Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review
Abstract
Poor electrochemical performances of materials in commercial lithium-ion batteries (LIBs) make it difficult to realize battery technologies for future electric power applications such as energy storage systems and electric vehicles. To reach beyond the horizon of state-of-the-art LIBs, the exploration of next generation batteries composed of rationally designed nanomaterials in consideration of the structure, phase and element influencing the battery performance is critical. By virtue of the simple set-up, versatility, size controllability and mass-productivity of electrospinning, one-dimensional (1D) nanofibers (NFs) produced via electrospinning are attractive candidates for the construction of advanced secondary batteries. A comprehensive review of the forefront in the development of electrospun NFs as advanced materials of next generation LIBs, sodium-ion batteries (NIBs), lithium–sulfur batteries and lithium–air batteries with particular emphasis on synthesis and improved energy and power density, and cyclability is presented. In this review, we highlight the recent advancements in electrospun 1D nano-architectures with large surface area to volume ratios and controllable morphologies as anodes, cathodes, separators, electrolytes and even catalytic materials. Furthermore, current challenges and prospects of electrospun NFs in both academia and industry are also discussed. We expect that this review opens up new research activities in a variety of research fields including advanced rechargeable batteries.
- This article is part of the themed collections: 2016 Journal of Materials Chemistry A Most Accessed Manuscripts and 2015 Journal of Materials Chemistry A Hot Papers