Semiconductor-based photocatalytic CO2 conversion
Abstract
Climate change and its impact on the Earth and Society has been recently reassessed by the International Panel on Climate Change. The panel estimates that the greenhouse gas emissions should be reduced by half by 2030 to mitigate climate change. Photocatalytic CO2 conversion is one of the promising technologies that can help with this modest goal. This review discusses the theoretical and practical aspects of CO2 conversion over semiconducting photocatalysts and overviews the recently reported CO2 conversion photocatalysts. A spectrum of photocatalysts reviewed in this work includes titania and its composites with metal oxides, metals, and advanced carbon allotropes; other solid photocatalysts, mostly based on germanium, gallium, tungsten, and niobium; graphitic carbon nitride; silver–silver halide plasmonic systems; photocatalytically active metal–organic frameworks; and graphene-based systems. Finally, a summary of the current state and an outlook for the future are provided.
- This article is part of the themed collection: Materials Horizons 10th anniversary regional spotlight collection: The Americas