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As cardiovascular disease stands as a global primary cause of mortality, there has been an urgent need for
continuous and real-time heart monitoring to effectively identify irregular heart rhythms and to offer timely
patient alerts. However, conventional cardiac monitoring systems encounter challenges due to inflexible
interfaces and discomfort during prolonged monitoring. In this review article, we address these issues by
emphasizing the recent development of the flexible, wearable, and comfortable piezoelectric passive
sensor assisted by machine learning technology for diagnosis. This innovative device not only
harmonizes with the dynamic mechanical properties of human skin but also facilitates continuous and
real-time collection of physiological signals. Addressing identified challenges and constraints, this review
provides insights into recent advances in piezoelectric cardiac sensors, from devices to circuit systems.

Furthermore, this review delves into the integration of machine learning technologies, showcasing their
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Aizggtid 21Sst SL;%ltJesmber 2023 pivotal role in facilitating continuous and real-time assessment of cardiac status. The synergistic
combination of flexible piezoelectric sensor design and machine learning holds substantial potential in

DOI: 10.1039/d3ra05932d automating the detection of cardiac irregularities with minimal human intervention. This transformative
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1. Introduction

Population ageing and consequent demographic change have
brought significant challenges to the balance between
economic growth and social care in virtually every country in the
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approach has the power to revolutionize patient care paradigms.

world. In particular, the pace of ageing in the Asia-Pacific region
is unprecedented, with the rate of 14% in 2022 predicted to be
26% by 2050 of the older persons defined as those aged 60 years
or over.' The elderly populations are particularly susceptible to
cardiovascular diseases (CVDs) which are the leading cause of
death in the world due to impaired quality of life, disability, and
dependency.>® By 2030, it is expected that the mortality rates
due to CVDs will rise steadily from the current 17.9 million to
23.6 million people, posing serious challenges to public health.*
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As a large number of cardiovascular-associated mortalities
can be prevented with early diagnosis and timely medical
interventions, there has been a high demand for a real-time and
long-term detection technology. However, current real-time
monitoring devices such as Holter monitors with hard-wired
and rigid interfaces are not suitable for the long-term detec-
tion because they are not light, compact, and comfortable to
wear. Furthermore, the accuracy of measured data using the
current monitoring devices is largely affected by daily body
movement, and therefore it can be implemented only in a static
state, limiting their practical applications. To solve the above
issues, development of flexible/wearable and sensitive body
pulse sensors converting physiological signals into electrical
ones is of critical importance to perform real-time and contin-
uous health monitoring to obtain long-term and accurate pulse
waveforms. The most commonly and widely applied technique
by now in the intensive care is the invasive arterial catheter,
which can provide precise continuous body pulse and blood
pressure monitoring. However, discomfort and potential risk of
infection increase along with its accuracy of data during
monitoring.

In this regard, non-invasive flexible/wearable health moni-
toring methods have received a great attention in recent
decades.* ™ As the non-invasive ones only contact human skin,
the infection rate is greatly lowered, thus making them safe and
widely applicable devices for daily base uses. A few types of
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flexible non-invasive biosensors have been developed and are
categorized into an active and passive sensor. The active sensor
needs an external power source to operate, and examples are
photoplethysmography (PPG), capacitive, ionic liquid, and pie-
zoresistive sensors.”*™” In comparison, the passive sensor does
not require an external power supply, meaning that they are
self-powered, and the triboelectric and piezoelectric sensors are
the typical examples of the passive sensor.'®" By eliminating
the need for the external supply of power to operate the sensor,
the passive sensor offers a great advantage over its counterpart
active sensor for portable and wearable applications as they
provide longer operation time.'*** Among the various passive
sensors, the piezoelectric sensor has received significant
attentions attributed to its higher response to strain than that of
the triboelectric passive sensor, resulting from higher piezo-
electric charge density than the triboelectric charge density at
the same strain level. In addition, the piezoelectric sensor
provides higher durability than that of triboelectric sensor. This
is due to the existence of the air gap to be maintained in the
triboelectric sensor, which increases the effective area affected
by O, and H,0 molecules in the device.'***

Along with the development of physiological signal sensing
devices, recent advances in machine learning (ML) technology
have significantly contributed to realization of CVD diagnosis.
Various ML algorithms have been demonstrated to be effective
to process body pulse data acquired from the cardiac sensors
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and provide early warnings to patients. In addition, accuracy of
CVD diagnosis has been improved through the implementation
of real-time ML processing technique, leading to the innovation
of the current medical practices in the future.?® Flexible/
wearable physiological sensors integrated with ML technology
effectively process continuous and real-time data acquired and
detect cardiac anomaly of body pulses, sending out alerts to
healthcare professionals to provide prompt medical treatment.
Not only for data processing, but ML technology also can be
utilized to design and optimize flexible/wearable physiological
sensors iteratively with respect to the desired medical cases to
be treated, envisioning utilization of ML technology in
advancing materials as well as device architecture levels in the
future.”

Here, we present the recent progress in (1) flexible/wearable
physiological sensors particularly based on the piezoelectric
effect enabling self-powering of the sensors, (2) the manage-
ment circuits for effective signal detection and processing, and
(3) various ML algorithms to analyze data acquired by the
sensors and ultimately diagnose CVDs for practical clinical
validations. Since various reviews on flexible/wearable biosen-
sors using mechanoelectric methods covering material and
device engineering have been introduced previously,>*>*
particularly direct our focus to the development of the whole
medical system including sensors, circuits, and ML techniques.
To start with, we introduce fundamentals of piezoelectricity
including theories, mechanisms, and organic and inorganic
materials. Then we turn our focus to the detection mechanism
of health monitoring and the application of piezoelectric
sensors to heart rate and blood pressure monitoring. Along with
devices and circuits, we introduce various ML algorithms and
their technologies for effective data processing and diagnosis of
CVDs. Finally, an overview of current challenges to be addressed
in both devices and ML technologies are discussed in
prospective.

we

2. Piezoelectricity

2.1. Theory of piezoelectric effect

Among 32 crystalline classes in 230 space groups, 21 classes are
categorized as non-centrosymmetric and 11 as centrosym-
metric. Piezoelectricity is observed in 20 classes out of the 21
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non-centrosymmetric  classes.”” Due to the non-
centrosymmetric character, an electric dipole moment is
created when a piezoelectric material is under external stimuli.
The conversion of the mechanical input into the electrical
output, or piezoelectricity, can be reversed, meaning that an
electrical input will generate an internal mechanical strain,
called the reverse (converse) piezoelectricity (Fig. 1a).

The piezoelectric and converse piezoelectric effects can be
analyzed by the following eqn (1).>®
sEod
d &7
In the eqn (1), 6 and o are strain and stress elements respec-
tively; D and E are electric displacement and electric field
components; s is the elastic compliance; ¢ is dielectric constant;
and d is the piezoelectric coefficient. Superscript £ and 7 mean
that s and ¢ are measured under the constant electric field and
constant stress, and ¢ indicates transpose.

Piezoelectric materials show anisotropy in the piezoelectric
coefficients. What affects this coefficient is the relative orien-
tation between force and polarization direction. Therefore, the
largest piezoelectric coefficients are obtained in ferroelectric
materials through reorientation of electric dipoles.* The re-
orientation of electric dipoles can be achieved by applying an
external electric field to the ferroelectric material, known as
a poling process. Due to the poling, a net polarization is created
by aligned electric dipoles, and the capacity to redirect the
dipoles is required to create a net piezoelectric effect. In this
regard, polycrystalline materials have advantages in generating
the piezoelectric effect since the polycrystalline ferroelectric can
have various orientations for the polarization vector. Thus, the
possibility of one vector being aligned with the poling direction
is greatly increased.”

The polar axis for a ferroelectric material is dependent on the
poling direction, while for a non-ferroelectric one, the polar axis
is defined by the crystal orientation.*® The axis of a material is
denoted as an axis 3 in Fig. 1b. Mechanical forces can be applied
in two ways: (i) in parallel to the polar axis as the 3-direction or
(i) vertical to it, which is in the 1-direction in the figure. In the
first case, the resulting configuration is named as 33-mode.
Fig. 1b reveals that when the external stress or strain is applied
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Fig.1 Schematic illustration of (a) electromechanical conversion process by the piezoelectric effect (reproduced with permission from ref. 31
Copyright 2021 Elsevier), and (b) operation modes of the piezoelectric effect (reproduced with permission from ref. 30 Copyright 2018 AIP

Publishing).
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along the 3-direction, the voltage will be generated in the 3-
direction as well. In the other case, the configuration is called
31-mode, whose working theory is illustrated in Fig. 1b. When
the force is applied in the 1-direction, the resulting voltage will
be created perpendicularly to the force, which is in the 3-
direction. The piezoelectric coefficient (d3,) in the unit of C/N is
used to quantify the piezoelectric performances of the mate-
rials, which is the ratio of the open circuit charge density to the
applied stress.

In addition to the piezoelectric coefficient d, the electrome-
chanical coupling factor k represents the ability of the material
to do work via piezoelectricity as shown in eqn (2) where ¢ is the
dielectric permittivity and s is the elastic compliance.”*"**

- /en.ergy converted7 or K2 — d_2 @)
nput energy £s

A prominent positive correlation between k and d can be
observed for multiple materials. However, in contrast to the
simple inference of eqn (2), the correlations between k and ¢ and
s are also positive. This relevance can be illustrated when taking
the form of d, ¢ and s with respect to crystal chemistry
parameters into consideration. This counterintuitive phenom-
enon can be explained by the relaxor-PbTiO;-based single
crystals which show the largest coupling factor ¥ among all
materials as well as extraordinarily large permittivity ¢ and
compliance s.>°7*

2.2. Piezoelectric response

It has been reported that there are two different mechanisms of
the piezoelectric response: Intrinsic piezoelectric response; and
extrinsic piezoelectric response. These two piezoelectric
responses are attributed to polarization extension, polarization
rotation, and motion of domain walls or phase boundaries.

First, the intrinsic piezoelectric response is induced by the
polarization extension and polarization rotation. The polariza-
tion extension describes the change in the shape of a unit cell of
the piezoelectric material when an electric field is applied
parallel to spontaneous polarization (Ps), which is oriented
along the positive c-axis. This electric field amplifies the
magnitude of the polarization from its spontaneous value, and
the interaction between strain and electric fields extends the
unit cell as a result. Additionally, polarization extension
contributes to the piezoelectric effects at the phase boundary
between polar and nonpolar phases.’***

On the other hand, the polarization rotation entails the re-
orientation of Ps from its remnant polarization, i.e. zero-field
alignment, upon the application of the electric field. The
ability to reorient Pg affects the property of piezoelectric mate-
rials. Specifically, the piezoelectric materials prone to the
polarization rotation exhibit high permittivity perpendicular to
Ps. In certain instances, the polarization direction may not be
uniform within a specific domain.*>*° This facilitates significant
improvements in the piezoelectric response due to the electric
field-induced polarization, even within what appears to be
a single domain. The polarization extension and polarization

© 2023 The Author(s). Published by the Royal Society of Chemistry
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rotation collectively define the observed piezoelectric response
in a collection of appropriately oriented single-domain single
crystals.

Second, the extrinsic response arises from the movement of
mobile interfaces, such as domain walls or phase boundaries in
response to the electric field applied.*” When non-180° domain
walls and phase boundaries traverse the material, they intro-
duce alterations in the ferroelastic distortion. This results in
changes in strain within the material.*® Additionally, there can
be smaller contribution, originating from the motion of 180°
domain walls.**** The extent of these extrinsic contributions to
the overall piezoelectric response hinges on several factors,
including the number of domain states dictated by the crystal
structure, the Curie temperature (7c), the microstructure of the
sample, the domain arrangement, the chemistry of defects, and
proximity to a morphotropic phase boundary.*>** Although the
motion of domain walls can significantly augment the piezo-
electric response, it is accompanied by hysteresis and the
dissipation of energy within the piezoelectric material, resulting
in degraded piezoelectric transduction efficiency.

2.3. Piezoelectric materials

Piezoelectric materials belong to a category of solid materials
that are able to store electrical charges under mechanical
pressure, making it possible to convert mechanical energy into
electrical one and vice versa. In both inorganic and organic
materials, the property of piezoelectricity has been discovered,
and the characteristics of piezoelectricity differ with respect to
the classification of the material.

2.3.1. Inorganic piezoelectric materials. The history of
piezoelectricity in inorganic materials dates back to 1880 when
Curie brothers found the piezoelectricity in quartz.** Several
decades later in 1922, Rochelle salt (potassium sodium tartrate
tetrahydrate) was found to be piezoelectricity as well, and
various inorganic piezoelectric materials were discovered in
subsequent years, such as barium titanium oxide (BaTiO; or
BTO), aluminum nitride (AIN), zinc oxide (ZnO), and lead zirc-
onate titanate (PZT). The mechanisms of inorganic piezoelec-
tricity are illustrated in Fig. 2 by using examples of two typical
materials, AIN and PZT. For these materials with an absence of
symmetry in the crystal structure, the atomic structure of crystal
changes under stress, leading to the creation of a non-zero
crystal dipole moment. This non-zero dipole moment contrib-
utes to the permanent polarization of the piezoelectric mate-
rials even after the removal of an external electric field. The
internal polarization has a linear relationship with the applied
stress.

AIN is a tetrahedrally bonded semiconductor where the N
atom is surrounded by four Al atoms in a tetrahedral interstice
(Fig. 2a). The piezoelectric behavior in AIN arises from the
spontaneous polarization along the c-axis. However, there exist
two distinct dielectric domains in AIN, characterized by Al-
polarity and N-polarity. In order to minimize the negative
effect, Terai et al. proposed the pressure gradient sputtering
(PGS) in fabrication of AIN films with high c-axis orientation and
a single domain to improve the piezoelectric response,

RSC Adv, 2023, 13, 29174-29194 | 29177
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Mechanisms of Piezoelectricity
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Fig.2 Representative piezoelectric materials and their mechanisms: (a) AIN; (b) PZT; (c) PVDF; and (d) PLLA. Reproduced with permission from

ref. 32 Copyright 2019 John Wiley and Sons.

contributing to a more precise measurement in biomedical
signals detection.** AIN films have several advantages compared
to other piezoelectric materials, such as better compatibility
with standard CMOS processes, low-toxicity due to its lead-free
nature, and high thermal stability. However, AIN has low
piezoelectric coefficient ds;; of 3-6 pC/N and dj3; of —2 pC/N

29178 | RSC Adv, 2023, 13, 29174-29194

compared to its inorganic counterparts such as PZT.** For
a crystalline AIN film, the crystal orientation of the film deter-
mines the piezoelectric coefficient and thus the coefficient
cannot be changed after the formation of the film.

A perovskite BTO with the structure of ABO; was the first
piezoelectric ceramic discovered in 1947 and has been widely

© 2023 The Author(s). Published by the Royal Society of Chemistry
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used for various ferroelectric and piezoelectric applications due
to its high dielectric constant of 1500 - 6000, piezoelectric
coefficient (d3; = 460 pC/N and d3; = 185 pC/N), and non-toxic
character.*®*” PZT is another example of the perovskite structure
ferroelectric material and has a non-centrosymmetric crystal
structure (Fig. 2b) with a non-zero net charge in its unit cell in
an absence of external stimuli. As a ferroelectric material, in
addition to its piezoelectric character, electric dipoles of PZT
can be reoriented by an external electric field applied, resulting
in a remnant polarization at zero bias condition.*®* PZT can be
tailored to achieve soft (PZT-5H), semihard (PZT-4), and hard
(PZT-8) PZT through various methods such as changing ratio of
zirconia (Zr) content, doping acceptor (Mn) and donor (Nb) ions
materials.**** PZT, compared to its inorganic as well as organic
counterparts, has a high piezoelectric coefficient of d;; = 300-
700 pC/N. In spite of its high piezoelectric coefficient, inclusion
of toxic substance Pb limits potential applications of PZT for
biosensors. As an alternative to the PZT, a lead-free non-toxic
Na,K; ,NbO; (NKN) piezoelectric ceramic was introduced.
NKN has a favorable piezoelectric coefficient of d;; = 100-400
pC/N which can be further enhanced by doping the NKN
ceramics.*>*

ZnO is an inorganic piezoelectric material with the wurtzite
crystal structure where Zn>* and O°~ are arranged in a tetrahe-
dral shape and placed layer by layer along the c-axis.***” The
charge centers of cations and anions are aligned and that
creates a coinciding effect. From the data of current researches,
the piezoelectric effect for ZnO is relatively weak, compared to
its inorganic counterparts, with the value of 6-13 pC/N for ds;
and —5 pC/N for d3;.*® Typical methods to improve the piezo-
electric output behaviors include connecting several units in
parallel or in series where the former one improves the output
current while the latter one improves the output voltage. ZnO
has a unique set of properties including excellent transparency,
high electron mobility, and biocompatibility. However, high
processing temperature of over 400 °C is required to fabricate
ZnO-based devices which limits its application to some specific
areas.*

2.3.2. Organic/polymer piezoelectric materials. Compared
to inorganic piezoelectric materials, organic/polymer piezo-
electric materials exhibit advantages in flexibility, biocompati-
bility, and environmental friendliness while they show low
piezoelectric response.®”® For organic/polymer piezoelectric
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materials, the realignment of the molecular structure is
a primary mechanism of the polarization under mechanical
pressure.

Ferroelectricity and thus piezoelectricity in poly(vinylidene
fluoride) (PVDF) was first reported in 1969 after the discovery of
ferroelectric phenomenon.®® PVDF has been widely used for
a number of applications which require piezoelectric behaviors,
such as energy harvesting, sensors, robotics, etc. due to its
notable piezoelectric, ferroelectric, and pyroelectric properties
together with its extraordinary biocompatibility and chemical
resistance.®””* PVDF can be crystallized in four different phases,
namely a-, -, v-, and 3-phase where only the B-phase with all-
trans conformation shows ferroelectricity, and consequently
pyroelectricity and piezoelectricity. Achieving a high concen-
tration of the B-phase is desired to obtain PVDF with high
responsivity to the applied stress/strain. The B-phase polymeric
structure of PVDF is illustrated in Fig. 2. Piezoelectric coefficient
of PVDF is reported to be in the range of d;; = 13-28 pC/N.”

By introducing molecular defects to PVDF monomer, inter-
molecular interactions can be altered and this modulates the
physical properties of the PVDF polymer.” To date, defect
modification has been widely implemented to produce various
types of ferroelectric PVDF-based polymers, namely, copolymers
and terpolymers with distinct behaviors in response to an
applied electric potential. A typical example of a PVDF-based
copolymer is P(VDF-TrFE), which can be synthesized through
free radical polymerization of the two monomers, where TrFE is
trifluoroethylene (TrFE) molecule.”*”® Among PVDF-based
polymers, P(VDF-TTFE) is the most widely used ferroelectric
and piezoelectric polymer attributed to its enhanced piezo-
electric coefficient dz; of 38 pC/N with 30 mol% of TrFE.””

Poly(r-lactic acid) (PLLA) polymer is a biodegradable polymer
derived from plants, and it is often used in bioengineering.
PLLA is a transparent and very flexible polymeric material, and
thus is used for applications in mobile devices as an environ-
mentally friendly, flexible, transparent, piezoelectric thin
film.”®”® Fig. 2 presents PLLA in the a-crystalline form which is
thermodynamically stable conformation. In order to induce
piezoelectricity, the chains must be thermally stretched to
transform the a-crystalline form into the B-crystalline form,
which represents a change from randomly oriented molecular
chains to molecular chains being aligned along the stretched
direction.”®” It is noted that elongated PLLA films have no

Table 1 Comparison of piezoelectric constants for various organic piezoelectric biomaterials®¢-2°

Electromechanical Dielectric
Materials Type coupling factor k constant Piezoelectric coefficient [pC/N]
AIN Ceramic 0.06 ~8.63 ds3 = 3-6; d3; = —2 (ref. 45)
BTO Ceramic 0.34 ~7000 ds3 = 460; d3; = 185 (ref. 47 and 58)
PZT Ceramic 0.1-0.95 ~3000 ds3 = 300-700 (ref. 50-52)
NKN Ceramic 0.37 60-120 ds3 = 100-400 (ref. 53-55)
ZnO Crystal — ~10.4 ds3 = 6-13; d3; = —5 (ref. 58)
PVDF Polymer 14 ~10 dz3 = —13-28; d3; = 23 (ref. 72)
P(VDF-TIFE) Polymer 0.25 ~60 ds; = —38 (ref. 77)
Silk Semi-crystalline — ~2.65 dy4 = —1.5 (shear)®>®?
Graphene Single-layer — ~9.3 d3; = 1.4 [nm N~ ']¥

© 2023 The Author(s). Published by the Royal Society of Chemistry
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spontaneous polarization, unlike electrically poled PVDF as an
example, but still have a large shear piezoelectric coefficient.*
Although it has a complex higher ordered structure with inter-
mingled crystalline and amorphous regions, it is possible to
control the degree of crystallinity of PLLA through a thermal
annealing process. Therefore, the piezoelectric constant of
a PLLA film can be engineered and improved by increasing
crystallinity and molecular orientation. This biodegradable and
biocompatible film has many promising applications in the
future of biosensors/actuators.

Silk has also shown the piezoelectricity, providing a great
potential for wearable and bio applications. The origin of
piezoelectricity in Silk is from the high degree of silk II, B-sheet
crystallinity, and crystalline orientation. The shear piezoelectric
coefficient of the silk film is reported to be d;, = —1.5 pC/N.?"#

Emerging 2D nanomaterials are another group of materials
that are rapidly growing for biomedical applications.**** Gra-
phene has been found to have a piezoelectric effect recently and
opened a great promise for piezoelectric biosensors due to the
unique properties of the 2D nanomaterials such as high flexi-
bility and stretchability.®® Table 1 shows the summary of
piezoelectric constant of inorganic and organic materials.

3. Piezoelectric sensor for health
monitoring

3.1. Types of mechanoelectric sensor for health monitoring

The use of non-invasive devices for therapeutic monitoring of
cardiovascular parameters not only enables the early diagnosis
of CVD but also helps to improve the quality of life of patients.
Non-invasive cardiovascular parameters are mainly measured
by detecting pulse wave, electrocardiography (ECG), photo-
plethysmography (PPG), seismocardiography (SCG), ballisto-
cardiography (BCG), etc. Among various sensors for health
monitoring, mechanoelectric sensors have received great
attention for detecting and measuring arterial pulse waves. The
mechanoelectric sensors include resistive, capacitive, piezo-
electric, and triboelectric sensors. Though different in mecha-
nisms, the device configuration of the four sensors is generally
in the similar structure composed of an active sensing compo-
nent sandwiched between two electrodes (Fig. 3a-d).”***
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The principle of piezoresistive sensors is based on trans-
ducing the resistance change of a device into an electrical signal
(Fig. 3a).”” These sensors have undergone extensive research
attention due to their simple device structures, convenient read-
out mechanisms, and the potential for achieving high energy
density.” In addition, their adaptability to measure large strains
over a wide range of pressures makes them reliable in various
sensor applications. When external force (F) is applied to the
sensors, contact resistance (R¢) is modulated with the rela-
tionship of Rc ~ F~ /2, resulting in the changes in electrical
signals. The piezoresistive sensors exhibit high sensitivity at low
pressures, fast response speed, and large operating ranges.®

For capacitive sensors, the capacitance change is caused by
the external stimuli (Fig. 3b) where the capacitance C = e.eA/
d with ¢, and ¢, as constants standing for the relative permit-
tivity of the material and vacuum permittivity, respectively. The
capacitance change induced by the applied pressure is often
used to control the frequency of an oscillator or vary the
coupling of an alternating-current (AC) signal through
a network. However, due to the relatively small change in the
capacitance of parallel plates, the capacitive sensors typically
exhibit low sensitivity.

Piezoelectricity, which arises from the presence of electric
dipole moments in solids (Fig. 3c), is another commonly used
transduction method for pressure sensors. Piezoelectric sensors
are highly sensitive and exhibit rapid response times, making
them valuable in detecting dynamic pressures such as
mechanical vibrations. Attributed to its excellent mechano-
electric properties, the piezoelectric pressure sensors have
attracted tremendous attention for various self-powered sensor
applications.®”®

As for the triboelectric sensors (Fig. 3d), triboelectric charges
are induced at the surface by the contact electrification and
electrostatic induction when two different materials contact
each other.”>'* Using this effect, triboelectric sensors have been
devised and widely utilized to achieve self-powered mechanical
sensors in flexible/wearable forms. The triboelectric sensors
generally show higher power output compared to other types of
pressure sensors. However, unlike the piezoelectric effect, the
triboelectric sensors require a constant change in forces,
meaning that the sensors are suitable for dynamic force sensing
but not static force detection. This is because the charges can
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Fig. 3 Various mechanoelectric methods to detect body pulses: (a) piezoresistivity, (b) capacitance, (c) piezoelectricity, and (d) triboelectricity.
Reproduced with permission from ref. 4 Copyright 2021 John Wiley and Sons.
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only be transferred during the cycling of the contact and release
of two materials with the opposite charges.

Among various mechanoelectric sensors, we particularly
focus on the piezoelectric biosensors in this review as they offer
several advantages over triboelectric, capacitive, and piezor-
esistive sensors when it comes to body pulse detection: (1)
piezoelectric sensors are known for their high sensitivity,
making them capable of detecting subtle changes in pressure or
mechanical stimuli. This sensitivity is crucial for accurately
capturing the dynamic nature of body pulses; (2) piezoelectric
sensors exhibit rapid response times, enabling them to detect
pulse signals in real time. This is particularly beneficial for
monitoring physiological processes, where timely and precise
measurements are essential; (3) in piezoelectric sensors, the
mechanical pressure directly generates an electrical charge by
the direct piezoelectric effect, simplifying the transduction
process. This direct conversion allows for a more straightfor-
ward and efficient detection of body pulse signals; and (4)
piezoelectric sensors can be self-powered, as the mechanical
pressure applied to the sensor generates electrical energy. This
feature eliminates the need for external power sources, making
them more convenient for wearable and remote monitoring
applications.

3.2. Working mechanism of piezoelectric sensor

The working mechanism of the piezoelectric biosensor is based
on the polarization of electric dipoles in the piezoelectric
materials. Fig. 4 illustrates the working mechanism of the
piezoelectric sensor with two top and bottom electrodes as an
example.’”* When there are no external stimuli applied to the
sensor, a piezoelectric potential/field is electrically neutral and
there is no generation of piezoelectric signal, i.e. electricity flow.
When external stimuli, for example blood pressure is applied
(Fig. 4a), piezoelectric materials will undergo deformations.
This leads to a change in the crystal structure of the piezo-
electric materials, and thus inducing polarization of electric
dipoles. Due to the polarization, a piezoelectric potential/field is
generated, and consequently electrical current is induced.
When the external stimuli are released, deformation of crystal
structure is restored and the piezoelectric potential/field will
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diminish and finally disappear; at this stage, a current with an
opposite direction is induced. Similarly, when the piezoelectric
biosensors experience bending by expansion of blood vessel as
an example, the piezoelectric potential and consequently elec-
tric current are generated (Fig. 4b). The induced current density
is proportional to the magnitude of pressure applied to the
piezoelectric material/sensor and the piezoelectric coefficient d.

3.3. Physiological signals conversion

Physiological signals, i.e. body pulse waves, include two of the
most important human body indicators which are blood pres-
sure and heart rate. These physiological signals can be
measured based on the local pressure and expansion of radial
or carotid artery using the piezoelectric effect.

Heart rate (HR) can be derived from one of the multiple
cardiac pulsating waves that demonstrate human heart's
motions, such as pulse wave, ECG, PPG, SCG, BCG, etc. Among
all these pulsating waves from the heart, pulse waves are the
most frequently used signals in sensing techniques based on
the piezoelectric effect. Pulse wave analysis (PWA) is an
emerging technique for the assessment of arterial elasticity and
has become an important technique for the early detection of
arteriosclerosis. By wearing or patching the piezoelectric
biosensors to the skin above one's artery, local vibration of the
artery by cardiac motions can be detected, and this mechanical
force will further be recorded and transformed into electric
signals (Fig. 5a). This cardiovascular function index is based on
the time-domain characteristics of the pulse waveform and the
corresponding pathophysiological information.

Blood pressure (BP) is one of health indices which is directly
related to cardiac motions. During the blood circulation
process, arterial blood vessels are under periodic pressure by
the cardiac motion. BP can be divided into two components that
is systolic blood pressure (SBP) and diastolic blood pressure
(DBP). Blood circulation throughout the artery leads to arterial
pulses and consequent pressure fluctuations in a detectable
way.'*> A typical pulse waveform is composed of the ascending
and descending branch. The ascending branch results from
a sudden expansion of the artery during ventricular contraction
whereas the descending branch is caused by a ventricular
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Fig. 5 (a) Artery and blood circulation in the human body. Reproduced with permission from ref. 106 and 118 Copyright 2017 and 2021 John
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waveforms. Reproduced with permission from ref. 104 Copyright 2022 John Wiley and Sons. (c) Typical possible arterial pulse waveforms by the
piezoelectric effect. Reproduced with permission from ref. 105 Copyright 2022 John Wiley and Sons. (d) Typical pulse waveform of artery
measured by the piezoelectric effect. Reproduced with permission from ref. 106 Copyright 2021 John Wiley and Sons.

diastole, as described in Fig. 5b.'°*'** Similar to heart rate,
blood pressure is also based on the arterial pulses, and there-
fore, the typical waveform of blood pressure is similar to the
pulse waves of heart rate. However, blood pressure may be
affected mainly by two factors which are the transmission from
arterial vessels to the skin surface and the body postures when
measuring it. As a result, pulse waves attained from a piezo-
electric biosensor have two correlations with blood pressure. In
the first one, blood pressure correlates with the voltage trans-
formed by the piezoelectric biosensor and its integration term
in the period the pressure is applied on; the pulse waveform
under this correlation may see a point as low as the starting
point between the first and second systolic peak. In the second
one, blood pressure correlates with only the integration form of
the output voltage, and an inverse peak is followed by the first
systolic peak in its waveform. Different correlations between
piezoelectric response signals and the blood pressure can be
obtained and transformed by changing the thickness of the
piezoelectric layer in the sensor (Fig. 5¢).'°

3.4. Arterial pulse waveform and assessment of
cardiovascular condition

Shapes of pulse waves measured in different human body parts
may be slightly distinct, but most of them follow a typical form,
which contains three peaks and one saddle point (Fig. 5d). One
cardiac cycle begins from a trough related to the opening of the
aortic valve (Py), which is also the lowest point in the pulse wave.
The pulse signal rises sharply to the first systolic peak (P,) which
is also the main waveform peak; at this point, arterial pressure
reaches the maximum, making it the highest point in the whole

29182 | RSC Adv, 2023, 13, 29174-29194

pulsating process. Followed by the first peak but lower than it is
the second systolic peak (P,), which is also known as the
reflection point or reflected wave peak. Then the pulse wave
drops to the saddle points, or trough, which is composed of the
rising and falling parts of the beat wave. Finally, pulse wave
rises again and reaches the dicrotic peak (P3); this third peak is
lower than the second systolic peak, thus presenting the whole
pulse wave in a descending trend. Among these four important
points, the second systolic peak is the hardest one to detect.
However, with its great clinical value, it has become the target
for current researches for health monitoring and
diagnosis.'*>%

According to the pulse pressure waveform, the characteristic
of the opening of the aortic valve (P,), systolic peak (P;), re-
flected wave peak (P,), dicrotic notch, and diastolic peak (P;)
can be well selected as the feature points for the analysis of
cardiovascular anomaly and disease. In clinical studies, values
of UT, RWTT, PPT, LVET (Fig. 5d), PWV, SI, K, Al HV, and HRV
can be obtained from pulse pressure waveform.'****

The systolic upstroke time, denoted as UT, is the time
required for the upstroke of the pulse wave to reach the systolic
peak. Although a higher UT value indicates lower elasticity of
aorta, it should not be solely relied upon as the primary diag-
nostic index for arterial obstruction. Following the early systolic
peak (P;), the reflected wave generates the second wave known
as the late systolic peak (P,). The reflected wave transit time
(RWTT) defines the return time and is calculated as the differ-
ence between the initial and reflected systolic wave peaks. PPT,
on the other hand, represents the time difference between the
early systolic peak (P;) and the early diastolic peak (P3) of the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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pressure wave. Another relevant parameter, the left ventricular
ejection time (LVET), measures the time difference between the
opening and closing of the aortic valve, reflecting the cardiac
function of systolic and diastolic capacities.

Pulse wave velocity (PWV) refers to the speed at which the
pressure wave propagates through the vessel in the circulatory
system, providing information on arterial compliance. It has
been considered as a highly reliable prognostic parameter for
cardiovascular morbidity and mortality in different groups of
adult populations including renal disease, diabetes, and
hypertension. It is calculated as eqn (3).**>'**

2AL

PWV = 0.8 x oo 3)

Similarly, the stiffness index (SI), eqn (4), is calculated by
considering the velocity between the height of the tester (H) and
the time delay of PPT."'*'*

H
SI = PPT (4)

Augmentation index (AI) is a metric used to assess systemic
arterial stiffness and is derived from the upstroke aortic pres-
sure waveform. As illustrated in eqn (5), Al is calculated as the
difference between P, and P;. The position of the reflection
point in the aortic pressure pulse wave is primarily related to the
stiffness of the blood vessel, which consists of the systolic
upstroke wave (P;), reflection wave (P,), and dicrotic wave (P;).

P,
Al= 2

Stiffer blood vessels cause the reflection point to occur in an
earlier time domain and at a higher-pressure domain. The form
factor of the aortic pressure pulse wave is referred to as the
characteristic K value and is associated with the mean pulse
pressure, diastolic pressure (P,), and systolic pressure (P,). The
Kvalue can be defined as eqn (6) where T is the time duration of
a complete pulse wave, P, is the diastolic pressure, P; is the
diastolic pressure, and Py, is the mean pressure as illustrated in
eqn (7).M°

Pm - PO
K=5"h 2
1 T
P, = T L P(r)dt (7)

Heart rate representing the number of waveforms in
a single minute is a widely used parameter for evaluating
cardiovascular health. An independent parameter of heart rate
variability (HRV) assessed by standard deviation of heart beat
intervals (SDNN) illustrated as eqn (8) and (9) and Poincare
plot has been adopted as a significant indicator to evaluate the
risk of high cardiac death. The SDNN can be obtained using
mathematical calculation of N beat-to-beat cardiac waveforms,
Ty, Tsy ..., Tn

© 2023 The Author(s). Published by the Royal Society of Chemistry
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SDNN = (8)
= 1
T:N(T1+Tz+...+TN) (9)

The Poincaré plot is a scatter diagram of N cardiac cycles
represented by a series of coordinates (T4, T»), (T, T3), -+, (Tn—1,
Ty) with a comet-like elliptic shape. By fitting an elliptic curve to
the scatter, the semi-minor axis and the semi-major axis can be
obtained, marked as SD; and SD,. These values have diagnostic
significance for assessing the regulatory abilities of the para-
sympathetic and sympathetic nerves, respectively. Conse-
quently, the value of SD,, = SD;/SD, can be used to reflect the
coordination of the sympathetic and parasympathetic nervous

systems."”

4. Physiological signal detection
using piezoelectric sensors

4.1. Heart rate

Currently, using piezoelectric sensors for heart rate monitoring
is a popular topic in academia, and many research teams have
devoted efforts to designing products that can fulfill this need.
Though using different approaches, the main focus of study is
to enable the sensor to perform continuous monitoring by
wearing or patching it with a self-powered function so as to
solve problems that current health sensors have such as
inconvenience, bulkiness, unavailability in continuous health
monitoring, etc. Therefore, piezoelectric biosensors have been
made to improve wearability of the sensors through designing
piezoelectric microfibers, to develop patchable piezoelectric
biosensors that can be attached directly to human skins, to
combine these two designing approaches together, or to
develop a sensor managing circuit. Here, we introduce recent
progresses in these aspects for continuous real-time heart rate
monitoring.

One of the early works based on the piezoelectric effect for
self-powered real-time arterial pulse monitoring was introduced
in 2017 by Park et al. To resolve issues of low piezoelectric
response of piezoelectric polymers, the authors employed
inorganic piezoelectric PZT thin film for arterial pulse moni-
toring. The piezoelectric sensor showed a sensitivity of 0.018
kPa~" with 60 ms of response time, and detected the radial and
carotid artery pulses. Furthermore, a self-powered real-time
pulse monitoring system was demonstrated by transmitting
the pulse signal to a smartphone wirelessly, which opened up
a great potential of the piezoelectric effect/sensor for biomed-
ical applications. However, one concern is the inclusion of lead
in PZT which is a toxic substance and not suitable for bio
applications.

Following the work from Park, in 2019, Chen et al. presented
a flexible piezoelectric pulse sensor (PPS) with a simple sand-
wich structure based on a single-crystalline nitride thin film
which is innoxious (Fig. 6a);'® this solves the problem of using
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the piezoelectric materials with toxic substances, such as lead. Furthermore, various physiological information was attained
The introduced PPS exhibited high sensitivity and durability for from the measured pulse waveforms, such as the pulse rate, Al,
flexible pulse sensor applications. The authors demonstrated and PWV, through the pulse wave analysis. Similarly, Fu et al.
that artery pulses from 10 different points were successfully take the attachability and bio-compatibility of sensors into
measured by the PPS (Fig. 6b) with no signs of degradation. consideration. The authors found the excellent properties of
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Fig. 6 (a) Structure and digital images of the IlI-N thin-film flexible PPS. (b) Body pulse waveforms measured by the IlI-N thin-film flexible PPS at
various points on the human body. (a) and (b) Reproduced with permission from ref. 16 Copyright 2019 John Wiley and Sons. (c) Digital images of
the stretchable sensor on various curved surfaces with a scale bar of 1 cm. Reproduced with permission from ref. 120 Copyright 2019 John Wiley
and Sons. (d) Schematic illustration of the self-powered wireless body sensor system and the diagram of the system working flow. Reproduced
with permission from ref. 122 Copyright 2022 Elsevier. (e) The digital picture of the piezoresistive microfiber-based glove; magnified image to
compare the thickness of microfiber with an ant; demonstration of stretchability up to 120%; and an image of microfiber sensor and a cross
section image of the sensor measured by SEM. Reproduced with permission from ref. 123 and 124 Copyright 2018 and 2019 American Chemical
Society.
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hydrogel, such as water-richness and great flexibility, and
designed a self-powered piezoelectric polyacrylonitrile poly(-
vinylidene fluoride) (PAN-PVDF) hydrogels. Hydrogel helps the
sensor to have tighter contact with human skin, while PAN-
PVDF is chosen as the sensing material due to its excellent
piezoelectricity and plasticity.**

In vivo technology has also been introduced towards self-
powered and wireless health monitoring based on the flexible
and stretchable sensing system by Sun et al. in 2019."*° The
authors made an innovation through the introduction of kir-
igami technique (Fig. 6¢), allowing the structural flexibility of
the devices to robustly conform to various curved surfaces, such
as heart and body joints. By introducing a novel intersegment
electrode design, this integrated sensing system showcases
excellent performances in both mechanical and electrical
aspects. Also, the proposed system enables wireless data
transmission to external devices by means of an embedded
miniaturized wireless interface, which is not only of vital
importance to implantable devices but can also achieve wireless
and real-time health monitoring with no power needed for the
sensor or the communication chip. These features have been
evaluated through a range of practical assessments, including
in vitro, ex vivo, and on body. The developed device is endowed
with a promising future, for its novel features that can distin-
guish it from other sensing systems, as well as its contributions
to the expansion of wireless monitoring of vital human signs
and biomechanical health indicators.

As the sensing technique based on the piezoelectric effect is
getting matured, an integration of measurement results with an
analysis tool has gained attentions recently. In 2022, Samartkit
et al. reported a non-invasive dynamic heart rate monitoring
system based on a piezoelectric PZT sensor.”** The authors
developed an assistive software to perform continuous heart
rate monitoring. It was demonstrated that the system could
measure the heart rate with a mean absolute difference (MAD)
and standard deviation of 1.78 and 1.98 beats per minute,
respectively, with high accuracy. Similarly, a circuit design for
better real-time heart rate signal collection has also been
proposed by Wu et al. in 2022."*> The authors realized real-time
heart rate signal collection by integrating an energy supply
module, electrocardiogram (ECG) electrodes, a sample circuit,
a microcontroller unit (MCU) and a wireless transceiver
(Fig. 6d). With the ECG electrodes and the sample circuit, heart
rate signals could be sampled and would further be sent to
a phone or computer through a wireless transceiver for pro-
cessing and display. In the literature, Wu et al. discussed
principles of building a nanogenerator based self-powered
wireless sensor system and proposed a self-powered heart rate
monitor with real-time operation. With the help of this system
and the fast operation strategy of the device, satisfying perfor-
mance of the heart-rate monitor was obtained with the reduced
power consumption without affecting performance.

In addition to the piezoelectric sensors which are passive,
piezoresistive and piezo-capacitive active sensors have also
attracted tremendous research interests. For example, Yu et al.
have reported a design of stretchable tubular elastomeric pie-
zoresistive (STEP) microfiber. When pressure is applied, the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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resistance of the material will change, thus leading to the form
of different shapes of heart rate pulse curves. It achieved pie-
zoresistive by using the material of liquid eutectic Gallium
Indium (eGaln) and storing it in a resilient microtubular
structure. For the piezo-capacitive sensors, Yu et al. presented to
implement a dual-lumen elastomeric microtube structure. This
structure enabled the devices still functional to sense ambient
pressure even when microfiber is cut in between due to its
unique structure. This microfabric design also could be woven
into other normal fabric products, such as the fingertips of
gloves (Fig. 6e). With the gloves on, body pulses were success-
fully detected, and heart rate could be determined by calcu-
lating the frequency of detected pulses. Finally, it was
demonstrated that the microfibers were washable and could
even sense higher dimensional environmental information,
such as position and directionality when weaving these micro-
fibers into cross-stitched network.'>*'>*

4.2. Blood pressure

Based on the theoretical studies in previous part, here, we
introduce recent developments in biosensors for blood pressure
measurement using the piezoelectric effect. Blood pressure
monitoring can be divided into two strategies, invasive and non-
invasive approaches. The invasive method can obtain more
accurate blood pressure. However, due to concerns for infec-
tion, non-invasive measuring approaches are more often used
in daily health inspections. Non-invasive blood pressure
monitoring can be further classified into two types: cuff and
cuffless approaches, where cuffless ones are more favored in
daily lives and academic researches due to their portability and
the ability to measure continuous real-time blood pressure.'*

Using piezoelectric technology, biomechanical energy/
signals can be efficiently transformed into electrical
energy.””*™** The principle of blood pressure measurement
using the piezoelectric biosensors is based on the displacement
of the tissue surface owing to the force of the pressure variation
in artery. The arterial pulse piezoelectric dynamics technique
involves three correlations for linking piezoelectric response to
blood pressure: via integration, via transition correction, and
via direct correlation. While this correlation was not initially
well-defined in early studies, blood pressure monitoring using
arterial pulse piezoelectric dynamics has gained substantial
research attention. Here, we introduce recent developments in
blood pressure measurement and analysis techniques based on
the piezoelectric biosensors.

For biomedical applications, wearability is one of the
prerequisites, and therefore devices in various forms have been
researched. For example, Maity et al. demonstrated a PVDF
nanofibers (NFs)-based piezoelectric sensor for self-powered
human-health monitoring.*** The authors introduced a piezo-
organic e-skin sensor composed of the highly aligned PVDF
NFs arrays, offering significant piezoelectric output perfor-
mances for self-powered body pulse detection. The enhanced
sensing capability results from combining well-aligned PVDF
NFs arrays with PANI-coated PVDF NFs mat electrodes. As
a result, the self-powered piezo-organic e-skin sensor holds
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promise for various applications, covering routine health
monitoring for diagnosis of CVDs. This innovation could mark
a significant step forward in self-powered electronic skins and
human-machine interfaces.

Very recently in 2023, Min et al. have reported a wearable
piezoelectric blood pressure sensor and further demonstrated
its clinical validation. Previously, the research group reported
ultrathin epidermal piezoelectric sensors which successfully
detected radial/carotid artery pulses, respiratory activities, and
trachea movements by attaching the sensors directly on rugged
skin.*®® However, challenges also have been identified to pursue
continuous blood pressure monitoring because of the low
signal and lack of a transfer function which can convert the
signals into blood pressure values. In line with the previous
work, the authors reported a new wearable piezoelectric blood
pressure sensor (WPBPS) associated with an accurate blood
pressure transfer function (Fig. 7a). The piezoelectric sensor is
fabricated using PZT which has significant piezoelectric prop-
erties, leading to high sensitivity (0.062 kPa™') and fast
response time (23 ms). Compared with existing FDA-approved
medical instrument for continuous non-invasive arterial pres-
sure (CNAP) monitoring, this CNAP can distinguish the shape of
blood pulse waveforms more precisely. By using the transfer
function of a linear regression model, the sensor signal was
transformed into blood pressure values with high accuracy,
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validating its clinical values. This device makes it possible to
monitor a person's body pressure continuously and precisely by
integrating the device with the wristwatch (Fig. 7b and c).***

Similarly, Wang et al. reported a low-cost wearable
piezoelectric-based system for non-invasive continuous beat-to-
beat blood pressure measurement.**® The device and measure-
ment system developed was able to measure precise SBP and
DBP without performing multiple calibrations and complex
regression analysis. Beat-to-beat SBP and DBP monitoring was
achieved by using the sum of initial blood pressure by an
oscillometric method and pressure change by a piezoelectric
sensor. Continuous pressure waveform was achieved by placing
the piezoelectric sensor on the skin above the radio artery. Post-
processing was then applied to locate significant feature points
of SBP and DBP in order to determine the peak and valley of
pressure pulse wave signal (PPW) (Fig. 7d). Voltage change and
pressure change could be calculated accordingly. The results
show that the measured mean absolute error (MAE) meets the
criteria of the Association for the Advancement of Medical
Instrumentation (AAMI) and British Hypertension Society
(BHS), demonstrating its novel measurement strategy and
effectiveness.'*”'*

In fact, the utilization of a piezoelectric effect for arterial
pulse wave monitoring was first reported in 1941 and has
attracted tremendous attention for several decades.'*'*
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a conceptual image of clinical validation. (b) Schematic illustration

(a) Schematic illustration of measurement of BP by a wearable piezoelectric sensor: (i) a structure of the piezoelectric BP sensor; (ii)

of the piezoelectric sensor-embedded wristwatch. (c) BP waveforms

measured by the piezoelectric sensor and transmitted from the wristwatch by the wireless communication circuit where the inset shows beat-
to-beat pulses and corresponding BP. (a—c) Reproduced with permission from ref. 135 Copyright 2023 John Wiley and Sons. (d) The piezo-
electric sensor system composed of the piezoelectric sensor, front-end analog circuit, and software processing unit. Reproduced with
permission from ref. 136 Copyright 2020 MDPI. (e) An illustration of arterial BP measurement using piezo-MEMS sensor. (f) Evaluation of BP

waveforms through integration or calibration. (e) and (f) Reproduced

with permission from ref. 105 Copyright 2022 John Wiley and Sons. (g)

Illustration of the TCM pulse palpation acquisition scheme with the pulse sensing system and measured pulse waveforms at the Cun, Guan, and
Chi positions. Reproduced with permission from ref. 146 Copyright 2018 John Wiley and Sons.
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Nonetheless, the assessment of blood pressure using this
method is inherently constrained due to issues such as time
synchronization errors and distance inaccuracies among
sensors positioned for monitoring by a minimum of two
piezoelectric sensors. Unacceptably, the reported arterial pulse
piezoelectric responses are largely inconsistent among studies,
rendering the application of this technology for blood pressure
monitoring contentious. To develop accurate wearable contin-
uous blood pressure monitoring, it is therefore essential and
urgent to elucidate the arterial-pulse piezoelectric response.
Towards this goal, Yi et al. investigated the relationship between
blood pressure waves and piezoelectric arterial pulse waves at
nano-to macroscale thickness of the piezoelectric functional
layer. The authors revealed that there are three correlations
between blood pressure and piezoelectric response, which are
integration, transition correction and direct correlation. The
strategy, developed by the authors through filtering, inte-
grating, and calibrating raw pulse data, can lead to continuous
body pressure wave (Fig. 7e and f), thus making using only
a single-sensor continuous blood pressure wave monitoring
applicable. The single-piezoelectric sensor wireless monitoring
system is also much more portable than traditional ones, sug-
gesting its great promise as wearable continuous blood pressure
monitoring for primary prevention and daily control of
hypertension.**

Finally, physiological pulse wave sensing based on piezo-
electric has also been explored recently. By definition, piezo-
electrics refer to polymeric structures with electrically charged
internal cavities. The piezoelectric effect, the same as the direct
piezoelectric effect, converts mechanical energy to electrical
one, allowing stress/strain sensing.'**'*® Chu et al. develop
a flexible pulse wave sensing system based on a fluorinated
ethylene propylene (FEP)/Ecoflex/FEP sandwich-structured
piezoelectric with equivalent piezoelectric coefficient ds; up to
4100 pC/N. The high ds; value results from ample electrical
dipoles maintained by FEP and the low Young's modulus for
Ecoflex spacer. This device can measure the pulse at Cun, Guan
and Chi pulse locations according to the traditional Chinese
medicine practice (TCM), as marked in Fig. 7g. In real practice,
the device is successfully used to diagnose arrhythmia among
volunteers and detect blood pressure.'*

—h.

& Flexible %

© Cardiac

\Sensors/
Fabrication
Methods

Machine Learning

View Article Online

RSC Advances

5. Machine learning for health
monitoring

With the aid of machine learning algorithms, identification of
features of collected cardiovascular signals and implementing
automatic classification of specific cardiac conditions have
been progressed steadily in recent years."*” The real-time data
analysis and categorization enabled by machine learning assist
to detect cardiovascular abnormalities in time, helping health-
care professionals diagnose CVDs and providing early medical
interventions to potential patients (Fig. 8). Furthermore,
machine learning marks a milestone in continuous health
monitoring and an evolution in personalized health condition
management.

5.1. Machine learning algorithms for CVD diagnosis

Machine learning is an analytical model that solves complex
problems by executing a specific task without explicitly being
programmed to do so0.**'** During the machine learning process,
the machine is required to learn a function injected from the
input data (domain) to the labeled data (co-domain). Then the
machine can utilize the learned function to make preferred
choices when given any new datasets. Supervised learning,
unsupervised learning, and reinforcement learning are three
major types of machine learning. For supervised learning,
training datasets are required to enable the machine to extract
features of data and to derive a model. Then a trained machine
can apply the acquired model and relationship to other new
datasets for classification and prediction purposes. For unsu-
pervised learning, there is no training for the machine to learn
a model in advance. The machine classifies data and establishes
structural information based on its own decision. For reinforce-
ment learning, the machine is given a list of constraints and
a clear goal. The machine accumulates data through trial-and-
error methods and adjusts the strategies to maximize the
reward in order to achieve the goal. To realize continuous real-
time health monitoring for cardiovascular diseases, supervised
learning is the preferred method to automatically classify specific
cardiac conditions for collected cardiovascular signals.

For more complex cases, deep-learning-algorithms-based
machine learning is applied to utilize automatic feature

L

(2

.9\?“5’

@

Diagnosis

Fig. 8 Graphicalillustration of the process of CVD diagnosis from sensing data using the sensors to data analysis by ML technique. Reproduced

with permission from ref. 148 Copyright 2022 Elsevier.
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extraction to implement classification (Fig. 9a).**° Deep learning
features multi-layer learning models with unstructured input
data. The initial layers aim to extract low-level features whereas
the last layers aim to extract high-level features for imple-
menting classification and an additional level is used to
improve the accuracy of classification. There are four major
algorithms for categorizing cardiovascular sensing signals into
specific cardiac conditions: convolutional neural network
(CNN), hidden Markov model (HMM), Random Forest (RF), and
binarized neural network (BNN).

For CNN (Fig. 9b), it consists of three main layers: convolu-
tion, pooling, and fully connected layer. The convolution layer
accepts the input data and extracts the feature maps. Then the
pooling layer down-samples the feature maps, which is always
implemented by maximum pooling, to reduce network param-
eters and to minimize computation power as well as training
time. In addition, common activation functions such as recti-
fied linear unit (ReLU) and Leaky ReLU are utilized to apply
complex mappings from input data to output data. Finally, the
fully connected layer inherits the extracted features from the
last convolution layer and matches them with different classes
by calculating the probability for each specific class.

For HMM (Fig. 9c), it utilizes observation sequence and
model parameters to derive the probability distribution of
a hidden state sequence in order to implement categoriza-
tion.” Each hidden state of the Markov model displays
a specific probability of transitioning to next state (transitional
probability) and a probability corresponding to the observed
variables (emission probability). With probability values calcu-
lated, the HMM algorithm chooses the optimal path and links

Machine Learning

Deep Learning

Deep Learning Model

Input image
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Fully Connected

Fig.9

Classification

y ]
S &=
Wy Praprocessin Features Features <
= P 9 Extraction Selection ,‘i'
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the hidden sequence corresponding to the observed sequence
to execute classification.

For RF algorithm (Fig. 9d), it consists of multiple random
decision trees." Each decision tree chooses a random subset of
training data as the training set and randomly chooses a subset
of all features as the classification standards at split nodes. After
continuously traversing all possible split points of the feature
subset of this tree, each decision tree chooses the best split
features as the optimal classification standard. Then the forest
model lets each decision tree vote the classification standard of
all decision trees to decide the final choice.

For BNN, it uses +1 and —1 to denote weights and activation
functions. This algorithm has features of a significantly reduced
memory size and computational power by utilizing bit-wise
operations.

All these four algorithms have their own advantages while
implementing classification. CNN features relatively accurate
classification outcomes with relatively low computational
power. HMM allows for no training datasets and predicts
unknown classification from observed variables directly. RF
features accuracy and stability of the model as well as prevents
over-fitting effectively. BNN stands for high efficiency with
reduced memory size and computational power. All four algo-
rithms have a great potential in cardiovascular sensing field.

5.2. Implementation of ML for CVD diagnosis

The biosensor system has been widely applied to achieve the
real-time and continuous health monitoring. Machine learning
is then combined to do classification and recognition of
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(a) lllustration of difference between the machine learning and deep learning processes. Illustration of structures of various ML algorithms:

(b) CNN model; (c) HMM model; and (d) random forest model. (a) and (b) Reproduced with permission from ref. 150 copyright 2021 Springer
Nature. (c) Reproduced with permission from ref. 151 Copyright 2019 John Wiley and Sons. (d) Reproduced with permission from ref. 152

Copyright 2016 Elsevier.

29188 | RSC Adv, 2023, 13, 29174-29194

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra05932d

Open Access Article. Published on 02 oktober 2023. Downloaded on 2/11/2025 4:57:44.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

View Article Online

RSC Advances

160

140
(a) i i : | Machine learning
~ Trained model for rea.l-t'lme o Systolic d B Commerical VaSera
I blood pressure prediction - & &°
UBETTRER
(' 5 BRI
e A I 5 e} =
M € - o
MAL e 5 £ €
1111, o onnny < o 100 E
e - 3 @
11 | w&qumvw_v_.’\ 6 z 80
} W > 3 &
00100113300 10010 . Model E 80 o © o §
v Supervis fitting @ @
Fea\\“.e training 40
emac\\o“
pre 409 60 Diastolic
S
9‘
Neural network training model 0 10 20 30 40 50 60 70 80 90 o]
Time (min) Systolic Diastolic
( ) " Blood Pulse . ‘ Feature ( ) i " .
Wave Signals | | Erepmocessing | Extraction it s P P R
Signals ; ‘ ‘ ) .
& 125 % ®
13 a L]
Systolic Blood [ 3 plies § =
aGq . £ 15 : £
- Pressure Regression ‘ 2 e g
"o . % [ 65
Diastolic Blood Models 08
Pressure 100 4— €
95 100 105 110 115 120 125 130 135 140 60 65 70 75 80 85
Reference SBP Reference DBP
[ s, (a)
: | s
| .
(d) i | 1401 Gradient Boosting Regression Gradient Boosting Regression
H Volunteer 1, 4 weeks | 138 8
! | a 130 o
| [ ] . H 8 g 7%
i - 50 randomly picked | 125 2
: N waveforms/volunteer | 3120 =0
: | @115 @
| Volunteer n, 4 weeks i w i W ogs
i : . R’=0.860 R’=0.747
i | 105 €
. 00
| J ! 95 100 105 110 115 120 125 130 135 140 60 65 70 75 80 85
'''''''''''''''''''''''''''''''''''''''''''''''''''' Reference SBP Reference DBP
(b)
100 P : . . 80
1351 Adaptive Boosting Regression Adaptive Boosting Regression
130 -
] a P
2 s 3 G120 8
£ N Jw 3,
$ 2 B £ £
3« ] H @115 @
= . w w
65
"o R’=0.851 R’=0.779
@ -
105
60
95 100 105 110 115 120 125 130 135 140 55 60 65 70 75 80 85
Reference DBP

10 15 0
Threshold

50 100 150 200 250
Waveform No.

Fig. 10

Reference SBP
(©)

(a) Illustration of ML technique to estimate blood pressure, and comparison of the blood pressure attained by the ML technique and the

commercial device. Reproduced with permission from ref. 106 Copyright 2021 John Wiley and Sons. (b) Block diagram illustrating ML technique
to estimate the blood pressure. (c) Results of the estimated SBP and DBP using different regression algorithms, namely, Random Forest
Regression, Gradient Boosting Regression, and Adaptive Boosting Regression. (b) and (c) Reproduced with permission from ref. 153 Copyright
2019 MDPI. (d) ML technique to differentiate pulse wave signals attained by the wearable piezoelectric sensors. Reproduced with permission

from ref. 146 Copyright 2018 John Wiley and Sons.

abnormal data collected by the sensors. Classification of
different patterns helps link different abnormal signals to cor-
responding symptoms, which enables early diagnosis of CVDs.
Detailed examples of ML technologies for health monitoring
and diagnosis are illustrated in Fig. 10.

First, a feedforward neural network features a simple struc-
ture and a one-way propagation as illustrated in Fig. 10a. This
ML method can accurately implement any finite training
sample set, ensuring a high accuracy in classification and
prediction based on the model learned. A supervised

© 2023 The Author(s). Published by the Royal Society of Chemistry

feedforward neural network can be utilized to simulate and
predict both SBP and DBP of the arterial pulse waves collected
by the biosensor as reported by Fang et al. in 2021."°® By using
the trained neural network model, the authors attained SBP and
DBP of 117.3 and 70.2 mmHg with standard deviations of 3.06
and 3.50, respectively (Fig. 10a), demonstrating the high reli-
ability of ML for monitoring blood pressure.

Second, regression is a statistical method to analyze the
relation between two data sets and establish a model to link the
factors to the corresponding outcomes. The ML regression
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methods include RF regression, GBTD regression, and Ada-
boost regression. RF regression trains decision trees on
randomly selected samples, using various features for parti-
tioning and aggregating predictions. GBTD regression reduces
losses iteratively, compensating for model limitations. Ada-
boost regression is an iterative process using all samples,
assigning weights and focusing on difficult classifications.
These regression techniques classify pulse wave signals to
diagnose CVD symptoms, allowing early diagnosis outside
hospitals, transforming monitoring systems comprehensively.
Recently, Yang et al. demonstrated the estimations of SBP and
DBP using various regression models (Fig. 10b).*** Fig. 10c
illustrates the correlation analysis between the reference blood
pressures measured by using a cuff sphygmomanometer and
the estimated blood pressures based on various regression
models. The estimated SBP and DBP by the various regression
models were found to be the most accurate with the RF
regression model in the study.

Third, DTW (dynamic time warping) algorithm is widely
applied to determine the degree of the similarity of two different
time series. This algorithm requires a classified data set as
a template, and for every point in the newly input data set the
algorithm will calculate the distance between the point and
every other point of the template set (Fig. 10d).**® For each pair
of pulse waves, a DTW distance is calculated to reflect the
similarity and the minimum DTW distance indicates the
highest similarity, further affecting the decision of classifica-
tion. Fig. 10d shows the analysis results from five volunteers
participated in the study. The red color region indicates high
dissimilarity between two pulse waves and the blue color region
means high similarity. The five blue squares along the diagonal
axis illustrate that the pulse waves acquired for continuous 4
weeks are stable with high similarity for the same volunteer.
The other squares show the variances and dissimilarities of
pulse waves from different volunteers. By setting the threshold
at different distances, the identification process for the true
positive rate (TPR) and false positive rate (FPR) can be adjusted
for a specific purpose, as indicated in Fig. 10d. The differenti-
ation and classification of the pulse wave demonstration also
proves the excellent stability and precision of the pulse sensing
system for possible long-term health data collection from
different users.

6. Perspectives

Recent achievements and breakthroughs in wearable piezo-
electric sensors have demonstrated continuous real-time
measurements of subtle physiological signals. Further, the
development of ML technology further facilitated the practical
use of the piezoelectric sensors for early detection and preven-
tion of CVDs."* By providing the user with his or her health
status, the user can proactively take measures to diagnose one's
health condition. Even so, there are many challenges to be
overcome in both aspects of the piezoelectric sensors and ML
technologies.

Regarding piezoelectric sensors, first, one of the critical
challenges faced by piezoelectric sensors in body pulse
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detection is maintaining reliable signal recording under
dynamic conditions. Wearable/patchable piezoelectric sensors
are required to closely contact the skin for accurate detection of
the subtle vibration of body pulses. During motion, long-term
use, or extreme conditions, however, the mechanical interac-
tion between the sensor and the skin becomes complex, leading
to mismatching and detachment. Furthermore, the mismatch
in Young's modulus of the sensor material and the skin
hampers compliant contact, resulting in signal deterioration
and inaccuracies. To address this issue, researchers have
proposed self-adherent ultrathin sensors that rely on van der
Waals' force or chemical adherence for better contact with the
skin.'*>** However, the long-term robustness of such adher-
ence, especially in extreme conditions like underwater activi-
ties, remains a challenge. Striking a balance between sensor
adherence and skin irritation is other considerations to be
made. The development of future piezoelectric sensors that can
reliably monitor cardiovascular vital signs during motion, long-
term usage, or under extreme conditions is eagerly anticipated
to enhance wearable health monitoring technologies.*®”

Second, the incorporation of wireless data communication
in wearable piezoelectric sensors has significantly improved
real-time monitoring and portability, enabling continuous data
collection beyond clinical or fixed locations. However,
communication module such as 1-5 mW of power for Bluetooth
requires power that exceeds the capabilities of small-scale
batteries, which poses a significant challenge for the realiza-
tion of continuous real-time health monitoring using the
piezoelectric sensors. Furthermore, the utilization of inflexible
commercial integrated circuit (IC) chips for signal acquisition,
processing modules, and wireless data transmission often
results in less adaptable systems. To tackle these challenges,
intensive study needs to be done to build more conformable
systems to the flexible/wearable piezoelectric sensors for effi-
cient signal acquisition, processing, data transmission, and
power supply.

Third, there are still limitations in practical use of the
piezoelectric sensors for the medical diagnosis. Although the
wearable piezoelectric biosensors have shown promise in
monitoring cardiovascular physiological signals, their diag-
nostic abilities based on big data and deep learning are still in
early stages. Many existing sensors may only present ECG
signals or heart rate parameters without professional medical
interpretation, limiting their usefulness for both users and
clinicians. To achieve more comprehensive and precise medical
diagnosis related to heart-related diseases, it is crucial to extract
more profound parameters such as heart rate variability and
cardiac output. These parameters can provide a comprehensive
medical assessment with higher precision. Future piezoelectric
sensors should be equipped with integrated Al algorithms to
enable precise and comprehensive diagnosis, allowing users
and medical professionals to make informed decisions based
on comprehensive data analysis.

Regarding ML technique, in spite of huge progress in ML
technology to assist data processing and diagnosing CVDs, ML-
assisted processing also inherits the limitations inherent to ML
algorithms. It is required to gather substantial quantities of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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diverse and meticulously validated training data acquired by the
sensors which otherwise deteriorate prediction accuracy of the
ML model. As the quality of data directly affects the outcome of
the ML algorithms fluctuations in device performances and
poor long-term stability of the sensors pose a great challenge to
ML technology.””® Consequently, more sophisticated ML algo-
rithms must be devised to streamline the training procedure,
and also the sensors need to be improved to attain repeatable
and uniform data. In addition, development of an appropriate
ML model that aligns with the characteristics of data acquired
and the intended outcomes takes precedence. Each of various
ML algorithms formulated exhibits its strengths and at the
same time drawbacks, which must be weighed when addressing
different medical cases. Lastly, the learning process and
decision-making within ML for the diagnosis of CVDs necessi-
tate adherence to relevant knowledge and reasoning principles
to ensure efficacious results for a given application.

7. Conclusion

Unlike conventional medical devices for diagnosing CVDs,
flexible/wearable piezoelectric sensors have been emerged as
a new generation medical sensor for the continuous and real-
time health monitoring by offering portability, comfortability,
and wearability. In this review, we presented the recent
advances in flexible/wearable piezoelectric passive sensors for
continuous and real-time heart rate and blood pressure moni-
toring techniques covering not only the device aspects, but also
circuit design of the sensing system and ML techniques for
effectively obtaining and processing reliable body pulse signals
and ultimately diagnosing the CVDs. While there have been
significant advances towards the realization of continuous and
real-time health monitoring for CVD diagnosis, there remain
challenges to be resolved: (1) attaining reliable physiological
signals by the piezoelectric biosensor under dynamic, long-term
use, and extreme conditions; (2) building conformable systems
to the flexible/wearable piezoelectric sensors for data trans-
mission and processing, and power supply; (3) enabling the
sensors to attain more profound parameters such as heart rate
variability and cardiac output; and (4) further advancing ML
algorithms to streamline the training procedure and align with
the characteristics of data acquired. With these improvements,
it is anticipated that continuous and real-time health moni-
toring using the piezoelectric biosensors can be implemented
in various medical practices to diagnose CVDs. We hope that
this review provides insightful information in the relevant fields
to the readers for the further advancements and innovations for
continuous and real-time health monitoring technologies.
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