
Green Chemistry

PAPER

Cite this: Green Chem., 2024, 26,
7363

Received 21st February 2024,
Accepted 17th May 2024

DOI: 10.1039/d4gc00889h

rsc.li/greenchem

Modelling biodegradability based on OECD 301D
data for the design of mineralising ionic liquids†

Ann-Kathrin Amsel, a,b Suman Chakravarti,c Oliver Olsson a and
Klaus Kümmerer*a,b

Ionic liquids (ILs) are increasingly used, e.g. as solvents, electrolytes, active pharmaceutical ingredients

and herbicides. If ILs enter the environment due to their use or accidental spills at industry sites, they can

pollute the environment. To avoid adverse side effects of persistent ILs in the environment, they should

be designed to fully mineralise in the environment after they fulfilled their function during application.

(Quantitative) structure–biodegradability relationship models ((Q)SBRs) have been successfully applied in

the design of benign chemicals. However, (Q)SBR models have not been widely applied to design minera-

lising ILs. Therefore, in this study we developed five quantitative structure–biodegradability relationship

(QSBR) models based on OECD 301D data from the literature and our own in-house biodegradation

experiments. These models can potentially be part of a test battery for designing fully mineralising ILs to

increase the overall reliability of the biodegradability assessment and reduce uncertainties. Two datasets

were formed and randomly divided into a training set with 233 and 321 compounds and a test set with 26

and 36 compounds, respectively. Both classification and regression models were built using molecular

fragments with the aim to predict the classification and continuous biodegradation rate, respectively. The

internal and external validations produced a R2 of 0.620–0.854 for the regression models and accuracy,

true positive rate, and true negative rate were between 62 and 100% for the classification models indicat-

ing an adequate performance but also a need for improvement. For the models and the test battery pre-

sented in this study, further research is needed to demonstrate their applicability.

1. Introduction

Ionic liquids (ILs) are of interest in various application areas
because an IL can be tuned to the desired physical and chemi-
cal properties by changing its combination of cations and
anions.1 ILs have been examined in application areas such as
solvents for cellulose, electrolytes in batteries, solvents for the
preparation of perovskite photovoltaics, active pharmaceutical
ingredients and herbicides.2–6 Indeed many quaternary
ammonium compounds (QACs) like benzylalkyldimethyl
ammonium or alkyltrimethylammonium compounds, which
are not called ILs in the literature, have commercial appli-
cations, e.g. as disinfectants.7 Actually, they should be

included in the group of ILs. ILs can be introduced in the
environment through environmentally open applications, at
the end-of-life of the mentioned products or accidental spills
at industry sites. Some ILs have already been detected in
surface water, sediments and wastewater effluents.8,9 The
environmental impact of ILs is of concern because of their
(eco)toxicological effects and persistence.10–14 Many ILs are
not biodegradable in the aquatic environment.15

There are two categories of ILs: single ILs, which consist of
a single, distinct cation and anion, and mixtures of ILs, which
contain different cations and anions. For the purpose of this
study, the term “ILs” exclusively denote single ILs. In the litera-
ture, 16 different cations have been tested for biodegradability
ranging from imidazolium, QACs, pyridinium, cholinium, pyr-
rolidinium, piperidinium, prolinium, piperazinium, phos-
phonium, morpholinium, quinolinium, 1,4-diazabicyclo(2.2.2)
octanium (DABCO), guandinium, sulphonium, thiazolium to
triazolium.15 The tested anions were either organic or in-
organic. Organic anions were alkylsulphates, α-amino acids,
bis(trifluoromethylsulphonyl)amide, carboxylic acids or dicya-
namide. Inorganic anions included halides, tetrafluoroborate
or hexafluorophosphate.15,16 In total, ready biodegradability
data are available for 508 ILs in the literature.15 Of them, 120
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ILs have been identified to be more than 60% biodegradable
according to ready biodegradability test methods like the
OECD 301 series or ISO 14593.15 However, just 34 ILs have
reached the pass level for ready biodegradability, which is
≥60% biodegradation within 10 days starting from a degra-
dation level of 10% as defined by the OECD guideline for the
301 series.17–23 Therefore, it is reasonable to consider that IL’s
design should follow the concept of Benign by Design (BbD).24

Accordingly, ILs should be designed from scratch for full min-
eralisation in the environment after their intended usage.24

This means ensuring that both the anionic and cationic com-
ponents of ILs undergo complete mineralisation either during
wastewater treatment processes or within the natural environ-
ment. This aligns with the goal of creating safe and inherently
sustainable chemical compounds, as outlined in the
“Chemicals Strategy for Sustainability towards a Toxic-Free
Environment” by the European Commission.25

(Quantitative) structure–biodegradability relationship
models ((Q)SBR) can be applied to support the design of
readily biodegradable and mineralising ILs. (Q)SBR models
help make better informed decisions in the design process
prior to the synthesis of chemicals, potentially saving time and
resources.26–31 Most of the models for biodegradability of non-
charged chemicals, e.g. in EPISuite, Vega, MultiCASE and
CATALOGIC, use ready biodegradability data measured accord-
ing to the MITI test (OECD 301C) and predict either a continu-
ous biodegradation rate or a classification into readily bio-
degradable or not.32–36 Furthermore, the software CATALOGIC
offers a model based on OECD 301F data which predicts the
biodegradation pathway.34 In fragment-based (Q)SBR models,
the modelled relationships between structural fragments and
biodegradability, also called alerts, have the advantage that
they increase the interpretability of the predictions and help to
understand why chemicals are biodegradable or not.37,38 The
relationship can give first insights into which structural adjust-
ments might be needed to design a fully mineralising
chemical.26,27 ILs differ from non-charged organic compounds
as they consist of two charged components, the anion and the
cation. Both components have their own biodegradability
potential if they are of organic nature. One of the components
could be biodegradable, while the other may not. This is not
represented in the overall biodegradation rate that is measured
in tests according to OECD 301 or ISO 14593 and can lead to
false conclusions in biodegradability.39 Inorganic anions or
cations lack carbon atoms that could be metabolised by micro-
organisms and thus do not contribute to the overall bio-
degradation rate of an IL. Consequently, ILs cannot be treated
in modelling approaches similar to uncharged organic com-
pounds and current modelling techniques need to be adapted
to accommodate the unique characteristics of ILs.

Barycki et al. developed AquaBoxIL to predict the environ-
mental distribution of an IL between water, sediment and
organic matter.40 The models for biodegradability in
AquaBoxIL were the first and the only ones reported for ILs
until now to the best of our knowledge. They were based on 77
ILs with OECD 310 (CO2 headspace test) data. The training set

included 52 ILs and the test set 25 ILs. 2D and 3D molecular
descriptors were used for model building.40 A classification
tree assigns the query IL either to the readily biodegradable or
not readily biodegradable class. Depending on the classifi-
cation result a linear regression quantitative structure–biode-
gradability relationship (QSBR) model for persistent ILs (train-
ing set consisted only of ILs that are biodegradable by ≤60%)
or one for readily biodegradable ILs (training set consisted
only of ILs that are biodegradable by ≥60%) is applied to
predict the percentage of biodegradability for the query IL.40

AquaBoxIL was mainly built to predict the environmental dis-
tribution. Since the applied molecular descriptors are not
always easy to interpret regarding structure–biodegradability
relationships (SBRs), decisions on specific structural changes
in the design for improved biodegradability are not straight-
forward.41 Fragment-based models comprising structural
alerts are needed for making better-informed decisions in the
structural design of ILs.30,42

Therefore, this study presents newly developed fragment-
based QSBR models based on a newly compiled OECD 301D
dataset which comply with the OECD principles for validating
(quantitative) structure–activity relationship ((Q)SAR)
models.43,44 We utilised data derived from OECD 301D, recog-
nised as the most rigorous method within the OECD 301
series because readily biodegradable compounds according to
this test will be completely biodegradable in surface water.
Furthermore, this choice was made to ensure the comprehen-
sive representation of various common ILs, such as imidazo-
lium, pyridinium, QACs, and cholinium ILs, which have been
extensively tested through OECD 301D, within our training
dataset.15 In total, five fragment-based QSBR models were
developed using MultiCASE’s FlexFilters platform45 with
regard to the ease of interpretation and deriving SBRs to
support design decisions. Ordinary least squares (OLS) and
logistic regression (LR) were used as modelling approaches to
support prediction outcomes of continuous biodegradation
rate and classification in biodegradable and non-bio-
degradable ILs, respectively. Additionally, an in silico test
battery as part of the workflow proposed by Lorenz et al. for
designing fully mineralising ILs was developed to discuss the
possible applications of the models.30

2. Materials and methods
2.1 Experimental ready biodegradability data according to
OECD 301D

From the Institute of Sustainable Chemistry (INSC) at
Leuphana University (Prof. Kümmerer’s working group), a
dataset based on the in-house OECD 301D biodegradation
experiment was provided. The OECD 301D guideline deter-
mines the ready biodegradability under aerobic conditions in
water.23 The dataset included 105 ILs (total 116 data points
with measured biodegradation rates), 4 organic anions com-
bined with an inorganic cation (6 data points) and 79 non-
charged organic compounds (101 data points), which were
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structurally related to the ILs. These data include information
on whether the test substance is readily biodegradable or not
and whether the test was valid. With the help of these data,
the biodegradability of the individual compounds was evalu-
ated. The in-house OECD 301D test was described in previous
studies.17,22 The same OECD 301D test protocol and the same
inoculum source were used to generate the data. A test com-
pound is considered to be readily biodegradable if it was
degraded by ≥60% within a 10-day window starting after 10%
degradation was reached.23

As per the protocol the biodegradation results were valid if
the following conditions are met:

(1) the degradation rates in the duplicates of the test sus-
pension did not differ by >20% after 28 d,

(2) the compound did not inhibit the degradation of the
reference compound (sodium acetate) in the toxicity control
(sodium acetate must be degraded ≥25% within 14 d based on
its share of the total theoretical oxygen demand (ThOD),

(3) the oxygen concentration in the test vessels must not be
<0.5 mg L−1,

(4) sodium acetate was degraded by ≥60% within 14 d in
the positive control,

(5) the oxygen consumption is ≤1.5 mg L−1 after 28 d in the
blank.

2.2 Compiling the training and test sets

Two datasets, set_IL and set_ILNI, were compiled to examine
the influence of the larger dataset set_ILNI on model perform-
ance compared to the smaller dataset set_IL.46 Two data
sources were used to compile OECD 301D data, (a) data from
the INSC in-house biodegradation experiments (section 2.1)
and (b) literature data based on OECD 301D as compiled in
Amsel et al.15 The following criteria had to be met by the litera-
ture data of each IL: (i) tests lasted 28 d, (ii) the allowed con-
centration of the compound and inoculum of the allowed
source was used, and (iii) mineralisation as the ratio between
the biochemical oxygen demand (BOD) and the ThOD or
chemical oxygen demand (COD) was measured. Sometimes
none or just a few validation principles were reported for the
data in the literature. Nevertheless, the data were used to
expand the dataset. To increase set_ILNI the study on benzalko-
nium chloride of Sütterlin et al. was added.47 The raw data
were available and the applied OECD 301D method was
similar to the one at INSC.

The literature data and the INSC data were combined.
Duplicates were combined into one IL by calculating the mean
biodegradation rate. The set_IL is just composed of ILs. For the
ILs measured at the INSC, stereochemistry was included in the
structures. However, the models were not able to consider
stereochemistry in their predictions. The set_ILNI contained
ILs, anions, and non-charged compounds. ILs differing in
stereochemistry were considered as duplicates.

Without considering the structures, both set_IL and
set_ILNI were randomly divided into a training and test set. For
the test set 10% of the compounds in set_IL and set_ILNI were
used as suggested.48 The train_set_IL contained 233 ILs and

the test_set_IL 26 ILs. The set_ILNI was randomly divided into
the train_set_ILNI of 321 compounds and the test_set_ILNI of
36 compounds. The train_set_ILNI contained 73 non-ionic
compounds, four anions and 244 ILs. The test_set_ILNI con-
tained six non-ionic compounds and 30 ILs.

To characterise the training and test sets, the biodegrad-
ability data of the ILs, anions and non-ionic compounds were
classified (red: 0–19%, amber: 20–59%, green: ≥60%). The
classification is based on the OECD guidelines.23,49 No or
minimal biodegradability equals 0–19% degradation.
Inherently biodegradable are compounds that degrade by
20–59% in ready biodegradability tests like OECD 301D.49

Compounds classified as ≥60% are possibly readily bio-
degradable. If ≥60% of ThOD was removed within 10 days
starting from a degradation level of 10% ThOD, compounds
are readily biodegradable.23

2.3 Model building

Predictive QSBR models were built using the MultiCASE’s
FlexFilters platform.45 The OECD principles for validating (Q)
SAR models were followed to increase models’ reliability and
ensure that the models can be used for REACH registration.43

The principles are as follows: (1) a defined endpoint, (2) an
unambiguous algorithm, (3) a defined domain of applicability,
(4) appropriate measures of goodness-of–fit, robustness and
predictivity, and (5) a mechanistic interpretation, if possible.44

Model building was essentially done in three steps: (i) frag-
mentation of the training compounds, (ii) selection of the
most representative fragments (privileged fragments/substruc-
tures) that explain the variation of biodegradability of the
training set chemicals, and (iii) building a regression model
(OLS and LR for continuous regression and classification
models, respectively) using these privileged substructures as
descriptors. The details of the fragmentation and selection of
the most representative fragments are described in the ESI.†

Two types of fragment descriptors were used: (i) fragments
based on extended connectivity fingerprint (ECFP) type circu-
lar fragments50 and (ii) element of a special continuous valued
fingerprint containing 600 elements developed by
Chakravarti.51 The variable selection using L1 regularisation/
Lasso regression was needed to limit the number of unique
fragments obtained from the training set chemicals to prevent
overfitting.37,52–54 In the variable selection those structural
fragments were picked that were relevant to the biodegradabil-
ity potential of the training chemicals.

For the model IL_FP_cont 600 elements of the fingerprints
were considered as descriptors. However, after the variable
selection step using L1 regularisation/Lasso regression, only
61 elements were found to be relevant to biodegradability
potential (Table S2†). For the models IL_Al_cont, IL_Al_class,
ILNI_Al_cont and ILNI_Al_class 70, 29, 130 and 60 fragments,
respectively, were found to be relevant (Tables S3, S4, S5 and
S6†). These fragments are also called alerts.

Several modelling approaches are available, e.g. multiple
linear regression, partial least squares, artificial neural
network, random forest, support vector machine and many
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more, which all have their strengths and weaknesses.55 In this
study, simple and well-known OLS and LR modelling in conju-
gation with fragment descriptors were used (second OECD
principle for validating (Q)SAR models). Both approaches, OLS
and LR, were chosen since they differ in the prediction
outcome (continuous biodegradability rate and classification,
respectively). Furthermore, they are easy to interpret due to the
linear relationship between descriptors and the target prop-
erty. On this basis, five models were developed to compare the
different modelling approaches and training sets. Models
using alerts as descriptors, OLS or LR, were built for both
training sets, train_set_IL and train_set_ILNI. Additionally, OLS
and elements of fingerprint as descriptors were used for a
model based on train_set_IL (Table 1). The constructed
regression models were then used for ready biodegradability
prediction of new ILs. The continuous regression models’ end-
point was ready biodegradability potential based on OECD
301D (ranging between 0 and 100%) (IL_FP_cont, IL_Al_cont,
ILNI_Al_cont, Table 1). The classification models (IL_Al_class,
ILNI_Al_class, Table 1) produced a probability value (ranging
between 0.0 and 1.0), which can be separated in two classes
(readily biodegradable and not readily biodegradable based on
OECD 301D) by applying a threshold (usually 0.5) (first OECD
principle for validating (Q)SAR models).

All models have in common that they were built using rigor-
ously identified fragment-based activity privileged substruc-
tures, providing easy interpretability and a mechanistic
interpretation to enable better-informed decisions in the
design of readily biodegradable ILs. These fragments are anno-
tated with the quantitative relationship with biodegradability
(regression coefficients). While predicting a test chemical,
these fragments are identified in the test chemical and there-
fore the mechanistic explanations for the predictions can be
constructed (fifth OECD principle for validating (Q)SAR
models). Hence, a non-biodegradable fragment could be
replaced by a better biodegradable one to increase the biode-
gradability of the whole IL. Both approaches, ordinary and
logistic regression were chosen since they have an advantage
over the other at different steps in the design process. A classi-
fication is appropriate for design decisions at the beginning of
the process as they can be used to separate ILs into bio-
degradable and non-biodegradable ones. The classification

provides first insights into which ILs should be focused on to
develop readily biodegradable ILs. In contrast, after the first
classification step continuous biodegradability rates help to
answer questions like which IL of the biodegradable ones is
the best biodegradable IL or which IL is the best candidate for
further structural adjustments when all ILs are not
biodegradable.

2.4 Model validation

The validation of QSBRs was divided into internal and external
validation as proposed by OECD to assess the goodness-of-fit
and the predictivity, respectively (details are described in the
ESI†).44 The typical performance measures accuracy, sensitivity
(true positive rate, TPR), specificity (true negative rate, TNR)
and area under the curve (AUC) were evaluated for classifi-
cation models (Table S7†), since they help to understand the
model’s performance in predicting both classes, bio-
degradable and non-biodegradable ILs.44,48 For the OLS
models the commonly used squared correlation coefficient R2

was evaluated which ranges from 0.0 to 1.0 (Table S7†).44,48

For the development of new (Q)SBR models, it is important
to define the domain of applicability (AD) of the models to
prevent potentially unreliable results for query chemicals with
very different chemistry. The AD is a “theoretical region in
chemical space” and depends on the chemicals in the training
set and the descriptors used to model the endpoint.56 In
general, the AD informs about to which chemical structures
the models can be applied.57 Clustering was performed using
the “R” package rtsne to visualise and study the chemical space
defined by the ILs.58 The two-dimensional (2D) t-distributed
stochastic neighbour embedding (t-SNE) methodology was
applied.59 The 600-element continuous-valued fingerprints of
the ILs (section 2.3) were used for clustering.

2.5 Developing an in silico test battery for designing fully
mineralising ILs

The ECHA recommends applying all available independent
and valid models for one endpoint to increase the overall
reliability of the prediction.43 Independent models means that
the models differ in descriptors, structural alerts or training
sets.43 Therefore, an in silico test battery was developed to
structure the application of the newly developed models in the

Table 1 Set-up for the five biodegradability models of ILs. Logistic regression (LR) and ordinary least squares (OLS)

Model 1 IL_FP_cont Model 2 IL_Al_cont Model 3 IL_Al_class
Model 4
ILNI_Al_cont Model 5 ILNI_Al_class

Training set
number of
chemicals

233 Ionic liquids 321 Ionic liquids and non-ionic compounds

Test set number of
chemicals

26 Ionic liquids 36 Ionic liquids and non-ionic compounds

Number of
descriptors/alerts

61 70 29 130 60

Techniques Fingerprints, OLS Alerts, OLS Alerts, LR, Alerts, OLS Alerts, LR,
Prediction outcome Continuous rate in %

of the ThOD
Continuous rate in
% of the ThOD

Classification in
biodegradable or not

Continuous rate in %
of the ThOD

Classification in
biodegradable or not
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design process of mineralising ILs. As outlined in the workflow
for the benign design of newly or redesigned chemicals using
in silico tools in a study by Lorenz et al. an in silico test battery
supports the identification of the most promising molecules
regarding improved environmental biodegradability.30 The
workflow by Lorenz et al. started with a pool of molecules that
were generated by one of the BbD approaches, which are the
targeted or non-targeted de novo and targeted or non-targeted
redesign.30 This pool was the starting point for the develop-
ment of the in silico test battery in this study, which aims to
limit the pool of molecules to the most promising ones regard-
ing environmental biodegradability by combining different
models for this property and guide their application.

3. Results and discussion
3.1 Training and test sets used for modelling

Applying the criteria defined in section 2.2 to the literature
data, 25 studies out of 31 containing OECD 301D data were
appropriate for the dataset. From the literature in total 231
data points were collected for 201 ILs (dataset, Table 2). 7 of 25
studies contained data measured in the in-house OECD 301D
biodegradation experiment at INSC. These 7 studies reported
77 data points for 75 ILs. For set_IL 192 ILs from the literature
were combined with 75 ILs measured in the in-house OECD
301D biodegradation experiment at INSC (Table 2). After
removing the duplicates, set_IL contained 259 ILs that differed
in the organic cation and the side chains attached to it and
were combined with organic or inorganic anions. For set_ILNI
196 ILs from the literature were used after removing the stereo-
isomers from the dataset. These data were combined with 90
ILs, four organic anions combined with an inorganic cation,
79 non-ionic compounds from the INSC in-house OECD 301D
data leading to a total number of 357 compounds (Table 2).

The ILs in set_IL and set_ILNI were the only ones for which
OECD 301D data were available that complied with the criteria
defined for the literature data in section 2.2. Using OECD

301D data ensured the inclusion of many common ILs, like
imidazolium, pyridinium, QACs and cholinium ILs.15 More
than 50% of the compounds in set_IL and set_ILNI were
measured in the same laboratory at the INSC using the same
OECD 301D test protocol and the same inoculum source. Data
from the INSC were used for 139 of 259 ILs in set_IL and for
240 of 357 compounds in set_ILNI. The set_IL and set_ILNI
were randomly divided into a training set of 233 and 321 com-
pounds and a test set with 26 and 36 compounds, respectively.

The number of compounds per compound category and
biodegradability in the train_set_IL and the test_set_IL are
shown in Fig. 1. The prevalent cations in the train_set_IL were
imidazolium (75 ILs), pyridinium (61 ILs), QACs (40 ILs) and
cholinium (43 ILs) (Fig. 1A). Just a few morpholinium (3 ILs),
pyrrolidinium (3 ILs), piperidinium (2 ILs), prolinium (5 ILs)
and phosphonium (1IL) ILs were in train_set_IL (Fig. 1A). Most
of the ILs in the test_set_IL were imidazolium (10 ILs), pyridi-
nium (7 ILs), QACs (3 ILs) and cholinium (4 ILs). Additionally,
one prolinium IL and one phosphonium IL were included in
the test_set_IL (Fig. 1B).

In each category, most of the compounds in train_set_IL
and test_set_IL were not equally distributed over the biodegrad-
ability classes. Just for QACs in the test_set_IL there is an equal
number of compounds per class. Since set_IL was randomly
divided into a training set and a test set, the distribution of ILs
over biodegradability classes and compound category was not
influenced. Without considering the compound category, the
compounds were not equally distributed over the biodegrad-
ability classes as well. In the train_set_IL, 87, 99 and 47 ILs can
be assigned to the biodegradability classes 0–19%, 20–59%
and ≥60%, respectively. In the train_set_IL, the number of bio-
degradable ILs is less than that for non-biodegradable and
slightly biodegradable ILs. In the test_set_IL seven ILs were bio-
degradable by 0–19%, 15 ILs by 20–59% and four ILs by ≥60%
showing a higher number for slightly biodegradable ILs than
for biodegradable and non-biodegradable ILs.

Compared to set_IL, set_ILNI comprised additional com-
pounds to examine the influence of the larger dataset set_ILNI

Table 2 Data used for set_IL and set_ILNI

Dataset set_IL set_ILNI

Literature data ILs (data points) 201 (231) of them
measured at INSC: 75 (77)

192 (222) of them
measured at INSC: 67 (69)

196 (231) of them
measured at INSC: 70 (77)

Anions (data points) 0 0 0
Non-charged compounds
(data points)

0 0 0

INSC in-house
OECD 301D data

ILs (data points) 105 (116) 75 (79) 90 (116)
Anions (data points) 4 (6) 0 4 (6)
Non-charged compounds
(data points)

79 (101) 0 79 (101)

Number after
removing duplicates

ILs 294 259 274
Anions 4 0 4
Non-charged compounds 79 0 79

Total number
of compounds

377 259 357

Characteristics Stereoisomers, ILs,
anions, non-charged
compounds

Stereoisomers, just ILs No stereoisomers, ILs,
anions, non-charged
compounds

Green Chemistry Paper

This journal is © The Royal Society of Chemistry 2024 Green Chem., 2024, 26, 7363–7376 | 7367

Pu
bl

is
he

d 
on

 2
2 

m
ei

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
1/

07
/2

02
5 

1:
09

:1
0.

 
View Article Online

https://doi.org/10.1039/d4gc00889h


on model performance. Therefore, one piperazinium and one
thiazolium IL, as well as four anions (organic anion in combi-
nation with inorganic cation) and 79 non-ionic compounds
that are structurally related to the ILs were used for set_ILNI.
Similar to train_set_IL and test_set_IL most of the ILs belong to
the categories of imidazolium (79 ILs), pyridinium (69 ILs),
QACs (37 ILs) and cholinium ILs (41 ILs) (Fig. 2). Additionally,
the test_set_ILNI contained one prolinium and one thiazolium
IL. The non-ionic compounds were not divided into different
categories to show the ratio between ILs and non-ionic com-
pounds in Fig. 2. Regarding the biodegradability of the com-
pounds in both subsets, in each category, the compounds in
train_set_ILNI and test_set_ILNI were not equally distributed
over the biodegradability classes. Without considering the cat-
egories, the compounds are nearly equally distributed over the
biodegradability classes. In the train_set_ILNI of a total of 321
compounds, 117 compounds were biodegradable by 0–19%,
105 by 20–59% and 99 by ≥60%. In the test_set_ILNI of a total
of 36 compounds 12 compounds were biodegradable by
0–19%, 11 by 20–59% and 13 by ≥60%.

Fig. 1 and 2 show that the number of ILs in the presented
datasets is not equally distributed among the compound cat-
egories. It was shown that more valid biodegradation data
based on OECD 301D is needed for morpholinium, pyrrolidi-
nium, piperidinium, prolinium, phosphonium, piperazinium,

thiazolium, guandinium, DABCO, quinolinium, sulphonium
and triazolium ILs.15

3.2 Biodegradability models for ILs and validation results

The five models were developed with respect to the OECD prin-
ciples for validating (Q)SAR models (Table S8†). The endpoint
was biodegradability according to OECD 301D, and the models
predict a continuous value as the percentage of ThOD (models
IL_FP_cont, IL_Al_cont, ILNI_Al_cont) or a classification in
biodegradable or non-biodegradable ILs (models IL_Al_class,
ILNI_Al_class).

The results of internal and external validation (section 2.4)
are summarised in Table 3. The model IL_AL_class had better
accuracy in the training (98%) and test set (96%) compared to
model ILNI_Al_class (92% in the training set and 81% in the
test set) meaning it classified the ILs more correctly into bio-
degradable and non-biodegradable. Furthermore, the model
IL_AL_class showed better sensitivity and specificity in both
the training set (91% and 100% respectively) and test set (75%
and 100% respectively). Therefore, IL_AL_class also assigned
the ILs more correctly to single classes, biodegradable and
non-biodegradable, than ILNI_Al_class. Both models have in
common that they had a better specificity than sensitivity
meaning they were better in predicting non-biodegradable
compounds correctly. The AUC value of the test set was larger

Fig. 1 Characterisation of the train_set_IL and test_set_IL. Classification of biodegradation data of ILs in (A) the training set and (B) the test set. The
number of compounds for each compound category relates to the different combinations of side chains attached to the cation core structure and
the anions. The biodegradation classification refers to the whole IL including side chains and anions. Imidazolium (Imid), pyridinium (Pyri), quaternary
ammonium compounds (QACs), cholinium (Chol), morpholinium (Morph), pyrrolidinium (Pyrr), piperidinium (Piperi), prolinium (Prol), and phos-
phonium (Phos).
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for the model ILNI_Al_class (0.90) than for the model
IL_AL_class (0.82) (Table 3). In contrast, the AUC in the train-
ing set for IL_AL_class was 0.99 and therefore larger than that
for ILNI_Al_class (AUC of 0.97 in the training set). Since the
AUC is higher than 0.5 the models are able to discriminate
between biodegradable and non-biodegradable ILs.

Of all OLS models, IL_Al_cont had the best goodness-of-fit
(R2 of 0.843 for the training set). The model ILNI_Al_cont had
the worst goodness-of-fit (R2 of 0.788 for the training set) and
the worst predictivity (R2 of 0.620 for the test set) (Table 3).
The model IL_FP_cont showed a R2 of 0.854 for the test set.

Compared to model IL_Al_cont (R2 of 0.687 for the test set)
and ILNI_Al_cont (R2 of 0.620 for the test set) model
IL_FP_cont had therefore the best predictivity of continuous
values for biodegradability. The plots for comparison of the
predicted vs. experimental biodegradation rates for the con-
tinuous regression models are visualised in Fig. S1–S6.† The
validation results for the models ILNI_Al_cont and
ILNI_Al_class were worse than those for the models
IL_Al_class and IL_Al_cont. The results showed that the
train_set_ILNI compared to train_set_IL did not increase the
performance. Overfitting of the models is not very likely. On

Fig. 2 Characterisation of the train_set_ILNI and test_set_ILNI. Classification of biodegradation data of compounds in (A) the training set and (B)
the test set. The number of compounds for each compound category relates to the different combinations of side chains attached to the cation
core structure and the anions. The biodegradation classification refers to the whole IL including side chains and anions. Imidazolium (Imid), pyridi-
nium (Pyri), quaternary ammonium compounds (QACs), cholinium (Chol), morpholinium (Morph), pyrrolidinium (Pyrr), piperidinium (Piperi), proli-
nium (Prol), phosphonium (Phos), piperazinium (Pipera), thiazolium (Thia), and non-ionic (NI).

Table 3 Results for internal and external validation. Area under the curve (AUC), true negative rate (TNR), and true positive rate (TPR)

Model 1
IL_FP_cont

Model 2
IL_Al_cont

Model 3
IL_Al_class

Model 4
ILNI_Al_cont

Model 5
ILNI_Al_class

Internal
validation

Accuracy — — 98% — 92%
TPR — — 91% — 80%
TNR — — 100% — 96%
AUC — — 0.99 — 0.97
R2 0.814 0.843 — 0.788 —

External
validation

Accuracy — — 96% — 81%
TPR — — 75% — 62%
TNR — — 100% — 91%
AUC — — 0.82 — 0.90
R2 0.854 0.687 — 0.620 —
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the one hand, the results indicate that the performance
metrics of the internal and external validation are not very
different. On the other hand, the number of descriptors is
lower than the training data points and was limited to the rele-
vant ones for the biodegradability potential using L1 regularis-
ation/Lasso regression.

In order to compare the performance of the newly devel-
oped models with models for biodegradability from the litera-
ture for charged and non-charged compounds the perform-
ance measures and the training sets have to be considered. To
assess whether a model’s algorithm is better than the other,
the same training and test set and performance measures have
to be used.60 Since the used training sets in this study were
not used in other studies, it is not possible to assess whether
the models from the literature are better or worse performing.
The classification model in the AquaBoxIL showed an accu-
racy, sensitivity and specificity for the test set of 96%, 94% and
100%, respectively.40 R2 was 0.726 for the model for persistent
ILs and 0.881 for the model for readily biodegradable ILs.40

The accuracy, sensitivity, specificity and R2 related to the test
set of the classification model and the two linear regression
models are larger than those of the models presented here in
this study. However, the training set of the model in Barycki
et al.40 contained 52 ILs and is therefore smaller than the
training sets used in this study (233 and 321 ILs). The smaller
the number of ILs, the less skewed the distribution of readily
biodegradable and not readily biodegradable ILs, and the
structural similarity of biodegradable and non-biodegradable
ILs could have positively influenced the performance.61 This
cannot be proven since the experimental biodegradation data
used for AquaBoxIL and information on the structures in the
training and test set were missing.40

The performance of previous models for non-charged com-
pounds was between 69 and 92% for accuracy, sensitivity, and
specificity and between 0.7 and 0.9 for R2.32–35,42,62–64 The per-
formance is similar to the newly developed models
IL_FP_cont, IL_Al_class and ILNI_Al_class in this study.
However, Table 3 shows that models IL_Al_cont and
ILNI_Al_cont are not in the range of 0.7–0.9 for R2 of models
described in the literature. Nevertheless, the combination of
fragment-based descriptors with OLS and LR for model build-
ing resulted in adequate models for predicting the biodegrad-
ability of ILs. To improve the models’ performance, an
increase of the size of the datasets while covering a wider
variety of structural classes might be considered.

3.3 Clustering of the training sets

Fig. 1A and 2A provide first insights into the AD since they
show which cations were included in the training sets. The
models can only be applied to ILs incorporating these cations.
However, for every new query IL a check is needed whether it
falls within the AD or not since the side chains attached to the
cation and the anion have an influence on this, too. Examples
for anions, cations and side chains attached to the cation are
visualised for train_set_IL in Fig. 3 and for train_set_ILNI in
Fig. 4. The tSNE coordinates are available in Tables S9 and

S10† for every compound. In the t-SNE plots in Fig. 3 and 4
compounds with different structural fragments are located
away from each other, while similar compounds are located
close to each other. The 600-element continuous-valued finger-
prints were able to separate the compounds regarding their
structural fragments and their biodegradability as clusters of
the same colour show (Fig. 3 and 4). Imidazolium, pyridinium
ILs, and QACs are mainly non-biodegradable as can been seen
from the structural fragments shown for each cluster. Most of
the biodegradable ILs belong to the group of cholinium ILs.
Some α-amino acids, which are just available in train_set_ILNI
and highlighted as non-ionic compounds in Fig. 4B, are bio-
degradable as well.

ILs were not available for every combination of cations,
anions and side chains. Predictions for ILs that are structurally
not related to the training set compounds would be based on
extrapolations and could be possibly unreliable.37 Therefore,
the model’s performance (Table 3) is only provided within the
AD.

Most of the ILs available in the training sets are imidazo-
lium, pyridinium, QACs and cholinium ILs. Only a few mor-
pholinium, pyrrolidinium, piperidinium, prolinium, phos-
phonium, piperazinium and thiazolium ILs were included.
Therefore, the AD is broader for imidazolium, pyridinium,
QACs and cholinium ILs than for the under-represented ILs.
The models cannot predict the biodegradability of ILs that are
not represented in the training sets and therefore not structu-
rally related to the training set compounds, e.g. DABCO, guan-
dinium, quinolinium, sulphonium and triazolium, and of mix-
tures of ILs. Therefore, there is a need for more experimental
data based on OECD 301D for morpholinium, pyrrolidinium,
piperidinium, prolinium, phosphonium, piperazinium, thiazo-
lium, guandinium, DABCO, quinolinium, sulphonium and
triazolium ILs to enlarge the AD.

The ADs of the models for biodegradability prediction in
the AquaBoxIL were visualised in a William’s and Insubria
plot.40 Both plots identify response outliers and chemicals that
are outside the AD due to their structure. The plots differ in
their applicability. The William’s plot can be used for chemi-
cals for which experimental data are available, while the
Insubria plot is used for chemicals without experimental
data.48,65 However, it was not mentioned, which structural fea-
tures the training and test set contained. Therefore, it is not
possible to compare the AD of AquaBoxIL and the models pre-
sented in this study.

3.4 Application of models for designing environmentally
mineralising ILs

The five models were developed to support the design of bio-
degradable ILs. Since they differ in the training set or descrip-
tors or structural alerts, they can be considered as indepen-
dent from each other. Therefore, according to ECHA43 all five
models should be applied to increase the reliability of the
overall biodegradability assessment of ILs. Hence, this section
explores how these models could be applied in an in silico test
battery (Fig. 5) that is part of the workflow for the benign
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design of chemicals presented in Lorenz et al.30 The test
battery starts with a pool of ILs either in the de novo or rede-
sign of chemicals (Fig. 5). Just statistical QSBR models are
included since these are the only ones available for ILs and the
endpoint ready biodegradability according to OECD 301D.

The advantage of biodegradability alerts was demonstrated
in the rational redesign of atenolol and metoprolol.26,27

Accordingly, Fig. 5 proposes to apply IL_Al_class and
ILNI_Al_class at first to gain insights from two independent
models and two different sets of alerts (one for each model).
The models facilitate to separate the pool of new or redesigned
ILs into biodegradable and non-biodegradable ILs (Fig. 5). The
model ILNI_Al_class performs not as well as IL_Al_class, but
contains more alerts compared to IL_Al_class (60 compared to
29). Therefore, ILNI_Al_class helps to understand why some
ILs are biodegradable and others are not. In this step three
different outcomes are possible: 1. all ILs in the pool of newly
developed or redesigned ILs are biodegradable, 2. some are
biodegradable and some are not, and 3. no IL is
biodegradable.

However, after the classification, a continuous bio-
degradation rate is needed to decide which IL in the class of

biodegradable ILs (outcomes 1 and 2) or non-biodegradable
ILs (outcome 3) is the best candidate to change structural frag-
ments and to design a biodegradable IL. The approach of first
using a classification model and then a model predicting a
continuous value was demonstrated to be useful for prioritis-
ing chemicals in chemical safety assessment regarding their
carcinogenicity.66 Therefore, this study suggests the combi-
nation of a classification and a continuous biodegradation rate
in Fig. 5 to support the prioritisation. In this respect, both
models IL_Al_cont and ILNI_Al_cont are suitable since they
generate a continuous biodegradation rate and their perform-
ance is adequate (Table 3). If in outcomes 1 and 2 the pre-
dicted biodegradation rate is ≤60% structural adjustments are
needed and the workflow would start from the beginning with
the pool of molecules. The models’ alerts and the identified
SBRs in Amsel et al. could support to identify which structural
changes are needed.16 In particular, the 130 alerts in model
ILNI_Al_cont, the model with the most alerts, give insights
into SBRs and could help to design a fully mineralising IL.

The model IL_FP_cont should be applied to confirm the
predictions of IL_Al_cont and ILNI_Al_cont since it generates
continuous rates with the best performance in the test set

Fig. 3 Structural fragments of compounds in train_set_IL and t-SNE plot highlighted for the biodegradability. Phenylalanine (Phe) and tyrosine
(Tyr).
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Fig. 4 Structural fragments for the ILs, anions and non-ionic compounds in train_set_ILNI for each cluster in the t-SNE plot, which is highlighted
for (A) biodegradability and (B) non-ionic and ionic compounds. Alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cholinium (Chol),
citrulline (Cit), cysteine (Cys), 1,4-diazabicyclo[2.2.2]octanium (DABCO), glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), hydroxy-
proline (Hyp), imidazolium (Imid), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), morpholinium (Morph), phenylalanine (Phe), piperazi-
nium (Pipera), piperidinium (Piperi), proline (Pro), pyridinium (Pyri), quaternary ammonium compounds (QACs), serine (Ser), threonine (Thr), tyrosine
(Tyr), and valine (Val).
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compared to IL_Al_cont and ILNI_Al_cont (Table 3). If all
three models indicate that the IL is biodegradable by ≥60%,
its ready biodegradability should be tested in a laboratory
experiment (Fig. 5). The pass level for ready biodegradability
in OECD 301D is ≥60% removal of ThOD within 10 days start-
ing from a degradation level of 10%.23 If the three models do
not agree with their outcome, a consensus approach or an
expert review as proposed by the workflow for the benign
design of chemicals in Lorenz et al. might be helpful to
increase the confidence of the assessment and reduce uncer-
tainties.30 If the outcome indicates that the IL is not bio-
degradable, structural changes can be made to possibly
increase the biodegradability. The redesigned IL would be
included in the pool of molecules and its biodegradability be
predicted. If the consensus approach or expert review confirms
a biodegradation rate of ≥60%, the IL should be tested in the
laboratory for ready biodegradability. A mineralising IL was
designed if it is readily biodegradable in experimental testing.
Non-biodegradable ILs that differ in structural fragments with
training set ILs might be tested in the laboratory as well. The
new data of biodegradable and non-biodegradable ILs could

be included in the training sets and possibly improve the
models’ performance.

3.5 Evaluation of the developed models for biodegradability
of ILs

Since around 80% of the wastewater is not treated worldwide,
ILs can be introduced into the environment via wastewater or
leakages.67 The endpoint ready biodegradability according to
OECD 301D was chosen since it is the most stringent method of
the OECD 301 series and many of the common ILs were tested
according to this test method.15 Therefore, this study developed
models for the endpoint ready biodegradability according to
OECD 301D of ILs using literature data and INSC in-house
OECD 301D data addressing this topic for the first time.

Both datasets, set_IL and set_ILNI are unique since more
than 50% of the compounds were measured in the same lab-
oratory at the INSC using the same OECD 301D test protocol,
validation criteria and similar inoculum leading to increased
data quality compared to the literature data for which different
inoculum sources, concentrations and microorganism diversi-
ties were used and not all validation criteria were reported.

Fig. 5 Possible applications of models in an in silico test battery for designing fully mineralising ILs.
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For every individual model, the training set defined the AD
as it determined the representative fragment descriptors and
the alerts (section 3.3). The models might not cover important
SBRs that are relevant for biodegradability predictions of a
query compound. Hence, the models are not able to make
reliable predictions for a query IL that differs in too many frag-
ments from training set compounds.37,68 Therefore, just
within the model’s AD reliable predictions can be made
according to the model’s performance, and extrapolations in
predictions are avoided.

As the validation results showed, the QSBR models success-
fully predicted the biodegradability of common ILs, like imida-
zolium, pyridinium, QACs and cholinium ILs (section 3.2).
The models can be applied in a test battery to design environ-
mentally readily mineralising ILs. Uncertainties regarding the
biodegradability of a newly designed IL are addressed after the
in silico design process by testing the biodegradability in the
laboratory. Hence, QSBR models are versatile tools for plan-
ning of experiments and selecting the most promising
candidates.

4. Conclusion

Previous biodegradation models for ILs focused on modelling
the environmental distribution of ILs between water, sediment
and organic matter. These models used OECD 310 (CO2 head-
space test) literature data of 77 ILs. In our study, we used 294
ILs’ biodegradability data (OECD 301D, ready biodegradability)
for five fragment-based QSBR models using the MultiCASE’s
FlexFilters platform. Well-known and easily interpretable mod-
elling approaches were applied, OLS and LR, to build models
with two different outcomes, a continuous biodegradation rate
and a classification model, respectively. The models success-
fully predicted the biodegradability of common ILs, like imida-
zolium, pyridinium, QACs and cholinium ILs. Additionally, the
models were developed in agreement with the OECD prin-
ciples for the validation to increase their reliability and their
acceptance for regulatory purposes. Thus, this application
showed that OECD principles can be implemented in bio-
degradation prediction models of ILs, even for the most strin-
gent method of the OECD 301 series, OECD 301D. The internal
and external validation results were adequate to predict the
biodegradability of ILs. The train_set_ILNI did not increase the
model’s performance compared to train_set_IL even though it
contained more ILs. Furthermore, the reasonably good predic-
tion performance suggests an application of the models in a
test battery for the design of environmentally mineralising ILs
to increase the overall reliability of the assessment of newly
developed or redesigned ILs. The test battery supports the can-
didate selection for synthesis and testing while saving time. In
the test battery different models for environmental biodegrad-
ability according to OECD 301D were applied. The in silico test
battery as part of the workflow for the benign design of newly
developed or redesigned chemicals using in silico tools was
successfully demonstrated. The test battery will help prac-

titioners to understand when which model could be applied in
the assessment of biodegradability to limit the pool of newly
developed or redesigned ILs to the mineralising ones.
However, best practice examples are needed to demonstrate
the applicability of the models and the test battery and the
ease of interpretation of the alerts. Better performance could
be possibly achieved by increasing the size of the datasets
while covering a wider variety of structural classes.
Biodegradability is a central endpoint for a benign IL regard-
ing its end-of-life. Bioaccumulation and (eco)toxicity have to
be examined as well for which (Q)SAR models should be devel-
oped if not yet available to support the design of benign ILs.
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