31}). Measurements at lower temperatures were not
fruitful due to the poor solubility of 3 in the required freonic
mixtures®” (CDCL,F and CDCIF,). However, the spectra at 300 K
were significantly simplified and better resolved, as the
different species (free 3 and Qu, 3-Qu, 3-3-Qu and potential
higher aggregates) are in fast exchange on the NMR time scale.
DOSY measurements were performed at 1: 1 and 2 : 1 stoichi-
ometries to further confirm the postulated presence of 3-3-4b
in the 2:1 samples (ESI Table S13%). Due to the chemical
exchange of the different species, the measured diffusion
coefficients and derived hydrodynamic radii are an average of
the values of the different species, weighted by their respective
population and lifetime.*® Similar hydrodynamic radii were
derived for the quinoline and the CPA, demonstrating that also
at 300 K the catalyst-quinoline complexes are the dominant
species (ESI Table S14}). When comparing the derived hydro-
dynamic radii for the 1:1 and 2:1 stoichiometries, a size
increase of =2.2 and 3.2 A was observed for the quinolines 4b
and 4c in the 2:1 samples, which is in agreement with the
previously reported offset for CPA-imine complexes and their
dimers (=3 A)."* The increased radii clearly show that higher
aggregates, such as the 3-3-Qu complex, are populated when
employing a 2 : 1 ratio of catalyst and quinoline.

Overall mechanistic picture for catalyst 3

In summary, our combined kinetic, stereoselectivity, DFT and
NMR analysis of the transfer-hydrogenation of quinolines with
the acyclic catalyst 3 has revealed the following key findings
(also see Fig. 8):
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- The catalytic reaction using catalyst 3 involves competing
monomeric and dimeric pathways, as found by analysis of the
kinetics and stereoselectivity and by DFT.

- Both the 3-Qu and 3-3-Qu complexes, which are relevant
for the monomeric and dimeric pathways, were directly
observed by low-temperature NMR-spectroscopy.

- For the first reduction step (4 to 5), kinetics, H-bond anal-
ysis and DFT jointly show that the reduction occurs faster for
the monomeric catalyst than for the dimeric one (cycles M1 and
D1, Fig. 8). For this reason, the influence of the dimeric pathway
on the reaction rate is less pronounced and the dimeric pathway
only dominates above 0.25 mM/15 mol% catalyst.

- For the second stereoselective reduction step, the effect of
the catalyst concentration on stereoselectivity shows that the
monomeric and dimeric pathways not only have different but
even inversed stereoselectivities. This reflects the selectivities of
the macrocyclic and catenated catalysts 1c/2c.

- As corroborated by DFT, the stereoselective second reduc-
tion (5 to 6) occurs faster for the dimeric pathway (cycles M2 and
D2, Fig. 8). Thus, the impact of catalyst dimerization on the
stereoselectivity is much more pronounced, with the dimeric
pathway dominating even at catalyst loadings as low as 0.012
mM (0.7 mol%).

Conclusion

In conclusion, we have elucidated the importance of acid-acid
interactions in phosphoric-acid based organocatalysis, using
the transfer-hydrogenation of quinolines as an example. Based
on a detailed mechanistic analysis of the catenated, macrocyclic

4388 | Chem. Sci, 2020, N, 4381-4390

and acyclic phosphoric acids 1/2/3, we established that the
catalytic reactions in the case of the catenated and macrocyclic
catalysts 1/2 are dominated by the dimeric and the monomeric
pathway, respectively. In stark contrast, but consistent with our
recent DFT-work, the acyclic phosphoric acid 3 shows
a concentration-dependent change in the reaction mechanism,
involving either one or two catalyst molecules in the rate- and
stereodetermining intermediates. The formation of complexes
involving two catalyst species and one quinoline molecule was
directly proven by NMR-spectroscopy. While the influence of
these intermolecular acid-acid interactions on reaction kinetics
is moderate, the impact on stereoselectivity is very pronounced,
even leading to opposite enantioselectivities for the monomeric
(—30% ee) and dimeric catalysis pathways (+72% ee). Based on
these findings, we elaborated a revised mechanism for the
phosphoric  acid catalyzed transfer-hydrogenation of
quinolines.

In comparison to other phosphoric-acid catalyzed transfer
hydrogenations, it becomes clear that acid-acid interactions
may well be relevant in these cases as well.*** While we find
a significant effect on the dimeric pathway at concentrations as
low as 0.012 mM, commonly employed catalyst concentrations
in the literature are significantly higher (ranging from 1
mM **£ to 2 mM,*4" 8§ mM ** or even 10 mM **). Certainly,
the extent of intermolecular acid-acid interactions will depend
strongly on the catalyst structure and has been shown to be
lower for bulky phosphoric acids such as TRIP.** In addition,
other factors such as the substrate structures and the solvent
may favour or disfavour the formation of higher aggregates.
Nevertheless, dimeric catalysis pathways may be relevant, if not

This journal is © The Royal Society of Chemistry 2020
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dominating, in other phosphoric-acid catalyzed trans-
formations as well. We are currently investigating the influence
of acid-acid interactions for other catalyst structures and other
catalytic reactions in our laboratory, since a better under-
standing of such supramolecular interactions may have a major
impact for the future development of phosphoric-acid catalyzed
asymmetric transformations.
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