Four-step electron transfer coupled spin transition in a cyano-bridged [Fe2Co2] square complex

Taisuke Ikeda , Yu-Bo Huang , Shu-Qi Wu , Wenwei Zheng , Wen-Huang Xu , Xiaopeng Zhang , Tianchi Ji , Mikoto Uematsu , Shinji Kanegawa , Sheng-Qun Su * and Osamu Sato *
Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. E-mail: sato@cm.kyushu-u.ac.jp; s-su@cm.kyushu-u.ac.jp

Received 30th May 2024 , Accepted 29th August 2024

First published on 30th August 2024


Abstract

The design of molecular functional materials with multi-step magnetic transitions has attracted considerable attention. However, the development of such materials is still infrequent and challenging. Here, a cyano-bridged square Prussian blue complex that exhibits a thermally induced four-step electron transfer coupled spin transition (ETCST) is reported. The magnetic and spectroscopic analyses confirm this multi-step transition. Variable-temperature infrared spectrum suggested the electronic structures in each phase and a four-step transition model is proposed.


Introduction

Molecular systems that show changes in their stimuli-controllable magnetic properties are promising for functional memory applications, switches, and sensors owing to their microscopic scale and their designability.1–15 In particular, multi-step magnetic transition has attracted considerable interest, as it would provide additional states for encoding information, which would enable more robust storage devices with higher data density.16–21 Considering the benefits of molecular materials with multi-step magnetic transitions in high-density storage, several strategies for developing such materials have been proposed. One idea is to adopt molecules or ions that singly provide three or more stable states.22–31 Cocrystals of multiple switchable components could also be candidates.32,33 Another strategy is to stabilize and control the packing modes of the molecules by introducing suitable intermolecular interactions.16–19,34–40 Intermediate (IM) phases are typically formed by symmetry breaking, and they are thermodynamically stabilized by intermolecular interactions; especially hydrogen bonding and π-interactions. In some cases, these interactions provide several IM phases. To develop a molecular system that is capable of multi-step magnetic property change, spin transition systems have been widely studied, as spin transition complexes usually exhibit a reversible change in the spin state of their metal ions in response to external stimuli such as changes in temperature, pressure, or light, or the presence of certain molecules. A series of Fe(II), Fe(III), Co(II), and Mn(III) complexes with a stimuli-responsive multi-step spin transition have been developed.17–19,22–27,32,34–37,41–45 In addition, coordination complexes with charge transfer represent a versatile class of molecular materials that could realize multi-step magnetic transitions due to their rich electronic structure that provide multiple accessible oxidation states and spin states.28,29,46 Such molecular materials include valence tautomeric compounds and Prussian blue analogues (PBAs), where charge transfer occurs between organic ligands and a metal center or between two metal ions.47–54 For example, a two-step valence tautomerism was recently realized in a dinuclear cobalt complex. In PBA systems, two-step and three-step electron transfer coupled spin transitions (ETCSTs) have been studied based on [Fe2Co2] square complexes.16,38–40 Additionally, a four-step transition was achieved in cyano-bridged two-dimensional coordination polymers with the use of spin crossover on their Fe centers.20,21,55–57

In this work, we focus on the PBAs that exhibit ETCST to realize a multi-step transition in molecular materials. Because the first discrete molecular PBA that exhibited thermally induced ETCST was reported in a pentanuclear [Co3Fe2] complex by Dunbar and associates, a number of PBAs, especially [Fe2Co2] square complexes, have been developed that have exhibited ETCST in response to various stimuli (e.g. thermal, light, solvent molecule, pressure and X-ray stimuli).16,33,38–40,50,58–71 In these complexes, the Fe–CN–Co unit usually forms a FeIILS–CN–CoIIILS diamagnetic state in the low-temperature (LT) phase and a FeIIILS–CN–Co–IIHS paramagnetic state in the high-temperature (HT) phase via reversible spin crossover on the Co center and electron transfer from Co(II) to Fe(III) (Fig. 1).


image file: d4dt01581a-f1.tif
Fig. 1 Typical ETCST process in a cyano-bridged [Fe2Co2] square unit.

In this study, a new cyano-bridged [Fe2Co2] complex, {[Fe(Tp)(CN)3]2[Co(L)]2}(ClO4)2·8EtOH (1·8EtOH, Tp: hydrotris (pyrazol-1-yl)borate, L: N,N′-bis(4-methylbenzyl)-N,N′-bis (pyridine-2-ylmethyl)ethane-1,2-diamine), is synthesized and characterized by single-crystal X-ray diffraction analysis, magnetic susceptibility measurement, variable-temperature infrared (IR) spectroscopy, and UV-vis spectroscopy. Our study reveals that 1 exhibits thermally induced four-step ETCST, which is currently being explored but has rarely been reported, as well as photo-induced ETCST induced by desolvation.

Results and discussion

Synthetic procedure and crystallography

1·8EtOH was prepared via the reaction of Co(ClO4)2·6H2O, L and [NBu4][Fe(Tp)(CN)3] in ethanol. The purity of the product was confirmed by powder X-ray diffraction analysis (Fig. S1). Subsequently, 1 was obtained by heating 1·8EtOH at 400 K in nitrogen atmosphere for 1 hour.

The single-crystal X-ray diffraction analysis of 1·8EtOH was performed at 100 K (Fig. 2). 1·8EtOH was observed to crystallize in the monoclinic P21/n space group. In one crystallographic asymmetric unit, half of the square core was composed of a [FeCo] unit, one perchlorate as counter anion, and four ethanol molecules as the crystal solvent. The Fe center was coordinated to three N atoms from the Tp ligand and three C atoms from cyanides to form a C3N3 distorted octahedral coordination environment. However, the Co center was coordinated to four N atoms by the ligand L, and the other two coordination sites were occupied by two N atoms of cyanide bridging from the [Fe(Tp)(CN)3] unit to form the N6 coordination environment. The average of the length of the bonds between Fe–Cbridge, Fe–Cterminal and Fe–N were 1.863, 1.905, and 2.002 Å, whereas those of Co–Ncyanide, Co–Namine, and Co–Naromatic were 1.884, 1.996, and 1.954 Å, respectively. These values are characteristic of the FeIILS and CoIIILS states.16,33,38–40,50,59–71 The packing structure of 1·8EtOH at 100 K was shown in Fig. S2. Unfortunately, the crystal structure after desolvation could not be obtained due to the cracking of the crystal.


image file: d4dt01581a-f2.tif
Fig. 2 Chemical structure (left) and crystal structure (right) of 1·8EtOH at 100 K. Counter anions and solvent molecules were omitted for clarity.

Magnetic study

The magnetic susceptibility of 1·8EtOH, and 1 before and after irradiation measured in the temperature range of 5–400 K (Fig. 3a). 1·8EtOH demonstrated a diamagnetic character in the temperature range of 5–295 K, which indicated a [FeIILS(S = 0)2CoIIILS(S = 0)2] electronic structure. As the temperature further increased, the χMT value abruptly increased and reached 7.42 cm3 K mol−1 at temperatures above 370 K, which is a typical value of a paramagnetic [FeIIILS(S = 1/2)2CoIIHS(S = 3/2)2] structure.16,33,38–40,50,59–71 This χMT value is larger than the spin-only value (4.5 cm3 K mol−1), which suggests that there is an orbital contribution to the magnetic moment. This means that the ETCST may occur here along with the loss of solvent (see the ESI).
image file: d4dt01581a-f3.tif
Fig. 3 (a) Magnetic susceptibilities of 1·8EtOH (black circle), 1 (red circle), and photo irradiated 1 (green triangle). The sweeping rates are 5 K min−1 for all measurements. (b) Magnetic susceptibility of 1 (taken from (a)). (c) The first derivative of the χMT vs. T curve of 1.

For 1, however, the χMT value changed gradually in the temperature range of 160–360 K with a multi-step transition. At a temperature below 160 K, a constant χMT value of 0.76 cm3 K mol−1 was observed, which suggests a diamagnetic [FeIILSCoIIILS] structure with a slight residual of paramagnetic [FeIIILSCoIIHS] structure. During the heating process, plateaus were observed at 203, 245, and 295 K, which demonstrated χMT values of 2.34, 3.84, and 5.21 cm3 K mol−1, respectively (Fig. 3b). At temperatures above 360 K, the χMT value reached 7.42 cm3 K mol−1. The multi-step character was also observed during the cooling process. The magnetic susceptibility curves are reproducible, even with different temperature sweeping rates (Fig. S6 and S7). According to the first derivative of the χMT vs. T curve in the heating process, this transition is a four-step transition, which has rarely been reported for molecular systems, especially for PBAs (Fig. 3c). These data reveal that 1 exhibits thermally induced ETCST from the [FeIILSCoIIILS] to the [FeIIILSCoIIHS] state via three IM phases.

In addition, to investigate the light-induced magnetic susceptibility of the present complexes, 1 was set to 5 K and irradiated with green light (532 nm). The χMT value increased from 1.09 cm3 K mol−1 to 7.15 cm3 K mol−1, which indicates a conversion from a ground state to a photo-induced metastable state via ETCST. During the heating process, the metastable state completely relaxed to the ground state that demonstrates an χMT value of 0.71 cm3 K mol−1 at 150 K.

Interestingly, the thermally induced transition disappeared again on the exposure to air of 1 (Fig. S8). A thermogravimetric analysis and an elemental analysis suggested the solvation of water occurred to form 1·3H2O (Fig. S5). That means that the ETCST phenomenon was turned on/off by desolvation/solvation.

Variable-temperature IR spectroscopy

As we know, there are two possible mechanisms for multi-step ETCST in the [Fe2Co2] unit. One is that ETCST occurs antecedently at only one [FeCo] site, followed by the other site, to form a [FeIILSCoIIILSFeIIILSCoIIHS] unit in the IM phase (Fig. 4a(I)). Another is that ETCST occurs at two [FeCo] sites at the same time, which changes the ratio of the [(FeIILSCoIIILS)2] and [(FeIIILSCoIIHS)2] states (Fig. 4a(II)). To investigate the mechanism of this four-step ETCST, variable-temperature IR spectroscopy was carried out (Fig. 4b).
image file: d4dt01581a-f4.tif
Fig. 4 (a) Two kinds of ETCST mechanisms in a [Fe2Co2] unit. Combined with IR spectrum, simultaneous ETCST; mechanism(II) is reasonable. (b) Variable-temperature IR spectrum of 1.

For complex 1, absorption peaks at 80 K was observed in the range of 2070–2130 cm−1. These peaks belong to the cyanide stretching modes in the FeIILS–CN–CoIIILSstructure.16,33,38–40,50,59–67 In addition, another peak was observed at 2130–2170 cm−1, which is the typical absorption of the FeIIILS–CN–CoIIHS structure.16,33,38–40,50,59–67 This spectrum means 1 is composed of both [FeIILSCoIIILS] and [FeIIILSCoIIHS] structures in LT phase. However, the peak in the region 2070–2130 cm−1 became weaker during the heating process. Contrarily, the peak at 2130–2170 cm−1 became stronger. This spectral change indicates that the change in temperature induced ETCST in 1.

Moreover, there was no peak around 2180 cm−1, which is characteristic of the FeIIILS–CN–CoIIILS structure.72–76 This spectral absence suggests that there was no [FeIILSCoIIILSFeIIILSCoIIHS] unit in any phase, and that the four-step transition can be described by changing the ratio of [FeIILSCoIIILS] and [FeIIILSCoIIHS] units as shown in Fig. 4a(II). A schematic of such a four-step transition is illustrated in Fig. 5.


image file: d4dt01581a-f5.tif
Fig. 5 Schematic diagram of four-step transition.

Although the crystal structure of 1 could not be obtained, the mechanism of the four-step transition was proposed as related to previously reported cases. Considering the reason why the IM states were stabilized, two possibilities were proposed. The first is that a crystallographically non-equivalent [Fe2Co2] unit was generated via desolvation. In the whole structure of 1·8EtOH, due to the ethanol molecules occupying part of volume, the desolvation may destroy the original stacking of [Fe2Co2] units. The second is that the symmetry breaking that occurred was supported by intermolecular interaction. Strong intermolecular interaction such as π-interaction or hydrogen bonding can thermodynamically stabilize the IM phases. In particular, the ligand on Co contains flexible 4-methylbenzyl groups that may create π-interactions. In any case, the packing structure should have changed when the ethanol molecules completely left via heating at 400 K, and this would trigger multi-step behavior.

Conclusions

Thermally induced four-step ETCST, which is a multi-step transition that is rarely reported in molecular systems, was observed in a cyano-bridged [Fe2Co2] square complex 1. Additionally, 1 exhibited photo-induced ETCST also, and these transitions were turned on/off by desolvation/solvation. The mechanism of such a four-step ETCST was confirmed through variable-temperature IR spectroscopy. This result indicated that the four-step transition was achieved by changing the ratio of the [(FeIILSCoIIILS)2] and [(FeIIILSCoIIHS)2] units. This work provides a novel multi-step transition system for the development of high-density molecular devices.

Author contributions

O. S. and S.-Q. S. supervised the project. T. I., Y.-B. H., M. U., T. J., X. Z., S.-Q. W. and S.-Q. S. carried out synthetic and crystallographic experiments. Magnetometries were performed by T. I., S.-Q. W., S. K. and S.-Q. S. T. I., W. Z., W.-H. X. and S.-Q. S. performed spectroscopic measurements. T. I., S.-Q. W., S.-Q. S. and O. S. discussed and co-wrote the manuscript.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its ESI. Supplementary information (ESI) available: IR spectra, UV spectra, TG curves, powder X-ray diffraction data and magnetic studies. Crystallographic data for compound 1·8EtOH was deposited at the Crystallographic Data Center with CCDC number 2337773.

Conflicts of interest

The authors declare no competing financial interests.

Acknowledgements

This work was supported by JSPS KAKENHI (24H00466 and 24K17698). This work was supported by the MEXT Project of “Integrated Research Consortium on Chemical Sciences”. S.-Q. W. are grateful for the support by Iketani Science and Technology Foundation (0351039A).

References

  1. O. Kahn and C. J. Martinez, Science, 1998, 279, 44–48 CrossRef CAS.
  2. A. Bousseksou, G. Molnár and G. Matouzenko, Eur. J. Inorg. Chem., 2004, 4353–4369 CrossRef CAS.
  3. O. Sato, J. Tao and Y. Z. Zhang, Angew. Chem., Int. Ed., 2007, 46, 2152–2187 CrossRef CAS PubMed.
  4. D. Aguilà, Y. Prado, E. S. Koumousi, C. Mathonière and R. Clérac, Chem. Soc. Rev., 2016, 45, 203–224 RSC.
  5. O. Sato, Nat. Chem., 2016, 8, 644–656 CrossRef CAS PubMed.
  6. Y.-S. Meng, O. Sato and T. Liu, Angew. Chem., Int. Ed., 2018, 57, 12216–12226 CrossRef CAS PubMed.
  7. P. Sadhukhan, S. Q. Wu, J. I. Long, T. Nakanishi, S. Kanegawa, K. G. Gao, K. Yamamoto, H. Okajima, A. Sakamoto, M. L. Baker, T. Kroll, D. Sokaras, A. Okazawa, N. Kojima, Y. Shiota, K. Yoshizawa and O. Sato, Nat. Commun., 2021, 12, 4836 CrossRef CAS PubMed.
  8. M. Seredyuk, K. Znovjyak, F. J. Valverde-Munoz, I. da Silva, M. C. Muñoz, Y. S. Moroz and J. A. Real, J. Am. Chem. Soc., 2022, 144, 14297–14309 CrossRef CAS PubMed.
  9. S. G. Wu, L. F. Wang, Z. Y. Ruan, S. N. Du, S. Gómez-Coca, Z. P. Ni, E. Ruiz, X. M. Chen and M. L. Tong, J. Am. Chem. Soc., 2022, 144, 14888–14896 CrossRef CAS PubMed.
  10. S. Q. Su, S. Q. Wu, Y. B. Huang, W. H. Xu, K. G. Gao, A. Okazawa, H. Okajima, A. Sakamoto, S. Kanegawa and O. Sato, Angew. Chem., Int. Ed., 2022, 61, e202208771 CrossRef CAS PubMed.
  11. X. P. Zhang, W. H. Xu, W. W. Zheng, S. Q. Su, Y. B. Huang, Q. R. Shui, T. C. Ji, M. Uematsu, Q. Chen, M. Tokunaga, K. G. Gao, A. Okazawa, S. Kanegawa, S. Q. Wu and O. Sato, J. Am. Chem. Soc., 2023, 145, 15647–15651 CrossRef CAS PubMed.
  12. S. Q. Su, S. Q. Wu, S. Kanegawa, K. Yamamoto and O. Sato, Chem. Sci., 2023, 14, 10631–10643 RSC.
  13. G. Z. Huang, Y. S. Xia, F. Yang, W. J. Long, J. J. Liu, J. P. Liao, M. Zhang, J. Liu and Y. Q. Lan, J. Am. Chem. Soc., 2023, 145, 26863–26870 CrossRef CAS PubMed.
  14. Y. Y. Wu, Z. Y. Li, S. Peng, Z. Y. Zhang, H. M. Cheng, H. Su, W. Q. Hou, F. L. Yang, S. Q. Wu, O. Sato, J. W. Dai, W. Li and X. H. Bu, J. Am. Chem. Soc., 2024, 146, 8206–8215 CrossRef CAS PubMed.
  15. F. Yin, J. Yang, L. P. Zhou, X. Meng, C. B. Tian and Q. F. Sun, J. Am. Chem. Soc., 2024, 146, 7811–7821 CrossRef CAS PubMed.
  16. M. Nihei, Y. Yanai, I. J. Hsu, Y. Sekine and H. Oshio, Angew. Chem., Int. Ed., 2017, 56, 591–594 CrossRef CAS PubMed.
  17. H. Hagiwara, R. Minoura, T. Udagawa, K. Mibu and J. Okabayashi, Inorg. Chem., 2020, 59, 9866–9880 CrossRef CAS PubMed.
  18. A. Orellana-Silla, F. J. Valverde-Muñoz, M. C. Muñoz, C. Bartual-Murgui, S. Ferrer and J. A. Real, Inorg. Chem., 2022, 61, 4484–4493 CrossRef CAS PubMed.
  19. Y. Y. Wu, S. Peng, Z. Y. Zhang, Y. Gao, G. Y. Xu, J. W. Dai, Z. Y. Li and M. Yamashita, Chin. J. Chem., 2024, 42, 879–886 CrossRef CAS.
  20. D. J. Mondal, A. Mondal, A. Paul and S. Konar, Inorg. Chem., 2022, 61, 4572–4580 CrossRef CAS PubMed.
  21. S. G. Wu, S. Bala, Z. Y. Ruan, G. Z. Huang, Z. P. Ni and M. L. Tong, Chin. Chem. Lett., 2022, 33, 1381–1384 CrossRef CAS.
  22. J. A. Real, H. Bolvin, A. Bousseksou, A. Dworkin, O. Kahn, F. Varret and J. Zarembowitch, J. Am. Chem. Soc., 1992, 114, 4650–4658 CrossRef CAS.
  23. J. F. Létard, J. A. Real, N. Moliner, A. B. Gaspar, L. Capes, O. Cador and O. Kahn, J. Am. Chem. Soc., 1999, 121, 10630–10631 CrossRef.
  24. R. Clérac, F. A. Cotton, K. R. Dunbar, T. B. Lu, C. A. Murillo and X. P. Wang, J. Am. Chem. Soc., 2000, 122, 2272–2278 CrossRef.
  25. R. J. Wei, Q. Huo, J. Tao, R. B. Huang and L. S. Zheng, Angew. Chem., Int. Ed., 2011, 50, 8940–8943 CrossRef CAS PubMed.
  26. T. Matsumoto, G. N. Newton, T. Shiga, S. Hayami, Y. Matsui, H. Okamoto, R. Kumai, Y. Murakami and H. Oshio, Nat. Commun., 2014, 5, 3865 CrossRef CAS PubMed.
  27. W. Wen, Y. S. Meng, C. Q. Jiao, Q. Liu, H. L. Zhu, Y. M. Li, H. Oshio and T. Liu, Angew. Chem., Int. Ed., 2020, 59, 16393–16397 CrossRef CAS PubMed.
  28. G. K. Gransbury, B. N. Livesay, J. T. Janetzki, M. A. Hay, R. W. Gable, M. P. Shores, A. Starikova and C. Boskovic, J. Am. Chem. Soc., 2020, 142, 10692–10704 CrossRef CAS PubMed.
  29. C. Lecourt, Y. Izumi, L. Khrouz, F. Toche, R. Chiriac, N. Bélanger-Desmarais, C. Reber, O. Fabelo, K. Inoue, C. Desroches and D. Luneau, Dalton Trans., 2020, 49, 15646–15662 RSC.
  30. C. Y. Zheng, S. W. Jia, Y. B. Dong, J. P. Xu, H. H. Sui, F. Wang and D. F. Li, Inorg. Chem., 2019, 58, 14316–14324 CrossRef CAS PubMed.
  31. K. C. Khadanand, T. Woods and L. Olshansky, Angew. Chem., Int. Ed., 2023, 62, e202311790 CrossRef PubMed.
  32. B. Li, R. J. Wei, J. Tao, R. B. Huang, L. S. Zheng and Z. P. Zheng, J. Am. Chem. Soc., 2010, 132, 1558–1566 CrossRef CAS PubMed.
  33. L. Y. Meng, Y. F. Deng, S. M. Holmes and Y. Z. Zhang, Dalton Trans., 2023, 52, 1616–1622 RSC.
  34. S. Hayami, Z. Z. Gu, H. Yoshiki, A. Fujishima and O. Sato, J. Am. Chem. Soc., 2001, 123, 11644–11650 CrossRef CAS PubMed.
  35. Z. Y. Li, J. W. Dai, Y. Shiota, K. Yoshizawa, S. Kanegawa and O. Sato, Chem. – Eur. J., 2013, 19, 12948–12952 CrossRef CAS PubMed.
  36. E. Dobbelaar, V. B. Jakobsen, E. Trzop, M. Lee, S. Chikara, X. X. Ding, H. Müller-Bunz, K. Esien, S. Felton, M. A. Carpenter, E. Collet, G. G. Morgan and V. S. Zapf, Angew. Chem., Int. Ed., 2022, 61, e202114021 CrossRef CAS PubMed.
  37. V. B. Jakobsen, E. Trzop, E. Dobbelaar, L. C. Gavin, S. Chikara, X. X. Ding, M. Lee, K. Esien, H. Müller-Bunz, S. Felton, E. Collet, M. A. Carpenter, V. S. Zapf and G. G. Morgan, J. Am. Chem. Soc., 2022, 144, 195–211 CrossRef CAS PubMed.
  38. M. Nihei, Y. Sekine, N. Suganami, K. Nakazawa, A. Nakao, H. Nakao, Y. Murakami and H. Oshio, J. Am. Chem. Soc., 2011, 133, 3592–3600 CrossRef CAS PubMed.
  39. S. Kamilya, S. Ghosh, Y. L. Li, P. Dechambenoit, M. Rouzières, R. Lescouëzec, S. Mehta and A. Mondal, Inorg. Chem., 2020, 59, 11879–11888 CrossRef CAS PubMed.
  40. S. Kamilya, S. Ghosh, S. Mehta and A. Mondal, J. Phys. Chem. A, 2021, 125, 4775–4783 CrossRef CAS PubMed.
  41. N. F. Sciortino, K. R. Scherl-Gruenwald, G. Chastanet, G. J. Halder, K. W. Chapman, J. F. Létard and C. J. Kepert, Angew. Chem., Int. Ed., 2012, 51, 10154–10158 CrossRef CAS PubMed.
  42. J. Yuan, S. Q. Wu, M. J. Liu, O. Sato and H. Z. Kou, J. Am. Chem. Soc., 2018, 140, 9426–9433 CrossRef CAS PubMed.
  43. H. Douib, L. Cornet, J. F. Gonzalez, E. Trzop, V. Dorcet, A. Gouasmia, L. Ouahab, O. Cador and F. Pointillart, Eur. J. Inorg. Chem., 2018, 4452–4457 CrossRef CAS.
  44. N. G. Spitsyna, M. A. Blagov, V. A. Lazarenko, R. D. Svetogorov, Y. V. Zubavichus, L. V. Zorina, O. Maximova, S. A. Yaroslavtsev, V. S. Rusakov, G. V. Raganyan, E. B. Yagubskii and A. N. Vasiliev, Inorg. Chem., 2021, 60, 17462–17479 CrossRef CAS PubMed.
  45. J. P. Xue, Y. Hu, B. Zhao, Z. K. Liu, J. Xie, Z. S. Yao and J. Tao, Nat. Commun., 2022, 13, 3510 CrossRef CAS PubMed.
  46. O. S. Jung, Y. A. Lee, S. H. Park, Y. J. Kim, K. H. Yoo and D. C. Kim, Bull. Chem. Soc. Jpn., 2001, 74, 305–309 CrossRef CAS.
  47. S. Kanegawa, Y. Shiota, S. Kang, K. Takahashi, H. Okajima, A. Sakamoto, T. Iwata, H. Kandori, K. Yoshizawa and O. Sato, J. Am. Chem. Soc., 2016, 138, 14170–14173 CrossRef CAS PubMed.
  48. S. Q. Wu, M. J. Liu, K. G. Gao, S. Kanegawa, Y. Horie, G. Aoyama, H. Okajima, A. Sakamoto, M. L. Baker, M. S. Huzan, P. Bencok, T. Abe, Y. Shiota, K. Yoshizawa, W. H. Xu, H. Z. Kou and O. Sato, Nat. Commun., 2020, 11, 1992 CrossRef CAS PubMed.
  49. M. Cammarata, S. Zerdane, L. Balducci, G. Azzolina, S. Mazerat, C. Exertier, M. Trabuco, M. Levantino, R. Alonso-Mori, J. M. Glownia, S. Song, L. Catala, T. Mallah, S. F. Matar and E. Collet, Nat. Chem., 2021, 13, 10–14 CrossRef CAS PubMed.
  50. J. Yadav, D. J. Mondal and S. Konar, Chem. Commun., 2021, 57, 5925–5928 RSC.
  51. P. Sadhukhan, S. Q. Wu, S. Kanegawa, S. Q. Su, X. P. Zhang, T. Nakanishi, J. I. Long, K. G. Gao, R. Shimada, H. Okajima, A. Sakamoto, J. G. Chiappella, M. S. Huzan, T. Kroll, D. Sokaras, M. L. Baker and O. Sato, Nat. Commun., 2023, 14, 3394 CrossRef CAS PubMed.
  52. E. Hruska, Q. S. Zhu, S. Biswas, M. T. Fortunato, D. R. Broderick, C. M. Morales, J. M. Herbert, C. Turro and L. R. Baker, J. Am. Chem. Soc., 2024, 146, 8031–8042 CrossRef CAS PubMed.
  53. K. K. Yao, C. W. Dong, K. Y. Cao, Y. Zhang and S. Yang, Adv. Funct. Mater., 2024, 2313938 CrossRef CAS.
  54. S. Kanegawa, S. Q. Wu, Z. Q. Zhou, Y. Shiota, T. Nakanishi, K. Yoshizawa and O. Sato, J. Am. Chem. Soc., 2024, 146, 11553–11561 CAS.
  55. F. J. Valverde-Muñoz, C. Bartual-Murgui, L. Piñeiro-López, M. C. Muñoz and J. A. Real, Inorg. Chem., 2019, 58, 10038–10046 CrossRef PubMed.
  56. L. Piñeiro-López, F. J. Valverde-Muñoz, E. Trzop, M. C. Muñoz, M. Seredyuk, J. Castells-Gil, I. da Silva, C. Martí-Gastaldo, E. Collet and J. A. Real, Chem. Sci., 2021, 12, 1317–1326 RSC.
  57. O. I. Kucheriv, S. I. Shylin, V. Y. Sirenko, V. Ksenofontov, W. Tremel, I. A. Dascalu, S. Shova and I. A. Gural'skiy, Chem. – Eur. J., 2022, 28, e202200924 CrossRef CAS PubMed.
  58. C. P. Berlinguette, A. Dragulescu-Andrasi, A. Sieber, J. R. Galán-Mascarós, H. U. Güdel, C. Achim and K. R. Dunbar, J. Am. Chem. Soc., 2004, 126, 6222–6223 CrossRef CAS PubMed.
  59. Y. Z. Zhang, D. F. Li, R. Clérac, M. Kalisz, C. Mathonière and S. M. Holmes, Angew. Chem., Int. Ed., 2010, 49, 3752–3756 CrossRef CAS PubMed.
  60. J. Mercurol, Y. L. Li, E. Pardo, O. Risset, M. Seuleiman, H. Rousselière, R. Lescouëzec and M. Julve, Chem. Commun., 2010, 46, 8995–8997 RSC.
  61. D. Siretanu, D. F. Li, L. Buisson, D. M. Bassani, S. M. Holmes, C. Mathonière and R. Clérac, Chem. – Eur. J., 2011, 17, 11704–11708 CrossRef CAS PubMed.
  62. L. Cao, J. Tao, Q. Gao, T. Liu, Z. C. Xia and D. F. Li, Chem. Commun., 2014, 50, 1665–1667 RSC.
  63. C. Y. Zheng, J. P. Xu, Z. X. Yang, J. Tao and D. F. Li, Inorg. Chem., 2015, 54, 9687–9689 CrossRef CAS PubMed.
  64. C. Q. Jiao, Y. S. Meng, Y. Yu, W. J. Jiang, W. Wen, H. Oshio, Y. Luo, C. Y. Duan and T. Liu, Angew. Chem., Int. Ed., 2019, 58, 17009–17015 CrossRef CAS PubMed.
  65. Y. K. Yang, C. Q. Jiao, Y. S. Meng, N. T. Yao, W. J. Jiang and T. Liu, Inorg. Chem. Commun., 2021, 130, 108712 CrossRef CAS.
  66. L. Y. Meng, Y. F. Deng and Y. Z. Zhang, Inorg. Chem., 2021, 60, 14330–14335 CrossRef CAS PubMed.
  67. P. Y. You, R. J. Wei, M. Xie, G. H. Ning and H. Oshio, Inorg. Chem. Front., 2022, 10, 288–295 RSC.
  68. D. P. Dong, J. Q. Xiao, P. F. Zhuang, H. Zheng, L. Zhao, C. He, T. Liu and C. Y. Duan, Inorg. Chem. Commun., 2012, 21, 84–87 CrossRef CAS.
  69. A. Mondal, Y. L. Li, M. Seuleiman, M. Julve, L. Toupet, M. Buron-Le Cointe and R. Lescouëzec, J. Am. Chem. Soc., 2013, 135, 1653–1656 CrossRef CAS PubMed.
  70. Y. Z. Zhang, P. Ferko, D. Siretanu, R. Ababei, N. P. Rath, M. J. Shaw, R. Clérac, C. Mathonière and S. M. Holmes, J. Am. Chem. Soc., 2014, 136, 16854–16864 CrossRef CAS PubMed.
  71. C. Mathonière, D. Mitcov, E. Koumousi, D. Amorin-Rosario, P. Dechambenoit, S. F. Jafri, P. Sainctavit, C. C. D. Moulin, L. Toupet, E. Trzop, E. Collet, M. A. Arrio, A. Rogalev, F. Wilhelm and R. Clérac, Chem. Commun., 2022, 58, 12098–12101 RSC.
  72. T. Liu, Y. J. Zhang, S. Kanegawa and O. Sato, Angew. Chem., Int. Ed., 2010, 49, 8645–8648 CrossRef CAS PubMed.
  73. T. Liu, D. P. Dong, S. Kanegawa, S. Kang, O. Sato, Y. Shiota, K. Yoshizawa, S. Hayami, S. Wu, C. He and C. Y. Duan, Angew. Chem., Int. Ed., 2012, 51, 4367–4370 CrossRef CAS PubMed.
  74. D. P. Dong, T. Liu, S. Kanegawa, S. Kang, O. Sato, C. He and C. Y. Duan, Angew. Chem., Int. Ed., 2012, 51, 5119–5123 CrossRef CAS PubMed.
  75. J. X. Hu, L. Luo, X. J. Lv, L. Liu, Q. Liu, Y. K. Yang, C. Y. Duan, Y. Luo and T. Liu, Angew. Chem., Int. Ed., 2017, 56, 7663–7668 CrossRef CAS PubMed.
  76. Y. B. Huang, J. Q. Li, W. H. Xu, W. W. Zheng, X. P. Zhang, K. G. Gao, T. C. Ji, T. Ikeda, T. Nakanishi, S. Kanegawa, S. Q. Wu, S. Q. Su and O. Sato, J. Am. Chem. Soc., 2024, 146, 201–209 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available. CCDC 2337773. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d4dt01581a

This journal is © The Royal Society of Chemistry 2024
Click here to see how this site uses Cookies. View our privacy policy here.