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In nature, plants and animals undergo remodeling to adapt to changes in their surroundings. Stimuli-
responsive hydrogels, with their abundant water content and inherent responsiveness to environmental
stimuli, serve as ideal candidates for mimicking the morphing behavior of living tissues or organisms.
When combined with other materials, stimuli-responsive hydrogels extend their shape morphing
abilities, along with corresponding functionalities. This review delves into the fundamentals involved in
incorporating stimuli-responsive hydrogel matrices and functional additives, exploring the shape
morphing mechanism and fabricating stimuli-responsive composite hydrogels. An exploration of recent
advances in stimuli-responsive composite hydrogels suggests their potential applications in diverse
fields,
electronics, and engineering living materials. As these innovative materials continue to develop, they

including soft robotics, information encryption/decryption, biomedical research, flexible

rsc.li/frontiers-materials

1. Introduction

Hydrogels, esteemed as pioneering polymers employed in the
progression of new materials, are hydrophilic, cross-linked,
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hold the promise of revolutionizing daily lives and shaping the future of the biosphere.

three-dimensional polymer structures capable of absorbing,
swelling, and maintaining immense quantities of water or
aqueous solutions. Gels have traversed a remarkable trajectory
since their conception in the late 19th century by Scottish
chemist Thomas Graham." He used sol-gel chemistry to make
a silica gel. Graham’s initial exploration of gel-like colloids
opened the door to a plethora of material advancements,
although the concept of hydrogels was not mentioned at that
time. The term "hydrogel’ was first coined in 1894 to describe a
type of colloidal gel.> Demonstrating the remarkable water
absorption capabilities and distinguished swelling properties

Minghao Li is a PhD candidate in
the  Materials  Science  and
Engineering Program, conducting
research under the supervision of
Prof. Jinhye Bae. His research is
primarily  focused ~ on  the
integration of functional additives
into  stimuli-responsive  hydrogels
for developing new approaches in
shape morphing systems. Minghao
completed his undergraduate studies
at Iowa State University and went
on to earn his master’s degree at the
University of Florida in 2018. Since
2019, he has worked as a graduate student researcher in the Bae research
group at the University of California San Diego.

-
Minghao Li

5989


https://orcid.org/0009-0002-7391-2070
https://orcid.org/0000-0002-6315-8847
https://orcid.org/0000-0002-2536-069X
http://crossmark.crossref.org/dialog/?doi=10.1039/d3qm00856h&domain=pdf&date_stamp=2023-10-19
https://rsc.li/frontiers-materials
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3qm00856h
https://pubs.rsc.org/en/journals/journal/QM
https://pubs.rsc.org/en/journals/journal/QM?issueid=QM007023

Open Access Article. Published on 28 september 2023. Downloaded on 28/09/2025 15:19:44.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

of hydrogels was instrumental in propelling them into the
scientific spotlight. This allowed their humble beginnings to
evolve into the multifunctional materials that form the basis of
countless biomedical, pharmaceutical, and environmental appli-
cations today. Currently, numerous scholarly articles have been
published to dissect the properties and applications of hydrogel
materials, each providing unique insights. According to the
origin, composition, ionic charge, physical structure, crosslinking,
and application of hydrogels, they can be classified from different
perspectives.” For instance, hydrogels can be classified as
natural, synthetic, and hybrid based on their origin, but they also
enable to be categorized into homopolymer hydrogels, copolymer
hydrogels, double network (DN) hydrogels, and interpenetrating
polymer network (IPN) hydrogels from the perspective of the
composition. In past decades, the development of smart or
intelligent hydrogels, also known as stimuli-responsive hydrogels,
marked a significant milestone in the field and heralded a new
era of hydrogel research. Smart hydrogels possess the remarkable
ability to respond to environmental factors such as temperature,®
light,” electric,® magnetic fields,” pH,'® mechanical force,'* etc.
Through a combination of ingenious chemistry, molecular
design, and processing techniques, smart hydrogels are capable
of exhibiting a dramatic shift in their shape,"” swelling behavior,'?
color or transparency,"* mechanical strength,' rheology,'® adhe-
sive property,'” and conductivity. This provided opportunities to
manipulate and control the hydrogel responses in a predictable
and desired manner, thus making them ideal for a range of
applications spanning from drug delivery systems, where they can
control the release of therapeutics,*® to soft electric sensors, where
they can monitor the signals like strain, humidity, pressure,
temperature, etc.'® Moreover, the intelligence of these hydrogels
goes beyond simple responsive behavior. Advanced smart hydro-
gels can be programmed to exhibit sequential and logic-gated
responses,” opening new horizons in the development of active
and adaptive materials.
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In recent years, composite hydrogels, an effective way to
fabricate smart hydrogels, attract significant attention due to
their numerous advantages and unique properties that allow
them to overcome some limitations, including low strength,
limited functionalities, and isotropic volume change, inherent
to traditional hydrogels."®*"*> Typically, composite hydrogels
involve combining a hydrogel matrix with other materials, such
as inorganic fillers, organic compounds, or other polymers,
significantly enhancing their functionality and performance.
One key advantage of composite hydrogels is their improved
mechanical properties. Traditional hydrogels, while flexible
and soft, often lack sufficient mechanical strength and stability,
limiting their applications in load-bearing situations. However,
by incorporating additional materials into the hydrogel network,
composite hydrogels can demonstrate increased toughness,
strength, and resilience.>® This opens up opportunities for their
use in mechanically demanding environments, such as tissue
engineering and regenerative medicine.** Additionally, compo-
site hydrogels offer the advantage of tailoring their response to
external stimuli. By selecting specific materials, these hydrogels
can be designed to respond to environmental factors like tem-
perature, pH, light, or biological molecules. This versatility in
stimuli-responsiveness expands their potential application
spectrum.>® Notably, the synergistic effects of hydrogel matrices
and incorporated functional additives can introduce new func-
tions to the hydrogel, such as magnetic responsiveness, electrical
conductivity, or photo- and even mechano-luminescence.”®>°
For instance, Zhang et al. introduced ZnS into the fabrication of
a sandwich-like actuator, the existence of ZnS endows the
hydrogel matrix with electroluminescence. By combining with
reasonable control logic, the ability of self-adaptive background
color-matching can be observed.>® Also, Li et al. encapsulated
biological dinoflagellates, bioluminescent unicellular marine
algae, with the hydrogel matrix and eventually realized mechan-
oluminescence due to the special responsiveness of algae addi-
tives, which can be used for optical signaling and illumination.**
Furthermore, composite hydrogels exhibit improved control over
their porous structure. By manipulating the composition and
preparation process, the porosity, pore size, and distribution of
pores within the hydrogel can be finely tuned.*” This feature is
particularly useful in applications like biomedicine and tissue
scaffolding, where pore structure plays a crucial role in cellular
behavior and tissue formation, and the biocompatibility of
composite hydrogels can be improved through the integration
of biological materials, such as proteins or polysaccharides.®?
Overall, composite hydrogels, with their mechanical strength,
customizability, enhanced functionality, controlled porosity, and
biocompatibility, present significant advantages over traditional
hydrogels. As a result, they have been increasingly adopted
across diverse fields and hold great promise for future techno-
logical advancements.

As one of the most fascinating properties of smart composite
hydrogels, their shape morphing behavior, the ability to
undergo pre-programmed changes in shape under specific
environmental stimuli, represents an exciting frontier in mate-
rial science, with potential ramifications across interdisciplinary
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fields.** The fundamental reason for focusing on shape morph-
ing behavior in hydrogels is the significant advancement in
functionalities that it offers.®® In bioengineering and medicine,
for instance, shape morphing hydrogels can lead to advance-
ments in minimally invasive procedures and personalized med-
icine. Hydrogels that can change their shape in response to
specific biological signals could potentially deliver drugs more
precisely, navigate complex biological structures, or even alter
their form to match changing physiological needs.*® In the
realm of soft robotics, shape morphing hydrogels could lead
to the creation of robots that can adapt to their surroundings
and perform tasks with a sophisticated and delicate level, which is
currently unattainable with rigid materials.’” Additionally, the
potential for environmental sensing is exciting, where shape-
changing hydrogels could provide visual, real-time indicators of
changes in parameters like pH, temperature, or pollutant
3840 More importantly, the study of shape morphing beha-
vior also offers fundamental insights into the interplay between
materials and their environments. This can lead to an in-depth
understanding of naturally occurring shape-changing processes,
such as using the hydrating/dehydrating induced shape change of
hydrogels to study the cavitation of soft materials and observing

levels.

the shape change of hydrogels that swell in granular medium to
investigate why soil can reduce the ability of hydrogels to absorb
water and swell.*"*** Such knowledge could, in turn, inform the
design of more efficient materials and systems. In sum, the shape
morphing behavior of hydrogels presents an avenue of study with
far-reaching implications. From advancing medical procedures to
contributing to the rise of soft robotics, this research area promises
to reshape our understanding of what materials are capable of
achieving.*?

In this review, we mainly focus on the three-dimensional
(3D) shape morphing behavior of stimuli-responsive composite
hydrogels and comprehensively discuss their hydrogel matrices,
functional additives, interaction between additives and
matrices, fabricating techniques, shape morphing mechanisms,
as well as different external stimuli-induced shape-morphing
complexity of composite hydrogels (Fig. 1). In stark contrast to
previous overviews of shape morphing behavior of smart soft
materials such as shape memory polymers, liquid crystal elas-
tomers, or pure stimuli-responsive hydrogels,**™*° we dig much
deeper in the contribution of composite hydrogels to shape
morphable soft matter and highlight the role of utilizing the
chemistry of hydrogel matrix, functionalities of additives, and
their interaction to tailor inhomogeneity of synthetic composite
hydrogels. For an in-depth understanding of the state-of-art
composite hydrogels with shape morphing behaviors, we also
compile the emerging fabrication methods, designing mechan-
isms and recent advances of shape morphable composite hydro-
gels. These progress in shape morphing of composite hydrogels
are categorized by the type of initiating stimuli, ranging from
temperature,’® light,”" electricity,’ magnetic field,>* pH value,*®
solvents®* to other stimuli like force.>® Moreover, an exhaustive
and up-to-date application scenario of shape morphable com-
posite hydrogels have been depicted, including soft robotics,>®
information encryption,®” biomedical applications,*®*° flexible
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Fig. 1 Representative composition, 3D shape-morphing, types of stimuli
that can be responded to, and emerging applications of composite
hydrogels. Reproduced with permission.>®~61 Copyrights 2016, Springer
Nature, Copyright 2021, 2021 Wiley-VCH, Copyright 2021, 2022, 2022,
American Chemical Society.

electronics,® and engineered living materials.®' For each appli-
cation, we discuss in detail a few rationally designed devices,
systems, or mechanisms with far-reaching perspectives. Finally,
we conclude with insights into the development and barriers in
shape-morphable composite hydrogels, providing an effective
source to recognize the current developmental limitations and
inspire innovative strategies for future smart hydrogel research.

2. Chemistry of conventional
hydrogels and additive components for
composite hydrogels

In general, hydrogel matrices and functional additives are the
two basic components of fabricating composite hydrogels. The
co-existence of hydrogel matrices and functional additives
serves as an efficient combination of continuous phases and
discrete reinforced phases.®>

Continuous hydrogel matrices function as a bonding agent
between matrices and additives, the crosslinked network of
hydrogels can provide structural support and create a stable
environment for incorporating various additives.®> Moreover,
hydrogel matrices enable to transfer and distribute the loads
between additives. The stronger interaction between matrices
and additives contributes to more effective load distribution
and energy dissipation, thus improving the mechanical proper-
ties of composite hydrogels.®®®> Additionally, since hydrogels
physically entrap or chemically bind additives, these additives
are protected by the hydrogel matrices from external destruc-
tion and environmental corrosion.®” Especially, unlike toxic

5991


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3qm00856h

Open Access Article. Published on 28 september 2023. Downloaded on 28/09/2025 15:19:44.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

polymer matrices, hydrogel matrices can supply a bio-friendly,
hydrophilic living environment, which is compatible with bio-
additives like specific cells, fungi, and bacteria.®® Notably, different
types of hydrogel matrices also endow composite hydrogels with
various classification criteria. Specifically, composite hydrogels can
be categorized based on their origin, responsiveness, and consti-
tution. They include natural and synthetic composite hydrogels
depending on their origin. As for their responsiveness, composite
hydrogels can be classified as non-responsive, temperature-
responsive, lightresponsive, solventresponsive, and other
stimuli-responsive hydrogels. Moreover, based on their constitu-
tion, composite hydrogels are divided into single-network, double-
network, and multiple-network composite hydrogels.**

Regarding functional additives, on the one hand, incorpor-
ating stiff additives can strengthen the specific region of the
hydrogel matrix,”” which is commonly accompanied by the
decrease of swelling ratios of hydrogels when specific interactions
occurred between additives and matrices.®® It is noteworthy that
composite hydrogels exhibit a dependency on additives
dispersion.”! The well-distributed additives are the basic require-
ment to prepare isotropic composite hydrogels, whereas the
concentrated or patterned distribution is a typical technique to
create a modulus and sensitivity mismatch throughout the
hydrogel matrices. On the other hand, the particular functional
additive can integrate the specific sensitivity to new stimuli,
thereby expanding the functionality of stimuli-responsive compo-
site hydrogels.®® Taking into account the diversity of additives,
composite hydrogels can also be classified through the composi-
tion and sensitivity of additives.”" For example, based on the
composition of additives, composite hydrogels can be categorized
as carbon-based, metal-based, and polymer-based additives rein-
forced composite hydrogels. Similarity, considering the dimen-
sion of additives, they can be divided into 0D, 1D, 2D, and 3D
fillers reinforced composite hydrogels.

Therefore, selecting or synthesizing proper matrices and
additives for composite hydrogels necessitates deeply under-
standing the chemical structures and properties of different
hydrogels and additives. To comprehensively summarize hydrogel
matrices and functional additives that are typically used for
preparing composite hydrogels, we first elucidate various types of
hydrogels, including non-responsive natural hydrogels, non-
responsive synthetic hydrogels, and responsive (or smart) hydro-
gels. For each type of hydrogel, their special chemical structures,
common preparation and crosslinking mechanism, outstanding
traits, as well as potential limitation are introduced. Afterward,
carbon-based, metal-based, polymer-based, Mxene-based,
cellulose-based, and other additives are reviewed. Several of
the most common examples in these additive families are
chosen to showcase their representative functionalities, includ-
ing morphological structures, sensitivity, mechanisms, stimuli-
responsiveness, and shape-morphing behaviors of the corres-
ponding composite hydrogels.

2.1. Chemistry of typical hydrogels for composite matrix

2.1.1. Non-responsive natural hydrogel matrices. Nature is
frequently regarded as an eternal, reliable, economic, and

View Article Online
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productive technique for generating attractive hydrogel matrices.
Researchers around the world have extracted and received plenty
of biological chemicals that can constitute gel-like structures
from animals or plants in various ecological environments, such
as cellulose-rich plants, algae, shrimp, and animal collagen.
Owing to the bio-friendly origins of these chemicals, favorable
biocompatibility can be observed in nearly all natural hydrogels,
leading to their promising applications in biomedical fields such
as wound healing, drug delivery, tissue regeneration, and
more.”>7?

Alginates (Alg), as one of the most famous natural hydrogels,
have been widely studied in past decades.”® It is typically
extracted from brown algae (i.e., Phaeophyceae), which are
the major seaweeds of the temperate and polar regions. Over
200 different alginates have been produced, originating from
different brown algae species.”* The chemical structure
of alginate is an anionic linear polysaccharide consisting of
B-p-mannuronic acid (M) residues and ao-t-guluronic acid (G)
residues. The carboxylic groups in G and M residues tend to
deprotonate in H,O with a pH value higher than the pK, of
alginates (pK, value of M and G residues are 3.38 and 3.65,
respectively), thereby forming the anion -COO~ and H;0".”>”>
Moreover, the sequential arrangement of these two residues
forms three different chain blocks: successive G-block (e.g.,
-GGGG-), successive B-block (e.g., -BBBB-), and alternating
GM-block (e.g., -GMGM-).”>”> Notably, the content ratio of
G-block to B-block differs in more than 200 kinds of existing
alginates.”* Since the gelation and properties of a hydrogel
generally depend on the stable network generated via physical
or chemical interactions, understanding possible crosslinking
methods is crucial to designing and tuning their properties. In
alginates, there are three typical mechanisms to crosslink
polysaccharide chains: (1) acid crosslinking; (2) ion crosslinking;
(3) covalent crosslinking.” For acid crosslinking, contrary to the
aforementioned deprotonation of carboxyl groups, the anionic
—-COO™ will protonate and return to carboxyl groups if the pH
value is below the pK, of alginates, thus hydrogen bonding and
entanglements will be dramatically imposed due to the disap-
pearance of electrostatic repulsion.”®”” Overall, stronger cross-
linking can be obtained in a more acidic environment, but acid
crosslinking is hard to control and the strong acids always
degrade the alginate chains. Ion crosslinking is the most pre-
valent approach. Introduced multivalent cations (e.g., Ca>*, Mg,
Mn**, AP, Fe*") can be anchored into the cage, where sur-
rounded by -COO™, and interconnect as a “box-egg” model.”®
Interestingly, the anion suppliers involved in the ion interaction
mainly originate from the G-block, followed by the GM-block, but
rarely from the B-block.”* This can be attributed to the eq-eq
linkage present in the B-block, which leads to a flatter three-fold
screw symmetry and creates cages too small for cations to
occupy.”’® Therefore, alginates with more G-block will fulfill stiffer
but more brittle mechanical behaviors. The third method is
covalent crosslinking, which is based on the chemical reaction
between the bifunctional crosslinker and the carboxyl and hydro-
xyl groups in alginates. The most well-known crosslinker is
diamine; the secondary amine groups can condense with carboxyl

5992 | Mater. Chem. Front., 2023, 7, 5989-6034 This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2023
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groups in alginates and undergo amidation.”” With the assis-
tance of catalysts, the chemical network is easily constructed. In
addition to the crosslinking controllability and intrinsic biocom-
patibility of alginates, they can also be used to improve the
stretchability and toughness of hydrogels.®® In 2012, Sun et al.
proposed a highly stretchable and tough hydrogel via hybrid
crosslinking (Fig. 2a). The combination of two toughening
mechanisms, crack bridging by the network of covalent cross-
links and hysteresis by unzipping the network of ionic cross-
links, increases the stress and stretch at rupture to 156 kPa and
2300%, respectively. These properties are 3.7 kPa and 120% for
the parent alginate gel, 11 kPa and 660% for the parent
polyacrylamide gel.’’ Despite the outstanding advantages of
alginates, several limitations still restrict their development.
For example, the stability of alginate hydrogels is easily affected
by enzymes (i.e., alginase), surrounding media, pH value, degree
of oxidation, and temperature.”>* Additionally, the viscous
alginate precursor is always used as a thickening agent to
prepare adhesive or cohesive substances, but the high viscosity
also poses difficulties in processing.®

Similar to alginate hydrogels, many other polysaccharides
with analogous chemical structures are capable of preparing
natural hydrogels. One significant example is agar, which is
obtained from the cell walls of red algae. Agar is composed of a
mixture of gellable agarose and non-gellable agaropectin. The
hydrogen bonds in agarose are the main source of gelation. As
the temperature increases, hydrogen bonds will dissociate, leading
to the transition from a gel state to a sol state in agar. Owing to the
relatively low gel point (37 °C) and excellent biocompatibility, agar
has always been applied in food manufacturing and plant
biology.®*%> Another fascinating natural hydrogel is chitosan
which is acquired by treating the chitin shells of shrimp, crab,
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and other crustaceans with an alkaline substance.®® Chitosan is a
linear chain with a random distribution of p-glucosamine and
N-acetyl-p-glucosamine. The crosslinking of chitosan hydrogels is
based on active amino and hydroxyl groups inside. Either strong
coordination with metal ions (e.g., Fe**) or covalent reaction
with bifunctional crosslinkers (e.g., dicarboxylic acid) can facil-
itate chitosan to generate stable networks (Fig. 2b).®” Normally,
the pK;, value of amino groups in chitosan is around 6.5, thus
significant protonation occurs in a neutral solution (pH = 7) and
chitosan will be water-soluble. In the meantime, protonated
amino groups enable it to readily attract negatively charged
surfaces such as mucosal membranes, and residual unproto-
nated amino groups and hydroxyl groups can function as
donors to form hydrogen bonding with acceptors on different
surfaces. As a result, chitosan has been widely used to improve
the bio-adhesion of hydrogels (Fig. 2b), which is meaningful to
wound adherence, anti-inflammation, skin protection, and
wearable devices.**™°

Gelatin, which origins from animal collagen, is another
traditional hydrogel matrix. It contains plenty of peptides and
proteins, which are linear biomolecules and macromolecules
comprised of various amino acid residues.”* Since gelatin can
be referred to as hydrolyzed collagen, the types and contents of
various amino acid residues in gelatin are nearly the same as
those in collagen, including glycine, proline, hydroxyproline,
alanine, glutamic acid, arginine, etc. (Fig. 2c).”> Among these
amino acids, glycine dominates the formation of hydrogen
bonding between gelatin chains, which eventually assembles
to helixes with double or triple strands. Additionally, the
existence of H,O molecules can assist to bridge the interaction
between other amino acids in gelatin chains, thus improving
the stability of formed helixes. In virtue of the above assembly

Gelatin gel

Alginate-polyacrylamide
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®
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Fig. 2 Representative natural hydrogels: (a) the network comparison of alginate, polyacrylamide, and alginate—polyacrylamide hybrid hydrogels, and
their mechanical tensile test and loading—unloading cyclic test (the photograph present stretchability of alginate—polyacrylamide hybrid hydrogel).
Reproduced with permission.8! Copyrights 2012, Springer Nature. (b) The double crosslinked hydrogel based on amidation and coordination bonds from
carboxylated polyvinyl alcohol (PC) and chitosan/Fe®*, and photographs exhibit its adhesion property. Reproduced with permission.8” Copyright 2022,
Elsevier. (c) The formula and gelation of gelatin hydrogel. Reproduced with permission.”%°3 Copyright 2020, Wiley-VCH.
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mechanism, the gelation of gelatin can be realized via
assembly-induced crystallization or crosslinking.”> Typically,
owing to the heating-dependent dissociation of the hydrogen
bonding, the increasing temperature can destroy the helical
conformation of gelatin chains, which means the hydrogel net-
work can be de-crosslinked. Contrarily, the cooling procedure
promotes the regeneration of the hydrogen bonding, leading to
the recovery of crosslinked network and gelation (Fig. 2c).”?
Another crosslinking approach is creating covalent bonds
through the chemical reaction between bifunctional crosslinkers
(e.g., diisocyanate) with amino, acid, or amide groups in gelatin.
Notably, gelatin-based hydrogels exhibit a broad selection of
tensile strength, ranging from 2.4 to 63.25 MPa for samples
derived from the pig skin.® Actually, the strength of gelatin is
determined by double or triple helixes contents, which vary in
different origins of gelatin, such as distinct species, tissues, or
organs.’* In addition to widely optional mechanical strength, the
hydrolysis of gelatin endows it with biodegradability, so gelatin
hydrogels have been mostly used as hard capsules in pharma-
ceutics, gelling agents in food manufacturing, cartilage replace-
ment, etc.”*™%”

2.1.2. Non-responsive synthetic hydrogel matrices. Unlike
biodegradable natural hydrogels, hydrogels with stable properties
and long lifetimes are also desired in certain engineering fields,
like soft robotics, pollutant removal, and wearable electronics.
Thus, scientists have developed a series of synthetic hydrogels via
rational molecular structure design and reasonable chemical
synthesis.”® In synthetic hydrogels, hydrophilic polymer chains
are basic units that constitute three-dimensional networks, mono-
mers with plenty of hydroxyl, amide, carboxyl, or amino groups
are typically employed to examine polymerization and crosslink-
ing due to their fantastic hydrophilicity. Their molecular weights,
conformations, and properties are readily controlled by synthesis
procedures. In other words, the high programmability of synthetic
hydrogels creates more available choices for hydrogel-based appli-
cations. For example, mechanical behaviors in some cases can be
regulated via simply changing molecular weights, crystallinity, or
polymer components.”® Additionally, although the biocompatibil-
ity of these synthetic hydrogels is not as good as natural hydrogels,
they are still bio-friendly and non-toxic. Hence, synthetic hydro-
gels enable to be also applied in biomedical fields like artificial
implanting materials, drug release systems, contact lenses, etc.”*
Here, to better acknowledge the family of synthetic hydrogels,
some representative synthetic hydrogels that always occur as non-
responsive hydrogel matrices are briefly introduced.

Poly(vinyl alcohol) (PVA) hydrogels, which are one of the
most researched water-soluble polymers, are typically prepared by
the base hydrolysis of polyvinyl acetate (PVAc). The preparation of
PVAc is achieved through the free radical polymerization of the
vinyl acetate monomer. Since a number of hydroxyl groups on
PVA chains can establish the intramolecular and intermolecular
interaction by complementary hydrogen bonding, several adja-
cent polymer strands in certain regions are more likely to be
oriented, thereby forming the crystallization. These crystallized
regions can be viewed as physical-crosslinking sites of PVA
hydrogels due to bundled polymer chains. Thus, physical
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crystallization is the most common way to realize the gelation of
PVA.'® At present, there are three methods that researchers use
for generating outnumbered crystallization inside PVA hydrogels:
cyclic freezing-thawing,’®*™%* solvent exchange,'*>'%>'% and
salting-out."®>'°® For the cyclic freezing-thawing procedure, the
low temperature not only weakens the movement of chains but
increases the contact time for PVA chains, resulting in higher
crystallinity. Regarding solvents exchange, switching solvents
from good solvent to poor solvent promotes the aggregation of
PVA chains, the distance between PVA chains is dramatically
shrunk and more crystallines can be formed. The salting-out
effect is using certain salts to attract H,O molecules, which can
form solvent-chain hydrogen bonding and competes with chain-
chain hydrogen bonding. The introduction of salts decreases this
competition and thus improves crystalline contents. Further-
more, the molecular weight of PVA chains is another critical
factor to determine the crystallinity."®” Longer polymer chains
provide more hydroxyl groups that participate in the crystal-
lization. Interestingly, the crystallinity is closely related to the
mechanical behavior of PVA hydrogels.'® On the one hand,
crystallines can block the propagation of crack tips, and PVA
hydrogels will be stiffened. On the other hand, extracting polymer
chains from crystallines has to dissipate energy, which means
PVA hydrogels will be toughened. Therefore, increasing crystal-
linity is capable of preparing PVA hydrogels with both high
strength and large stretchability.' For instance, Xu et al. fabri-
cated a highly-crystalized PVA hydrogel via the synergic effect of
solvent exchange and salting-out (Fig. 3a). In virtue of ultrahigh
crystallinity of 30%, the resultant PVA hydrogels obtained coor-
dinatively enhanced stiffness (52.3 &+ 2.7 MPa) and toughness
(120.7 + 11.7 k] m™?) respectively.'% Although PVA hydrogels are
well-known for their impressive mechanical behavior, they are
hard to function as water purification, actuators, and the driving
source of soft robotics. That is because highly crystalized (ie.,
physically crosslinked) networks also induce low H,O absorption
and anti-swelling behavior.*®

Polyacrylamide (PAM) hydrogels are typically fabricated by
the free radical polymerization of the acrylamide monomer and
crosslinkers (e.g., N,N'-methylenebisacrylamide, abbreviated as
BIS) induced chemical crosslinking."'® Since PAM chains are
characterized by their extremely hydrophilic amide groups, the
significant swelling ratio is readily observed in the aqueous
™1 Simultaneously, the large volumetric expan-
sion is accompanied by high water contention, making PAM
hydrogels commonly used as superabsorbents.''> Moreover,
another feature of PAM hydrogels is their relatively low mechan-
ical strength. Despite the adjustable stretchability realized by
the contents of crosslinker, the stress at the fracture point of
PAM hydrogels is around 10 KPa, which limits the development
of PAM hydrogels.'"”® To address this problem, Kim et al.
proposed a highly-entangled PAM hydrogel in recent years
(Fig. 3b). This high entanglement is acquired from the acryla-
mide precursor with a high concentration of monomers but low
concentration of both initiators and crosslinkers. Compared to
regular PAM hydrogels, once the polymerization is initiated in
this precursor, more monomers will eventually form much

environments.
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Fig. 3 Representative synthetic hydrogels: (a) The highly-crystalized PVA hydrogel with excellent mechanical performance, which is realized by solvent
exchange and salting-out effect. Reproduced with permission.’°® Copyrights 2023, Wiley-VCH. (b) The mechanical comparison between the regular
PAM hydrogel and the highly-entangled PAM hydrogel. Reproduced with permission.*** Copyright 2022, American Association for the Advancement of
Science. (c) The DNA crosslinked PEG hydrogel and its degradation mechanism. Triggered by the tumor-specifc enzyme (MMP-2), therapeutic cargos are
released in multidrug resistant cancer. Representative images of IVIS spectrum measurement of mice over 28 days present In vivo anti-cancer efficacy of
the therapeutic hydrogel. Reproduced with permission.**® Copyright 2020, Elsevier. (d) The strength of a poly(2-acrylamido-2-methylpropanesulfonic

acid) (PAMPS)/PAM DN hydrogel that resists slicing with a cutter. Reproduced with permission.*??

longer PAM chains, and they will be prone to interpenetrate with
each other. In this situation, numerous entanglements endow
PAM hydrogels with higher breaking stress, and the energy
dissipation from sliding and disentanglement between chains
contributes to improved stretchability.'’* Overall, the simple
synthesis, favorable biocompatibility, and easily-expanded net-
works of PAM hydrogels facilitate them to be developed in drug
sustained-release,'"® tissue engineering,'*® and agriculture.""”
Polyethylene glycol (PEG), a linear polymer terminated by
two hydroxyl groups, is typically synthesized by ring-opening
polymerization of ethylene oxide and H,O. Either acidic or
basic catalysts can accelerate the polymerization. The gelation
of PEG hydrogels predominantly relies on chemical crosslink-
ing, including chain-growth crosslinking, step-growth cross-
linking, and mixed-mode growth crosslinking."*® For chain-
growth crosslinking, adding a certain crosslinker terminated by
two ethylene oxides is required. Two ethylene oxides at both
ends of the crosslinker enable them to participate in PEG
polymerization and connect separate PEG strands, eventually
forming a stable network. Regarding step-growth crosslinking,
the monomer with tetra-functional groups that can react with
hydroxyl groups needs to be used. Based on this reaction, this
monomer functions as the linking center, which connects four
PEG chains and constitutes the fence-like network. Mixed-
mode growth crosslinking refers to PEG chains undergoing
free-radical polymerization after their hydroxyl groups were
modified by vinyl or other groups enabling chain growth. In
this process, a substance that possesses the vinyl group at one
end and the group that reacts with hydroxyl at another end (e.g.,
acrylate acid) is inevitable for the modification, and a

This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2023 Mater. Chem. Front., 2023, 7, 5989-6034 |
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crosslinker like BIS is necessary for the following gelation. Owing
to the advantage of easy modification for PEG hydrogels, they are
broadly applied in the biomedical field, such as tumor
treatments."™® As shown in Fig. 3c, PEG chains are modified by
amino acid first and then connect two DNA molecules with
complementary sequences. Pairing DNA molecules is viewed as
DNA crosslinking, which can be easily degraded after injecting into
tissues. Subsequently, the anti-tumor medicine can be released."*

Notably, all synthetic hydrogels listed above are based on a
single polymeric system. However, integrating functionalities
from different hydrogels is one of the challenges that research-
ers are facing. In recent years, a fascinating and general
strategy, DN hydrogels, has been introduced to integrate the
advantages of two independent networks.'””’ Take using
DN hydrogels to fabricate strong and tough hydrogels as an
example, Gong et al. reported a DN hydrogel with extremely
high mechanical strength (Fig. 3d)."** At the heart of their DN
hydrogels lies the DN architecture, which consists of two
distinct polymeric networks: a stiff and brittle first network
intertwined with a soft and stretchable second network. The
first network with high mechanical strength provides the DN
hydrogel with rigidity and load-bearing capabilities. In con-
trast, the second network formed by a more elastic and flexible
polymer imparts the DN hydrogel with elasticity and deform-
ability. Eventually, the resultant DN hydrogel exhibits a stress of
17.2 MPa and a fracture strain of 92%, respectively. These
values greatly exceed that sustained by the single network gels.
Therefore, as an emerging technique for integrating synthetic
hydrogels, DN hydrogels provide promising potential for fabri-
cating all-inclusive hydrogel matrices.
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2.1.3. Responsive hydrogel matrices. Stimuli-responsive
hydrogels are another special hydrogel matrices, which can actively
detect external stimuli and feedback certain responsiveness.'?*
According to the types of stimuli that can be sensed, the stimuli-
responsive hydrogels are divided into temperature-responsive
hydrogels, light-responsive hydrogels, pH-responsive hydrogels,
etc. Next, the preparation, characteristics, and mechanisms of
these stimuli-responsive hydrogels will be clarified by combining
the introduction of some representative examples.

Temperature-responsive hydrogels, one of the most common
smart hydrogels, are mainly received in hydrogels with lower
critical solution temperature (LCST) or upper critical solution
temperature (UCST).”*®'>* LCST is the critical temperature
below which the components of a mixture are miscible in all
proportions. Polymers with LCST have been more extensively
studied in aqueous solutions.>'*®> The most famous representa-
tive hydrogel possessing LCST is poly(N-isopropylacrylamide)
(PNIPAM). PNIPAM hydrogels are typically synthesized via free
radical polymerization of NIPAM monomers and amide
crosslinkers.”*®'>” When the environmental temperature is
below the LCST, PNIPAM chains are hydrophilic and miscible
with water due to the formation of hydrogen bonds with water

a

N\ Chain of PNIPAM

60°C

5 I
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molecules, resulting in a coil-like structure of the chains. Once
the temperature is heated up to the LCST, the increased activity
of H,O molecules will break their hydrogen bonds with amide
groups, thus invaliding the solvation of PNIPAM chains. After-
ward, the intra/interchain hydrophobic interaction will be domi-
nated by the hydrophobic interaction between isopropyl groups,
and PNIPAM chains will change to hydrophobic and collapse
into a globule structure."*® Simultaneously, this collapse of
PNIPAM chains leads to the volumetric shrinkage of the whole
network, and the white color gradually occurs as a result of the
phase separation between hydrophobic chains and hydrophilic
aqueous environment (Fig. 4a)."* Contrarily, UCST is the critical
temperature above which the components of a mixture are
miscible in all proportions. In hydrogels with UCST, the IPN
hydrogels of PAM and polyacrylic acid (PAA) is one of the most
common examples. Since amide groups in PAM is a better
hydrogen acceptor compared to H,O and carboxyl groups in
PAA is a better hydrogen donor compared to H,O, the comple-
mentary hydrogen bonds in the coexisted system of PAM-PAA are
more stable than that in PAA-H,0 or PAM-H,O0. In other words,
the inclination of chains to form the phase separation instead of
the solvation attributes to dominated intra-/inter-chain hydrogen
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Fig. 4 Representative smart (stimuli-responsive) hydrogels: (a) The swelling/deswelling behavior of PNIPAM hydrogels based on heating/cooling
temperature upon its LCST. Reproduced with permission.**® Copyrights 2015, Wiley-VCH. (b) The dual-layer actuator driven by controlling temperature
upon/below UCST of IPN of PAM-co-PAA. Reproduced with permission.**® Copyright 2019, American Chemical Society. (c) Typical phase diagrams of a
polymer solution with LCST and UCST behavior (T.: critical temperature; Tc,: cloud point), and the thermodynamic map showing the solubility and
solution properties of polymers in water (the AH,,—AS,,, plot is divided into 4 zones depending on the changes of enthalpy (AH,,) and entropy (AS,,) and
the temperature: | — polymers with UCST; Il — insoluble non-thermoresponsive polymers; Il — polymers with LCST; IV — soluble non-thermoresponsive
polymers. Zones | and IIl are delimited by the freezing and boiling points of water at 273.15 and 373.15 K, respectively). Reproduced with permission.***
Copyright 2019, Elsevier. (d) vis/UV responsive supramolecular hydrogels based on azobenzene and host—guest interaction. Reproduced with
permission.*® Copyright 2010, Wiley-VCH. (e) The dually-pH-responsive PEC hydrogel consisting of PAA and poly(2-(dimthylamino) ethyl methacrylate)
(PDEAEMA). Reproduced with permission.**° Copyright 2016, Elsevier.
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bonds. However, increasing temperature disrupts this domina-
tion, because formed hydrogen bonds are broken by enhanced
energy. Therefore, PAM/PAA IPN hydrogels recover to be soluble
and exhibit UCST transition (Fig. 4b).*** From a thermodynamical
view, the solubility in a binary system can be explained by phase
diagrams (Fig. 4c). The phase boundary, also known as binodal
curves of binary systems, represents the specific temperature and
composition at which a solution transfer from homogeneous to
heterogeneous state. The extrema of the binodal curve is the
critical temperatures (7.), including both LCST for the concave
case and UCST for the convex case (Fig. 4c)."*' Based on the Flory-
Huggins theory, the Gibbs energy of mixing (AG,,) is given as
AG,, = RT(ny In ¢4 + ny In ¢, + Xy,n4 In ¢p,), where R is the ideal gas
constant, n is the molar number, ¢ is the volume fraction, X is the
Flory-Huggins interaction parameter, and the subscripts 1 and 2
denote the solvent and the polymer, respectively. Notably, the
entropy of mixing (AS,,) is AS, = —R(mIn¢g; + nyIné,), and
enthalpy of mixing (AH,,) is AH,, = RTX1,1, In ¢,. For the Gibbs
energy of mixing, when AG,, < 0, binary systems will sponta-
neously soluble with each other; when AG,,, > 0, binary systems
will be insoluble; when AG,, = 0, the Gibbs energy attains the
critical point, the critical temperature 7. can be calculated by
AH,,/AS,. Thus, according to the mixing entropy and enthalpy of a
polymer—solvent mixture, its solubility can be divided into four
regions: (1) insoluble region, where AH,, is positive and AS,, is
negative; (2) soluble region, where AH,, is negative and AS,, is
positive; (3) LCST region, where both AH,,, and AS,,, are negative;
(4) UCST region, where both AH,,, and AS, are positive (Fig. 4c)."*"
Especially for case (3) and (4), the temperature plays a crucial role
in determining solubility. In the LCST region, the polymer is
insoluble when T > T, but it is soluble when T < T.. In the
UCST region, the polymer is soluble when T > T, but it is
insoluble when 7 < T.""%” In a word, designing a
temperature-responsive hydrogel is closely relevant to understand-
ing the phase diagram of the polymer-solvent binary system and
the effect of intra/interchain interactions on its solubility.

For light-responsive hydrogel matrices, introducing functional
groups enabling photochemical reaction into polymer chains,
which construct hydrogel networks, is inevitable in their
synthesis.’”***7% Typically, incorporating photosensitive moi-
eties relies on two approaches: the “click” grafting of moieties
onto polymer chains and the polymerizing of monomers mod-
ified via photosensitive moieties. These photosensitive moieties
in polymer structures can reconfigure their molecular structures
and affect the properties (e.g., mechanical behavior, rheology,
topological structures, fluorescence, adhesive, or responsive-
ness) of hydrogels by varying the source, intensity, and wave-
length of light. For example, the molecular structure of
azobenzene is composed of two phenyl rings linked by N—=N
double bond. Under ultraviolet (UV) light, the structure is
nonplanar cis-azobenzene, whereas the cis-azobenzene will
change to planar trans-azobenzene once stimulated by visible
light or heating."*%'*” Tamesue et al. utilized the photosensitive
azobenzene and the host-guest interaction to control the gela-
tion and de-gelation reversibly via photo irradiation (Fig. 4d).
The host polymer can only associate with the trans-azobenzene
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that functions as guest polymers under visible light, this asso-
ciation contributes to physical-crosslinking and realizes the
gelation. If the physical-crosslinked hydrogel is irradiated by
UV light, the cis-azobenzene will dissociate with the host poly-
mer, which means the physical crosslinking will be disrupted.’*®

Regarding pH-responsive hydrogels, cationic or anionic
groups, like carboxyl, amino, and sulfonic groups, are needed
to realize pH-responsiveness due to the effect of pH value on their
protonation or deprotonation.’*® For instance, PAA which is
typically synthesized by the free radical polymerization of acrylic
acid monomers, is one of the anionic pH-responsive hydrogels.
The carboxyl groups on the side chains incline to deprotonate
when the pH value is higher than the pK, of -COOH, thus
forming the anion -COO~ and H;0'. The existence of the
carboxyl anion provides PAA hydrogels with the ability to function
as an electrolyte. However, if the pH value is lower than the pK, of
carboxyl groups, the -COO™ anion will protonate and return to
carboxyl groups, thereby PAA hydrogels will be neutralized."™" As
an example of pH-responsive hydrogels, C. Wong et al. developed
a dually-pH-responsive polyelectrolyte complex (PEC) hydrogel
consisting of PAA and poly(2-(dimthylamino) ethyl methacrylate)
(PDEAEMA) (Fig. 4e). The pH-responsiveness of amino groups is
contrary to that of carboxyl groups. When pH value is higher than
their pK,, amino groups will keep the deprotonated neutral form,
but the protonation of amino groups will occur once the pH value
is lower than their pK,, eventually generating -NR,H' cation.
Hence, in this PEC hydrogel, only when the pH value is higher
than the pK, of carboxyl groups and lower than the pK, of amino
groups can the ionic interaction between -COO™~ and -NR,H" be
stable. As a result, the intermolecular interactions, microstruc-
tures, and swelling ratio of PEC hydrogels can be regulated via
controlling the pH value of aqueous environments.**°

In addition to the representative examples of responsive
hydrogels mentioned above, numerous uncommon stimuli-
responsive hydrogel matrices have been invented via various
technologies, such as reasonable molecular design, gradient
crosslinking density, and lithography.'** For example, inspired
by the destruction and reconstruction (i.e., mechanical training) of
a muscle, Matsuda et al. developed a mechanical force-triggered
self-growing hydrogel. The mechanical force-responsiveness of this
hydrogel relies on the generation of mechanoradicals by mechan-
ical force-induced polymer strand scission. In typical hydrogels,
polymer strand breakage leads to crack propagation and eventual
failure. However, the DN structure of the hydrogel provides an
effective means to preserve mechanoradicals without bulk failure.
The brittle first network generates mechanoradicals when it
breaks, while the tough second network protects the hydrogel
from bulk failure. Simultaneously, these internal mechanoradicals
can initiate the polymerization of sustained monomers, which can
be regarded as the reconstruction of the first network. With the
repetitive loading, the hydrogel can self-grow and be substantially
strengthened."** Based on the same mechanism, their group
exploited a mechanical force stamp to control the self-growing of
microstructures on the surface of hydrogels, which engineers the
on-demand functions of hydrogels."** Moreover, the hydrogels
that respond to bio-signals (e.g:, peptide, glucose, antibody, and
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enzyme) are another set of novel smart hydrogels obtained
significant interest."** For these bio-signals, their chemical or
physical characteristics can affect the crosslinking density,
interactions, or molecular conformations of hydrogels, thus
achieving bio-responsiveness.>® For instance, Maitz et al. fabri-
cated a thrombin-responsive hydrogel for autoregulating the
blood coagulation. Its gelation is based on the reaction between
carboxylic acid moieties on heparin, which is a typical anticoagulant
that catalyzes the complexation of thrombin with antithrombin, and
thrombin-responsive peptides terminated star-PEG. Since thrombin
can cleave between the arginine and serine on peptides, crosslinked
heparins are immediately released as thrombin increases, resulting
in the degradation of hydrogels and the inactivation of the throm-
bin. Especially, inactivated thrombin cannot cleave inside peptides,
thus the release of heparin is gradually terminated and the auto-
regulation of the blood coagulation is realized."* In conclusion,
these interesting responsive hydrogel matrices enable them to be
promising candidates for fabricating composite hydrogels but also
expand the option of functional additives.

2.2. Functional additives for composite hydrogels

Stimuli-responsive hydrogels, prepared by reasonable molecular
design, typically exhibit isotropic volume expansion (i.e., swel-
ling) or contraction (i.e., deswelling) in response to one or more
stimuli. However, the incorporation of additives into hydrogel
matrices provides a way to realize anisotropic responsiveness.
Herein lies a great interest in hybrid material systems that
combine hydrogels and other materials. Notably, incorporating
additives extends far beyond the simple addition of strengthen-
ing elements. The potential mismatch in deformation rates or
modulus and the susceptibility to temperature and environmen-
tal variations enable to creation of discrepancies in composite
hydrogels. For example, when materials with disparate deforma-
tion behaviors are combined, they may respond differently to
applied mechanical forces over time, leading to uneven stress
distributions and structural instability. In other words, additive
components in composite hydrogels reinforce specific regions,
thereby creating a mismatch in a degree of deformation (ie.,
swelling or deswelling) or modulus throughout the hydrogel
matrices, thus facilitating out-of-plane deformation of composite
hydrogels. Alternatively, since the additives and the matrices do
not exhibit compatibility with the prevailing environmental
conditions, environmental fluctuations (e.g., temperature, light,
magnetic field) can induce varying rates of expansion and
contraction in the composite hydrogels, potentially causing
internal stresses and deformations. Furthermore, certain addi-
tives can introduce sensitivity to new stimuli, thereby expanding
the functionality of the stimuli-responsive hydrogel. In essence,
the mismatch in deformation or modulus, the misfit to environ-
mental changes, and the functionality are three pivotal factors
that are worth considering when choosing proper functional
additives. Here, we review various types of additives that coop-
erate with stimuli-responsive hydrogels, such as carbon-based,
metal-based, polymer-based, Mxene-based, cellulose-based, and
other additives. Representative additives in shape morphing
hydrogel systems have been summarized in Table 1.
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2.2.1. Carbon-based additives. As one of the most abundant
elements on earth, carbon-based materials have been widely used
and investigated due to their low cost and functionalities.*¢*%”
Carbon-based materials which are related to the unique atomic
structures of carbon atoms can be categorized by the dimension-
ality of carbon-based materials as zero-dimension (e.g., carbon
dots), one-dimension (e.g., carbon nanotube), two-dimension (e.g.,
graphene oxide) and three-dimensional (e.g, carbon sponge).'*®
Among various carbon-based materials, carbon nanotubes
(CNTs), and graphene oxide (GO) are most intriguing to scientific
societies.

For stimuli-responsive hydrogel systems, the major function
of carbon-based additives is the photothermal effect for the
conversion of heat from light. Typically carbon-based additives
such as CNT, GO and reduced graphene oxide (rGO) are black,
making them ideal materials to absorb the incident light."*°
Under light irradiation, the photoexcited electron of carbon-
based materials will vibrate and interact with others, thereby
accumulating heat energy in a short time.’*® As a result, this
temperature increase is confined to the light-exposed region. To
introduce shape morphing in stimuli-responsive hydrogels, two
main approaches are often employed: the anisotropic distribution
of carbon-based additives and light localization. By creating het-
erogeneous structures through techniques such as 3D
printing,>""**> molding"**">® and photolithography,"**'>” compo-
site hydrogels can achieve designated shape transformation. For
example, Shang et al. reported on organohydrogels based on rGO-
PNIPAM that demonstrated both synergistic shape morphing and
color change upon exposure to near-infrared irradiation."”® More-
over, various methods have been explored to selectively intro-
duce carbon-based materials into the hydrogel matrix, including
the infiltration method,"® electric field'®>'®* and UV light
irradiation."®® Researchers have successfully demonstrated
complex shape deformation in homogeneous GO-PNIPAM
hydrogels by employing local NIR irradiation.'®® Additionally,
Wang et al. also reported shape morphing of GO-PAM-based
trilayer hydrogel by localized NIR light."®*

In addition to the photothermal effect, carbon-based mate-
rials play other essential roles in shaping morphing hydrogel
systems. GO, known for its two-dimensional (2D) shape and
abundant oxygen-containing groups, has been employed for
physical crosslinking within hydrogel networks."®® This incor-
poration serves to reinforce the hydrogel structure and reduce
swelling/deswelling properties.'®>"®” Building on this, Li et al.
utilized 3-(trimethoxysilyl) propylmethacrylate to modify GO,
leading to the synthesis of pH- and temperature-responsive
hydrogels with modified GO as a crosslinker.'®® Similarly,
Zhang et al. utilized the 2D shape of GO to stack and align it
in sodium alginate (SA) hydrogels, resulting in a composite
hydrogel that exhibits responses to water, humidity, heat, and
light.*®® This introduces anisotropic expansion/contraction due
to the nacre-like structures. Furthermore, Gregg et al. demon-
strated a hydrogel actuator by incorporating PNIPAM hydrogel
into a patterned CNT forest."”® The small size of the CNT
structure enables a rapid response time of just 70 ms under
light exposure. Moreover, Ying et al. utilized the conductivity of
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Table 1 Representative functional additives in shape morphing stimuli-responsive hydrogel systems
Types of Materials of
additives additives Hydrogel matrix Stimuli type Role of additive Key properties Ref.
Carbon-based GO + rGO PNIPAM + PMAA Temperature, light, Structural modifier and Local photoreduction of GO for 156
additives PH, ionic strength  photothermal effect structural anisotropy
rGO PNIPAM + Temperature, light Photothermal effect Synergistic color-changing and shape 158
organohydrogel morphing
GO SA Water, humidity, Structural modifier, Structural anisotropy by stacking of GO 169
light photothermal effect
CNT P(AMPS-co-AA)  Electric field Conductor Fast response speed due to additional 171
conductor of CNT
Metal-based cu** PNaAc Solvents Local crosslinking and Electro-driven patterning of ions 173
additives stiffening
AuNP PNIPAM Light Photothermal effect Biomedical devices, soft actuators 182
Nd:NP PAM Magnetic field Generation of magnetic Magnetic-field guidance for in vivo 188
torque applications
IONP PNIPAM Magnetic field Magnetothermal effect Shape deformation under alternating 189
magnetic field
Polymer-based =~ PNIPAM Chitosan Temperature Local deswelling All-hydrogel actuator 193
additives microgel
PPy PNIPAM Light Photothermal effect Resistance change with size of hydrogel 194
Latex PNIPAM Temperature Local stiffening Electric-field induced assembly 197
microsphere
MXene-based MXene PNIPAM Light Photothermal effect Photopolymerization of Mxene 216
additives nanomonomer
Cellulose-based CNC PNIPAM Temperature Rheological modifier, = Shape morphing and antibacterial 225
additives local stiffening abilities
NFC PAA + CMC Hydration Local stiffening and Shape morphing owing to hydration and 229
change of porosity dehydration
Other additives MOFs PNIPAM Light Photothermal effect Fast response speed due to porous 231
structure of MOF
WS, PNIPAM Light Photothermal effect Fast response speed due to 232
nanosheet and local stiffening ice-templating
NC PNIPAM Temperature Structural modifier and Tunable response speed by 233

local stiffening intensity-dependent NC structures

PMAA = poly(methylacrylic acid); PNaAc = polyelectrolyte (sodium polyacrylate); CMC = sodium carboxymethyl cellulose.

CNT to show shape morphing in CNT-enriched poly(2-acrylamido-
2-methyl-1-propanesulfonic acid-co-acrylic acid) (P(AMPS-co-AA))
hydrogels in response to an electric field.'”* The versatility of
carbon-based additives opens up exciting possibilities for creat-
ing advanced and responsive hydrogel systems with diverse
applications.

2.2.2. Metal-based additives. Metals are known for their
stiffness, strength, and density, which contrasts with the soft and
flexible nature of hydrogels."”> This stark difference makes
metals highly suitable as functional additives to hydrogel
matrices. Incorporating metal-based additives in hydrogels serves
two primary roles, offering additional functionalities: (1) stiffen-
ing hydrogel matrix; (2) providing additional means to harvest
environment stimuli. First, the local embedding of metal ions can
crosslink or stiffen hydrogel, thus enabling 3D shape morphing
of a single hydrogel sheet. Palleau et al first reported the
electrically assisted ionoprinting of hydrogels by introducing
copper ions as patterns into poly(sodium acrylate) hydrogels."”
The patterned hydrogels demonstrated motions such as folding
and gripping in response to solvent exchanges between water and
ethanol. Other ionoprinted stimuli-responsive hydrogels with 3D
shape morphing ability in response to temperature'’* and pH'”>
were later reported. Furthermore, other types of responsive
particles can be utilized to enhance the mechanical properties
of hydrogel matrices in specific ways. For instance, magnetic
responsive particles, such as Fe;O,4, can be selectively localized

This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2023 Mater. Chem. Front., 2023, 7, 5989-6034 |

within the hydrogel under the influence of an external magnetic
field. Once positioned, these particles contribute to reinforcing
the local hydrogel region, resulting in improved mechanical
strength and stiffness. The mismatch between the particle-rich
region and hydrogel matrix can lead to out-of-plane shape
deformations of the composite hydrogel structures.’”®"”” Simi-
larly, electrically responsive particles, such as silver nanoparticles,
can be strategically positioned within the hydrogel matrix under
an applied electric field. The localized presence of silver nano-
particles enhances the mechanical properties of the hydrogel in
the targeted region, allowing out-of-plane deformation.'”®
Secondly, metals can respond to external stimuli, thus
triggering the deformation hydrogel matrix in additional means.
For instance, metal nanoparticles, including gold nanoparticles
(AuNP), iron oxide nanoparticles (IONP), and neodymium-doped
nanoparticles (Nd:NP), have the remarkable ability to convert light
into heat through a phenomenon known as the photothermal
effect.'””*™®" This unique property makes metal nanoparticles
highly sought after for integration into temperature-responsive
hydrogel matrices to harness light-induced deformations.'®*%*
When these metal nanoparticles are exposed to light, they effi-
ciently absorb the incident photons, converting the optical energy
into localized heat."®™® This localized heating raises the tem-
perature of the surrounding hydrogel matrix. As a result, the
hydrogel undergoes volume changes due to temperature-induced
shrinking, which leads to controlled deformation of the material.

5999


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3qm00856h

Open Access Article. Published on 28 september 2023. Downloaded on 28/09/2025 15:19:44.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

Moreover, the inclusion of Nd:NP and Nickel nanoparticles in
hydrogel matrices enables a unique response to magnetic fields,
leading to out-of-plane deformations, as these nanoparticles tend
to align with the magnetic lines of force'®® or undergo magne-
tothermal effect,'® respectively, inducing localized changes in the
structures of hydrogels. Hence such structural anisotropy renders
shape deformation of the composite hydrogels.

2.2.3. Polymer-based additives. While hydrogel itself is a
3D structure of crosslinked hydrophilic polymers, the addition
of other polymer-based materials can be achieved to enhance the
mechanical properties of the hydrogel system with physical
bonding."**'*" Microgels with typical diameters ranging from
several hundred nanometers to several tens of micrometers are
dispersed hydrogel particles that provide the mentioned charac-
teristics. Li et al. synthesized calcium-alginate microgels as an
additive to the PAM hydrogel matrix and demonstrated enhanced
elastic modulus and toughness than pure PAM hydrogel."*>
Hence, the incorporation of stimuli-responsive microgels
enhances the volume change of the composite hydrogel than
ordinary hydrogel. Furthermore, Anju et al. reported that PNIPAM
nanogels were added into chitosan hydrogel matrices to intro-
duce anisotropic shape deformation.'®® The PNIPAM nanogels
(radius of 60 nm) were synthesized by in situ free radical
polymerization at 70 °C, above the LCST of PNIPAM. By localiza-
tion of PNIPAM nanogels, complex shape deformations could be
achieved. Therefore, an all-hydrogel-based actuator is prepared
without introducing other types of additives.

Besides microgels, other polymer-based materials are also
widely used in hydrogel matrices to render additional function-
alities. For instance, polypyrrole (PPy) has been loaded into the
PNIPAM hydrogel matrix to introduce shape morphing through
the photothermal effect.'®* The addition of PPy can further render
conductivity to PNIPAM hydrogel which is typically considered an
insulator. Therefore, the shape morphing of PPy-PNIPAM compo-
site hydrogels can convert to relative resistance changes, which
offers potential in soft robots with a self-sensing ability. Further-
more, rigid polymer additives such as nylon spring,'”> and
starch'®® have been incorporated with stimuli-responsive hydro-
gels. Daniel et al. reported PNIPAM hydrogel sheets with electric-
field-guided latex microspheres.'®” These microspheres were dri-
ven, collected and patterned at the electrode due to the dielectro-
phoretic force. Owing to the rigid, nonswellable natures of these
microspheres, the PNIPAM hydrogel sheets exhibited out-of-plane
deformation when the temperature rose above LCST.

2.2.4. Mxenes-based additives. In the past decade, a new
family of 2D nanomaterials, MXenes, has received great attention
owing to their unique combination of excellent mechanical strength,
high metallic/ionic conductivity and tunable properties.'**% Thus
far, MXenes have been widely used in a gamut of applications such
as catalysts, biomedicines and energy storage systems.”’’ 2% In
general, MXenes have the chemical formula M,;X,Ty
(n=1-4), where M, X and T represent the early transition metals
(e.g., Ti, V, etc.), carbon and carbon-nitrogen, and surface
terminated groups (e.g., OH, O, or F), respectively.”®* Such
chemical formula renders high hydrophilicity and rich surface
functional groups which allow the incorporation of MXenes
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with hydrogel systems.”®*>%” Typically, MXenes can act as a
crosslinker, an initiator and multifunctional additives within
hydrogels. Therefore, MXene-based hydrogel can be fabricated
through chemical crosslinking, physical crosslinking, MXene-
activated crosslinking and post-embedment of MXene.*%®

Thanks for the excellent photothermal performance, MXenes
can bring new functionalities such as 3D shape morphing to
stimuli-responsive hydrogels, especially thermos-responsive
hydrogels by light exposure.>*?'> Previously developed
peroxide-decorated MXene (p-Ti;C,T,) and silver nanoparticle-
endowed MXene can trigger polymerization of NIPAM mono-
mers through surface-initiated polymerization®"® and pseudo-
Fenton polymerization,”** respectively. The resulting hydrogels
can undergo shape transformations through exposure to 808 nm
NIR light irradiation. However, due to the limited active cross-
linking sites on MXenes, they serve as photothermal additives in
temperature-responsive hydrogel matrices such as PNIPAM are
more reported. Ge et al. demonstrated a binary-layered MXene
hydrogel consisting of a passive PAA-MXene layer and an active
PNIPAM-MXene layer which underwent 3D deformation through
NIR exposure.”'®> Xue et al. demonstrated an MXene-containing
hydrogel actuator by using an electric field during fabrication.
MXenes formed a concentration gradient through the thickness
of the hydrogel, thus resulting in a structural anisotropy.>'® The
actuator also showed programmable shape morphing under
NIR light.

2.2.5. Cellulose-based additives. As our society is increasingly
demanding renewable and sustainable resources, natural
cellulose-based materials with their supreme properties of
biodegradation, biocompatibility and multifunctionality have
been continuously used worldwide.>'”*'® The family of
cellulose-based materials is mainly derived as nanofibrilated
cellulose (NFC) and cellulose nanocrystals (CNC). NFC particles
are cellulose fibrils with a high aspect ratio (the length-width
ratio is greater than 25) and contain amorphous and crystalline
regions.?’®?*! CNC particles are rod-like or whisker-like parti-
cles with a relatively smaller aspect ratio (the length-width ratio
is greater than 10) and are highly crystalline.*”>*** Both NFC
and CNC can be extracted from plants and wood which brings
the advantages of abundant resources and low cost. Therefore,
cellulose-based stimuli-responsive hydrogels have been the
subject of research for decades. Feng et al. reported a cellulose
hydrogel actuator with lanthanide-ligand which showed 3D
deformation in response to pH.*** Gladman et al. demon-
strated biomimetic 4D printing utilizing NFC and NIPAM ink
that the printed bilayer architectures were programmed with
local swelling anisotropy which generated complex 3D shape
morphing in response to temperature.’® Similarly, Fourmann
utilized CNC as rheological modifier to print CNC-PNIPAM
hydrogels for shape morphing and antibacterial purposes.*>®

Owing to the unique surface chemistry of celluloses, they can be
functionalized via different methods such as acidic degradation,
oxidation and pressure-induced homogenization,>!”/?18226228 The
functionalization of cellulose extends the functionalities of the
cellulose-based stimuli-responsive hydrogels. Mulakkal et al.
reported a cellulose-derived polymer that had carboxymethyl

6000 | Mater. Chem. Front., 2023, 7, 5989-6034 This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2023


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3qm00856h

Open Access Article. Published on 28 september 2023. Downloaded on 28/09/2025 15:19:44.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Materials Chemistry Frontiers

229 This carbox-

groups bound to the hydroxyl groups of glucose.
ymethyl cellulose was prepared to a 4D printing ink with acrylic
acid and crosslinked to hydrogels by citric acid. The printed
hydrogel actuators underwent reversible 3D shape morphing
through the hydration-dehydration process. The cellulose-
based shape morphing composite hydrogels are typically bio-
compatible, thus expecting future applications in vivo.

2.2.6. Other additives. Besides the above-mentioned classes
of additives, many other additives have emerged within stimuli-
responsive hydrogels to create 3D shape morphing. Some
metal-organic-frameworks (MOFs) have excellent photothermal
efficiency and can accelerate the water adsorption/desorption
rate due to their porous structures.”*° Zhang et al. reported Zr-
Fe MOFs-PNIPAM hydrogel actuators that can bend over 360°
within 20 s in response to NIR light.”*" Similar to GO and
MXenes, other 2D nanomaterials are also widely used in stimuli-
responsive hydrogels. Zhong et al. demonstrated a bionic actua-
tor by WS, nanosheets and PNIPAM for biomimetic cellular
structures and steerable 3D deformations.>** Its volume shrank
~90% within 6 s and fully recovered within 4 s upon exposure
and removal of NIR light, respectively. This fast response rate
allowed this actuator to mimic the motion of animals such as
the swimming of jellyfish. Zhao et al. developed a nanoclay (NC)
disk-PNIPAM composite hydrogel actuator on a polydimethylsi-
loxane (PDMS) layer.>*® The printed NC-PNIPAM hydrogel has
confined volumetric expansion/contraction due to the rigid,
non-swellable PDMS layer. By photopolymerizing NC-PNIPAM
under different light intensities, the hydrogel actuator achieved
3D shape deformation in different kinetics in response to
temperature. Furthermore, NC can also respond to ultrasound
by converting acoustic energy to heat, thus triggering the shape
deformation of PNIPAM hydrogels. Hyegyo et al. reported 3D-
printed NC-PNIPAM ultrasound-responsive hydrogel grippers
which achieved gripping motion under low-intensity ultrasonic

irradiation at about 300 mW/cm?.2%*

3. Dispersion of additives in composite
hydrogels

An important consideration for high-quality composites is the
uniform dispersion of additives in hydrogels. As we discussed
above, some additives added into the hydrogel matrix to offer or
improve stimuli-responsiveness are hydrophobic, which will
aggregate in the water environment of hydrogels and impact
the properties. Well-dispersed additives usually provide signifi-
cant improvement in the mechanical properties and respon-
siveness of hydrogels. Due to the concern over dispersion,
surface treatments are popular to improve the compatibility
between additives and hydrogels. Here, we overview the typical
surfactants and common methods of modifying additives, and
evaluate their effect on additives distribution.

3.1. Surfactants

Small molecule surfactants are a type of amphiphilic molecule
that have both a hydrophobic tail and a hydrophilic head. This
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amphiphilicity causes the surfactants to form micelles or
bilayers when in an aqueous solution. The micelles that form
are typically a few nanometers in diameter and consist of a
hydrophobic core surrounded by a hydrophilic corona. These
structures are known to help dissolve hydrophobic molecules,
such as oil, by stabilizing them within the hydrophobic core.

Sodium dodecyl sulfate (SDS) is a commonly used ionic
surfactant that forms nanomicelles in water-based solutions.
The shape of the self-assembled SDS micelles can vary from
spheres to cylinders to lamellae (vesicles), depending on factors
such as the concentration of SDS, the ionic strength, and the
temperature.”*>?*” Liu et al. dissolved a hydrophobic and
reactive octylphenol polyoxyethylene ether derivative (OP7-AC)
in SDS micelle solutions.”*® The OP7-AC molecules within the
micelle core were then initiated to copolymerize with hydro-
philic acrylic acid and acrylamide monomers to create hydro-
gels without the need for additional crosslinkers (Fig. 5a).
These hydrogels had much higher mechanical properties than
those crosslinked by chemical crosslinkers, with a tensile
strength of up to 120 kPa and a fracture strain of up to
1350%. The hydrophobic OP7 domains in the hydrogels under-
went reversible phase transitions, becoming opaque at 40 °C
and transparent when cooled to 10 °C. Surfactant micelles can
host both hydrophobic and hydrophilic monomers in their core
and corona, respectively. For instance, Du et al. dissolved
hydrophobic C18 in the core and hydrophilic AMPS in an SDS
solution.”*®* When initiated, these monomers copolymerized to
produce amphiphilic core-shell structured particles that acted
as macro-crosslinkers and energy dissipation centers.

Surfactants are also widely used to improve the dispersion of
hydrophobic nanoparticles in hydrogel matrices. Zhang et al.
used an aqueous 2 wt% sodium deoxycholate (DOC) solution as
the surfactant to disperse single-walled carbon nanotubes
(SWNTs) in PNIPAM pregel solution to fabricate SWNT-PNIPAM
hydrogels.'** Compared to other known surfactants for SWNT
dispersion, such as SDS, they found DOC to be more stable in
NIPAM monomer solutions. The DOC-SWNTs and NIPAM
monomer solutions formed homogeneous mixtures that exhib-
ited stability to SWNT flocculation for several weeks. The
SWNTs are uniformly dispersed in PNIPAM hydrogel during
the polymerization of NIPAM monomer. Lee et al. embedded
magnetic IONP into PNIPAM matrix (PNIPAM/IONP) to fabri-
cate a bilayer-type photo-actuator with fast bending motion.**°
They introduced graft chains via polymerization of PNIPAM
macromonomers (PNM) to realize fast responsiveness of hydro-
gel matrix due to molecule structure change. Light-responsive
grafted-pNIPAM was prepared by free radical polymerization of
the pre-gel solution containing macromonomer PNM, BIS as a
crosslinker and magnetic IONP, thereby introducing IONP into
the PNIPAM matrix after polymerization. The superparamag-
netic IONP were dispersed in water by two-step addition of
primary and secondary surfactants to prevent the aggregation
of the nanoparticles. When IONP are trapped within a ther-
mally responsive PNIPAm hydrogel matrix, they absorb visible
light and generate heat. This heat causes the hydrogel matrix to
shrink in volume (Fig. 5b).
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Fig. 5 (a) Schematic illustration of the proposed network model with hydrophobic associating in the gels. Reproduced with permission.?*® Copyright
2010, American Chemical Society. (b) Schematic illustration for the volume shrinking of the grafted hydrogels containing IONP under irradiation of light.
Reproduced with permission.?*® Copyright 2015, Springer Nature. (c) Strategy for creating ELP-rGO composite hydrogel actuators. Reproduced with
permission.>* Copyright 2013, American Chemical Society. (d) Schematic for the ligand exchange of AuNRs. Reproduced with permission.?*> Copyright
2019, American Chemical Society. (e) Schematic of GO-VTES and the network structure of the GO composited hydrogels.>** Reproduced with
permission. Copyright 2017, Elsevier. (f) Synthesis of poly(N-isopropyl acrylamide) nanogels and hydrogels. Reproduced with permission.2*® Copyright

2013, Springer Nature.

3.2. Surface functionalization of additives

For rigid nanoparticles containing abundant reaction groups
on the surface, it is convenient to modify their surface with
functional groups.**"**> Wang et al. functionalized rGO with a
rationally designed elastin-like polypeptide (ELP) to create ELP-
rGO composite hydrogel actuators.> They first created a 50
pentapeptide long ELP, V50GB to functionalize the rGO sheets
to suppress rGO aggregation (Fig. 5¢). V50GB displayed a short
graphene-binding (GB) peptide at its C-terminus to promote
anchoring to rGO surfaces and modified their surface and
colloidal properties. Then they cross-linked the hybrid nano-
particles into an ELP-based network to fabricate ELP-rGO
nanocomposite hydrogels with anisotropic porosity. Finally,
they irradiated the hydrogels with NIR light to locally shrink
the ELP-rGO hydrogels to induce bending motions. Dai et al.
reported a shape memory hydrogel that is responsive to NIR
light irradiation by incorporating gold nanorods (AuNRs) into a
P(MAA-co-MAM) hydrogel.>** The photothermal effect of the
AuNRs caused a localized increase in temperature, which

6002

resulted in a significant reduction in Young’s modulus of the
pre-stretched hydrogel (from 200 to 2 MPa) and bending
deformation with a controllable direction and magnitude.
AuNRs were synthesized using a seed-mediated method and
Cetyltrimethylammonium bromide (CTAB) as a template. How-
ever, the electrostatic interaction between CTAB ligands and a
weakly charged gel matrix caused the precipitation of AuNRs in
their aqueous suspension, making it unsuitable for direct use
in nanocomposite hydrogel synthesis. To overcome this issue,
the ligands of AuNRs were switched from CTAB to Methoxy
polyethylene glycol thiol (MPEG-SH) (Fig. 5d). After adding
ethanol, the suspension of modified AuNRs remained stable
while the unmodified AuNRs precipitated. This was due to the
desorption of CTAB ligands from the AuNRs in ethanol,
whereas MPEG-SH ligands did not desorb. Therefore, the
AuNRs were dispersed evenly during the hydrogel synthesis.
Wang et al. employed vinyl double bonds modified GO to
absorb potassium peroxydisulfate (KPS) as an initiator.>** The
edges and surfaces of GO nanosheets are rich in hydroxyl and
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carboxylic acid groups, which are used to react with hydroxyl
groups of hydrolyzed vinyltriethoxysilane (VTES). By modifying
the surface of GO with vinyl double bonds, a multi-functional
GO was generated that could copolymerize with thermo-
sensitive monomers such as NIPAM (Fig. 5e). This resulted in
the creation of tough and thermoresponsive hydrogels with a
tunable lower critical solution temperature (LCST) by adjusting
the amount of GO. Wang et al. synthesized graphene peroxide
(GPO) with a simple radiation method from GO.**> GO was
exposed to a gamma ray with the presence of oxygen and the
obtained GPO has abundant peroxides on the surface. The GPO
nanosheets are employed to initiate the free radical polymer-
ization of hydrophilic monomers and serve as polyfunctional
crosslinkers. The presence of GPO significantly improves the
mechanical strength and toughness of the hydrogels.

Microgels, with sizes varying from tens of nanometers to
micrometers in diameter, have been employed as pliable and
deformable crosslinkers to increase the toughness of hydrogels.
Microgels are tiny, pliable spheres composed of crosslinked
hydrophilic polymer chains.>*® The crosslink density, function-
ality, and dimension can be manipulated by altering the synth-
esis formulations. Microgels can be modified with particular
functional groups that can further react or crosslink with
hydrophilic polymer chains to create a flexibly crosslinked net-
work. The deformation of microgels upon stretching enables
efficient energy dissipation. When responsive components are
introduced into microgels, the contraction or expansion of the
small crosslinks may result in a significant synergistic effect and
thus impart macroscopic responsiveness to the hydrogels.**”
Microgels can be easily modified by adding functional groups or
monomers to their structure. For example, microgels with weak
acid or acid groups can respond to changes in pH levels, while
those with ionic groups can react to changes in ionic
strength.>*” Xia et al. reported a simple method to synthesize
smart nano-structured hydrogels (NSG) by introducing activated
nanogels (ANGs) as nano-crosslinkers.”*® ANG-bearing unsatu-
rated double bonds are synthesized by polymerization of NIPAM
and BIS (Fig. 5f). Then the NSG hydrogels are fabricated from
the ANG nanogels and NIPAM monomer. When the temperature
changes, nanogels shrink more quickly than the larger gel. This
rapid response causes a quick change in the volume of bulk
PNIPAM gels that are crosslinked by microgels. It is believed
that the combined response of many nanogels within the matrix
leads to a fast response in the bulk gels.

4. Shape morphing mechanisms and
fabrication techniques of composite
hydrogels

To enable the shape morphing behavior in composite hydro-
gels, generating ideal “inhomogeneity” requires reasonable
mechanisms. These mechanisms direct hydrogels to undergo
controlled transformations in response to external stimuli such
as light, heat, or pH value.*® Hence, in this section, we focus on
the basic shape morphing mechanisms of composite hydrogels
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and discuss the design principle for each mechanism, then
explain the effect of geometry, gradient distribution, and ori-
gami/kirigami on shape morphing behavior. Moreover, since
the development of composite hydrogels is closely related to
their fabrication, we will summarize the advanced fabrication
techniques that are critical to the production of these compo-
site hydrogels. A comprehensive understanding of these pro-
cesses will be presented.

4.1. Shape morphing mechanisms of composite hydrogels

Conventional hydrogels are characterized by homogeneous poly-
meric networks that exhibit isotropic volumetric changes. Herein
lies the demand for the development of composite hydrogels that
combine stimuli-responsive hydrogels with other materials to
induce spatially nonuniform stress. This unique feature allows
for the creation of composite hydrogels with fascinating shape
morphing capabilities. In this section, we will explore two main
mechanisms that contribute to the shape morphing behavior of
composite hydrogels: heterogeneous lamella structures and spa-
tially nonuniform distribution of additives.

4.1.1. Composite hydrogels with heterogeneous lamella
structures. As the simplest approach to import “inhomogene-
ity”’, lamella composite hydrogels have been widely employed to
generate out-of-plane deformation. The strain mismatch
between these layers is easily obtained via differentiating their
intrinsic properties, such as swelling ratio, thermal expansion,
crosslinking density, elastic modulus, or defects.*® Taking the
uniaxial bending of bilayer composites as an example, Li et al.
developed a bilayer composite hydrogels consisting of the
PNIPAM layer with LCST of 36 °C and poly(N-acryloyl

< PNIPAM uponue
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Fig. 6 The shape morphing behavior of composite hydrogels with het-
erogeneous lamella structures. (a) Thermoresponsive bending angle test of
PNIPAM/PNAGA bilayer hydrogels as a function of time at 45 °C, where
time 0 was defined when the bilayer hydrogel was rapidly transferred from
5 to 45 °C. Reproduced with permission.* Copyright 2020, American
Chemical Society. (b) Shape transformations of the gel sheet composed of
P(NIPAM-co-HEAM) (PG) and poly(NIPAM-co-HEAM)/PNIPAmM (BG)
stripes. The PG and BG stripes were 1 mm-wide and were oriented at
45° to the long axis of the rectangular gel sheet. Scale bars are 0.5 cm.
Reproduced with permission.?>! Copyright 2013, American Chemical
Society. (c) Shape transformations of GO/PDMAEMA hydrogel sheets with
different initial shapes and patterned gradients in 65 °C water into different
3D structures. Scale bars are 1 cm. Reproduced with permission.?>2
Copyright 2021, Wiley-VCH.
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glycinamide) (PNAGA) layer with UCST of 18 °C (Fig. 6a). When
the environmental temperature is lower than 18 °C, the PNAGA
layer shrinks due to the phase separation, whereas the PNIPAM
layer can be significantly swelled, thus the whole bilayer struc-
ture bend towards the PNAGA layer. Conversely, by heating the
environmental temperature to 36 °C, the bilayer composites
bend toward the PNIPAM layer."** Actually, this deformation of
bilayer composite hydrogels is predictable. Timoshenko model
provides an effective method to calculate the bending curvature
of composite systems.”*? For a bilayer system, the relationship
between the curvature R, strain mismatch ¢,,,, and geometry can
be written as R/hy = (1 + 4né + 6n°¢ + 4n’é + n*&)/6enmé(1 + 1),
where 7 is the contrast in thickness (17 = Ap/hy), € is the contrast
in plane-strain modulus (¢ = E,/Ey). According to the equation,
the magnitude of bending is closely determined by the strain
mismatch and relative dimensions of the constituent materials.
Notably, in this model, all the constituent materials are
assumed to be linearly elastic.

The geometric design of layers also plays an important role
in the shape morphing behavior of composite hydrogels.
Typically, the distribution of different layers includes vertical
stacking, horizontal assembly, directional arrangement, or cus-
tomized patterning.””"****° various shapes are generated by
controlling the layer distribution. For instance, Therien-Aubin
et al. utilized distinct designs of layer distribution to organize the
PNIPAM copolymerized with 2-hydroxyethyl methacrylate
(P(NIPAmM-co-HEAM); PG) and poly(NIPAM-co-HEAM)/PNIPAmM
(BG) stripes, the resultant gel sheet exhibited various kinds of
shape transformations (Fig. 6b). When PG and BG stripes were 1
mm-wide and were oriented at 45°, the sheet can transform to the
helix structure.”®* Similarly, guided by origami technique, the
composite hydrogel hinges enable to drive the self-folding. Yin
et al. combined GO and poly(2(dimethylamino)ethyl methacry-
late) (PDMAEMA) hydrogels with different crosslinking densities
and patterns to generate a Miura folding structure (Fig. 6¢). This
structure can actively perform 2D-3D shape transition in H,O at
65 OC.252

4.1.2. Composite hydrogels with spatially nonuniform dis-
tribution of additives. Similar to heterogeneous structural design,
nonuniformly embedding functional additives is another means to
fabricate composite hydrogels with shape morphing abilities. This
method involves introducing functional additives in an anisotropic
manner, leading to three distinct distributions: alignment, gradi-
ent, and pattern. Inspired by skeletal muscles, Gomez et al
reported uniaxially aligned microfibers of polycaprolactone-
polyurethane (PCL-PU) copolymer on top of methacrylate hyaluro-
nic acid (HA-MA) hydrogel layer. Such composite hydrogels can
transform to scroll tube shape perpendicular to the direction of
fibers.>>® Huang et al. utilized magnetic fields to align MNPs in a
bilayer structure with poly(ethylene glycol) diacrylate (PEGDA) as
the supporting layer and PNIPAM as the responsive layer, following
by UV-assisted photolithography (Fig. 7a). The rigid MNPs restrict
the swelling behavior of hydrogels, thus determining the final 3D
shapes of the bilayer hydrogel sheets (Fig. 7b)."””

Gradient distributions of additives often require the appli-
cation of external fields. For example, Tan et al. used a direct
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current electric field (DC-EF) during the in situ polymerization
of PNIPAM hydrogels to introduce a gradient of LAPONITE®
through the thickness of the hydrogel strip (Fig. 7¢).>>* LAPO-
NITE®, known as nanoclay (NC), is a negatively charged
nanosheet which migrates toward the anode. Since NC acted
as physical crosslinkers, PNIPAM hydrogels with a gradient
concentration of NC led to a gradient deswelling behavior across
the thickness of hydrogel sheets. As a result, the composite
hydrogel bent toward the NC-free surface at the equilibrium
state when the temperature was above the LCST (Fig. 7d).
Similarly, Chen et al. reported the gradient distribution of MNPs
within PNIPAM hydrogels under a magnetic field.>® The com-
posite hydrogels demonstrate bending deformation under
increasing temperature.

When the external field source is smaller than the size of the
hydrogel, the gradient becomes localized, giving rise to patterns
in the hydrogel matrices. These localized patterns often lead to
deformations beyond simple bending, such as folding and
wrinkling. Chen et al. demonstrated the fabrication of asym-
metric P(AA-co-AM) hydrogels with complex shape deformations
by patterning IONP with multiple magnets onto a mold."”® By
placing the magnets alternatively on each side of the mold, the
composite hydrogels deformed in multiple directions in an acidic
solution. Another innovative approach is the stamping method,
which allows for the direct introduction of additives into hydro-
gels through diffusion. For example, Guo et al. utilized stamping
to pattern iron ions onto PNIPAM hydrogels and subsequently
sprayed NaOH to synthesize IONP in situ at the ion pattern
positions (Fig. 7e).'®* These patterns can be easily erased by
applying an HCI solution and can be rewritten for new designs.
Such patterns of IONP can generate complex 3D deformation of
the composite hydrogel upon NIR light exposure (Fig. 7f). For
additives that are not responsive to external fields, appropriate
chemical modification can address this limitation. Lin et al
synthesized tunicate cellulose nanocrystals (TCNC) and intro-
duced a gradient of negatively charged TCNC in PNIPAM-based
hydrogels through an electric field.**® These composite hydrogels
underwent reversible shape deformation upon temperature
changes.

Traditional particle alignments using external fields typically
rely on the responsiveness of particles to magnetic or electric
fields. However, the approach utilizing the acoustic field for
particle distribution offers an alternative method, where the
distribution of particles is exclusively dependent on the acoustic
impedance between the particles and the fluid.>*” This unique
characteristic allows for the patterning of particles without
requiring their responsiveness to magnetic or electric fields. Li
et al. reported a novel technique ‘‘acousto-photolithography”,
which combines surface acoustic waves and photolithography to
precisely control the distribution of photothermal particles in
the pregel solution (Fig. 7g).*® This approach enables the
assembly of particles into arranged chain patterns with con-
trollable spacing. This approach allows the assembly of particles
into arranged chain patterns with adjustable spacing. After
photocrosslinking to immobilize the particles within the PNI-
PAM hydrogel matrix, the resulting composite hydrogel sheet
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Fig. 7 Shape morphing of stimuli-responsive composite hydrogel with spatially nonuniform distribution of additives. (a) Schematic illustration for the
preparation of programmable bilayer hydrogel sheet with alignments of MNPs under magnetic field. (b) The 3D shape deformation of bilayer hydrogel
sheets with different orientations of MNPs alignment. Reproduced with permission.t”’ Copyright 2016, Springer Nature. (c) Schematic illustration of the
preparation of the gradient NC hydrogels in an electric field. (d) Shape morphing of composite hydrogels with gradient of NC below and above LCST.
Scale bar is 1 cm. Reproduced with permission.2>* Copyright 2018, Wiley-VCH. (e) Schematic illustration of the patterning, erasing, and rewriting IONPs in
a thermoresponsive PNIPAmM hydrogel matrix. (f) The optical image of shape morphing of PNIPAM hydrogel with IONP patterns. Scale bar is 2 mm.
Reproduced with permission.’®® Copyright 2019, American Chemical Society. (g) lllustration of the acousto-photolithography preparation for alignment
of photothermal particles in PNIPAM hydrogels. (h) The pattern spacing is determined by the input frequency of surface acoustic waves, which results in
different bending behavior for temperature below and above LCST. Scale bar is 500 pm. Reproduced with permission.2>¢ Copyright 2022, Wiley-VCH.

demonstrates programmable deformation based on the spacing
between the patterns (Fig. 7h). This unique feature opens up
new possibilities for precise and versatile manipulation of
particles within the hydrogel matrix.

techniques which can be utilized to achieve a bilayer hydrogel
system including coating.’