An unusual Pd(iii) oxidation state in the Pd–Cl chain complex with high thermal stability and electrical conductivity†
Abstract
The Pd(III) oxidation state is unusual and unstable since it strongly tends to disproportionate. We synthesized the quasi-one-dimensional (1D) halogen-bridged Pd(III)–Cl complex [Pd(dabdOH)2Cl]Cl2 (1-Cl; dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol) with multiple hydrogen bonds. From single-crystal X-ray diffraction, the bridging Cl− ions were located at the midpoint of the Pd–Cl–Pd moieties in the 1D chains, indicating that the Pd ions are in a Pd(III) average valence (AV) state. Moreover, bright spots for the Pd(III) dz2 orbitals in the upper Hubbard band above the Fermi level were observed every ∼5 Å using scanning tunnelling microscopy. These results clearly indicate that the Pd ions are in a Pd(III) AV state in 1-Cl. In addition, 1-Cl has the highest thermal stability (470 K) among the Pd(III) complexes reported and the highest electrical conductivity (0.6 S cm−1 at 300 K) among the 1D Pd–Cl chains reported so far.
- This article is part of the themed collection: Dalton turns 50 – celebrating our board members past and present