Magnetic–chemotactic hybrid microrobots with precise remote targeting capability†
Abstract
Micro/nanorobots (MNRs) hold great promise for various applications due to their capability to execute complex tasks in hard-to-reach micro/nano cavities. However, the developed magnetic MNRs, as marionettes of external magnetic fields, lack built-in intelligence for self-targeting, while chemotactic MNRs suffer from limited self-targeting range. Here, we demonstrate magnetic–chemotactic ZnO/Fe–Ag Janus microrobots (JMRs) capable of rapid, remote self-targeting for bacterial elimination. The JMRs utilize the magnetic Fe engine for coarse navigation from a distance, allowing for external control to swiftly guide them to the vicinity of a hidden/uncharted target that establishes a local chemical gradient ([CO2] or [H+] gradient). Once in proximity, the inherent chemotaxis of the JMRs takes over, the chemotactic engine enables them to autonomously accumulate at the target site along the chemical gradient in high precision. Upon reaching the target, the ZnO/Fe–Ag JMRs can release Zn2+ and Ag+ to eliminate bacteria residing there. The proposed strategy of integrating on-board chemotaxis with external magnetic field-driven propulsion paves the way for efficient precise therapies using MNRs, especially in targeted drug/energy delivery involving remote hidden or uncharted targets.
- This article is part of the themed collection: Journal of Materials Chemistry B HOT Papers