Novel β-Ag2MoO4/g-C3N4 heterojunction catalysts with highly enhanced visible-light-driven photocatalytic activity†
Abstract
The kernel of photocatalysis research is the development of catalysts with remarkable photocatalytic activity. g-C3N4 has attracted much interest as a new and promising photocatalyst, but further modification and improvement of g-C3N4 is urgently needed. Herein, we report a novel β-Ag2MoO4/g-C3N4 heterojunction system with highly enhanced visible-light-driven photocatalytic activity. β-Ag2MoO4 nanoparticles were in situ loaded onto thin g-C3N4 nanosheets to make these heterojunction photocatalysts. The photocatalytic activities of these heterojunctions and the relevant samples were investigated by degrading Rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) under visible light irradiation (λ > 400 nm). β-Ag2MoO4/g-C3N4 heterojunctions were found to be much more active than pristine β-Ag2MoO4, g-C3N4, or a mechanical mixture of both in the degradation of organic pollutants. The optimal catalyst had a β-Ag2MoO4/g-C3N4 mass ratio of 37.5%. Through relevant characterization, the upgraded photocatalytic activities of the β-Ag2MoO4/g-C3N4 heterojunctions were mainly attributed to the efficient separation of photogenerated charge carries. Superoxide radical anions (˙O2−) and photogenerated holes (h+) were found to be the main active species.
- This article is part of the themed collection: 2017-2018 Top Cited Research from China