A ratiometric electrochemical sensor for detecting lead in fish based on the synergy of semi-complementary aptamer pairs and Ag nanowires@zeolitic imidazolate framework-8†
Abstract
This work describes the synergistic application of semi-complementary aptamer pairs and signals on–off ratio strategies on glassy carbon electrodes (GCE) for detecting lead ions (Pb2+) in fish. Gold nanoparticles (AuPNs) as the electrode substrate can provide added binding sites for the aptamers and improve the conductivity of the electrodes. Pb2+ aptamers containing ferrocene (Fc) molecules act as molecular recognizers in the sensing system. In the presence of target ions, Fc signals are affected by conformational changes of the aptamer. The “Ag nanowires@zeolitic imidazolate framework-8 with methylene blue (AgNWs@ZIF-8/MB)” can be semi-complementary to the Pb2+ aptamer after binding to single-stranded DNA (S1). However, S1/AgNWs@ZIF-8/MB self-assembled with Pb2+ aptamer (Apt) by hybridization incubation was quickly replaced by Pb2+ competitively, resulting in the loss of methylene blue (MB) signaling molecules. Hence, the internal reference signal (MB) and conformation change signal (Fc) comprise the ratio sensing system well. Morphology, spectroscopy, and electrochemistry methods have validated the modification and sensing behaviors. The used Apt has made considerable progress in analytical performance. In interference studies and stability checks, the ratio measurement signal IFc/IMB is a more reliable signal than the single signal readout. Following a log-linear relationship, this sensor provides a wide linear range. Furthermore, the proposed sensor can be used to determine Pb2+ in fish samples, and the results agree with those obtained using ICP-MS and recovery tests.
- This article is part of the themed collection: Analytical Methods HOT Articles 2023