Construction of a graphitic carbon nitride-based photocatalyst with a strong built-in electric field via π–π stacking interactions boosting photocatalytic CO2 reduction†
Abstract
Solar-driven photocatalytic reduction of carbon dioxide (CO2) into fuels, particularly over a graphitic carbon nitride (GCN)-based photocatalyst, presents a promising solution to address energy and CO2 emission issues. However, the limited charge-carrier dynamics significantly hampers the photocatalytic performance of CO2 reduction. Enhancing the built-in electric field at the interface has been revealed as an effective strategy to improve the activity of photocatalytic reactions. In this work, a high-efficiency photocatalyst TPNCNm was fabricated by anchoring sodium 2,5,8-tri(4′-pyridyl)-1,3,4,6,7,9-hexaazaphenalenate (TPHAP), with a similar tri-s-triazine unit to GCN, on the surface of crystalline nitride carbon (NCN) via π–π stacking interactions. The fabricated photocatalyst TPNCNm demonstrates efficient solar-driven CO2 reduction into CO and CH4 through the gas–solid mode, with evolution rates of CO and CH4 reaching 10.43 and 4.88 μmol g−1 h−1, respectively. Furthermore, the investigation of the band structure and charge carrier dynamics revealed the formation of a strong built-in electric field between TPHAP and NCN. The directional built-in electric field from NCN to TPHAP effectively accelerated the charge carrier separation and migration, thereby boosting CO2 photoreduction performance. In addition, theoretical calculations have verified that TPHAP molecules not only serve as active sites, but also effectively lower the Gibbs free energy of crucial intermediate COOH*, which is the rate-determining step for CO2-to-CO photoreduction. This work highlights the importance of utilizing coplanar materials to construct efficient hybrid graphitic nitride carbon-based photocatalysts with a strong built-in electric field through π–π interactions for enhanced photocatalytic CO2 reduction.
- This article is part of the themed collection: Functional Framework Materials