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Recycling of lithium-ion batteries (LIBs) is a rapidly growing industry, which is vital to address the increasing

demand for metals, and to achieve a sustainable circular economy. Relatively little information is known

about the environmental risks posed by LIB recycling, in particular with regards to the emission of

persistent (in)organic fluorinated chemicals. Here we present an overview on the use of fluorinated

substances – in particular per- and polyfluoroalkyl substances (PFAS) – in state-of-the-art LIBs, along

with recycling conditions which may lead to their formation and/or release to the environment. Both

organic and inorganic fluorinated substances are widely reported in LIB components, including the

electrodes and binder, electrolyte (and additives), and separator. Among the most common substances

are LiPF6 (an electrolyte salt), and the polymeric PFAS polyvinylidene fluoride (used as an electrode

binder and a separator). Currently the most common LIB recycling process involves pyrometallurgy,

which operates at high temperatures (up to 1600 °C), sufficient for PFAS mineralization. However,

hydrometallurgy, an increasingly popular alternative recycling approach, operates under milder

temperatures (<600 °C), which could favor incomplete degradation and/or formation and release of

persistent fluorinated substances. This is supported by the wide range of fluorinated substances detected

in bench-scale LIB recycling experiments. Overall, this review highlights the need to further investigate

emissions of fluorinated substances during LIB recycling and suggests that substitution of PFAS-based

materials (i.e. during manufacturing), or alternatively post-treatments and/or changes in process

conditions may be required to avoid formation and emission of persistent fluorinated substances.
Environmental signicance

Per- and polyuoroalkyl substances (PFAS) are a large class of highly persistent organic substances, many of which are bioaccumulative and toxic. One of the
many uses of PFAS is in lithium-ion batteries (LIBs). Recycling of LIBs is a rapidly growing industry, yet the potential for PFAS emission during this process
remains unclear. Here we present an overview on the use of PFAS and other uorinated substances in state-of-the-art LIBs, along with the recycling conditions
which may lead to their formation and/or release to the environment. This review highlights the paucity of information on emission of uorinated substances
during LIB recycling, despite widespread use of PFAS and other uorinated chemicals in LIBs.
Introduction

Electric vehicles (EVs) are expected to become the principal
modes of transportationmanufactured by the largest car brands
by the year 2050.1,2 This shi in market demand has increased
the need for batteries, in particular lithium-ion batteries
(LIBs).3–5 However, transition metals (e.g. Co, Ni, and Mn)
required for manufacturing of LIBs are in nite supply.6,7 One
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solution for addressing this shortage is recycling,8 which is ex-
pected to be among the main sources for Fe, Al and Cu by 2050.9

While recovery of critical raw materials (in particular metals) via
recycling will help tomitigate resource depletion and associated
environmental impacts,1,6,10 sustainable recycling infrastructure
must rst be developed, to avoid exposure of humans and the
environment to hazardous substances.4

Compared to other battery types, LIBs are a relatively new
technology, with SONY entering the market in 1991 with the
rst commercial LIB.11 Thus, it is only recently that a sufficient
number of aged and unusable batteries are available to make
recycling economically viable. Recycling of LIBs has increased
rapidly over the last decade and in 2019 the European Union
(EU) proposed that 70% of LIBs should be recycled by
Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030 | 1015
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2030.4,5,12,13 Large investments have been made by the EU in
several LIB recycling projects.6 In contrast, on a global scale,
only about 5–7% of all LIBs are currently collected for recycling,
while the remainder are most oen disposed of in landlls.9,14

In fact, many consumer products containing LIBs are discarded
within six years of use.15,16 To facilitate increased EV production,
the share of LIBs that are redirected from waste to recycling
streams must increase.4

Recycled batteries are of interest for their valuable transition
metals (Ni and Co) resulting in an industrial process designed
specically for recovery of these substances.17–20 Recycling
separates various LIB components into different fractions.
Depending on the recycling conditions and composition of the
original LIBs, this process may lead to emission of gas and/or
liquid containing harmful chemicals.6,21 One such class of
chemicals used widely in the LIB industry are per- and poly-
uoroalkyl substances (PFAS). PFAS make up a large group of
anthropogenic substances which have been manufactured
since the 1950s and are dened as containing at least one per-
uoromethyl or peruoromethylene group, with some
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exceptions noted.22 Many PFAS display unusual properties (e.g.
thermal and chemical stability, ability to reduce the surface
tension of liquids and surfaces, combined oil and water repel-
lency, and dielectric properties), which has led to their wide-
spread use across different areas, including in reghting
foams, water/stain resistance, and plastic extrusion.23 The
European Chemicals Agency estimated that the total number of
commercially-relevant PFAS exceeds 10 000 substances, which
are used in >1400 products or processes.24,25

Interest in PFAS has intensied drastically over the last 20
years since the rst detection of peruorooctane sulfonate
(PFOS) in the blood of non-occupationally exposed humans26

and wildlife globally.27 All PFAS are considered persistent, or
break down to persistent end products,28 and many are bio-
accumulative in wildlife29–31 and humans.32 Some PFAS have
also been linked to ecotoxicological33 and adverse human
health effects,34 including altered immune and thyroid func-
tion, liver disease, lipid and insulin dysregulation, kidney
disease, adverse reproductive and developmental outcomes,
and cancer.34 Research up to now has mainly focused on
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studying the emissions, transport and fate, and effects of
a relatively small number of legacy PFAS; however, novel PFAS
are continuously introduced onto the global market and are
detectable in the environment, including remote wildlife.35

While prior studies10,36 have considered multiple environ-
mental impacts of LIBs, there is a paucity of information on the
potential emission of PFAS. The purpose of this review is to
summarize the state of knowledge on the use of uorinated
substances in LIBs, and the potential for PFAS to be released to
the environment during LIB recycling. Within this broad
objective, we aim to (a) review and summarize the use of uo-
rinated chemicals in LIBs; (b) assess the potential for PFAS
release and/or mobilization during recycling; and (c) identify
knowledge gaps in understanding the risks associated with
PFAS released during LIB recycling.
Scope of literature review

Since much of the technology used in LIBs and in LIB recycling
is proprietary, this review cannot be considered exhaustive.
Nevertheless, it provides a broad overview of the potential use
and emissions of uorinated substances from LIBs based on
literature available as of November, 2022. To this end, our
search focused on three databases (Web of Science [Clarivate],
Scopus [Elsevier] and Google Scholar), using keywords pre-
sented in Table 1. For each database, the same search structure
was adopted, utilizing key words for up to 3 different categories
(i.e. “LIBs”, “Fluoropolymer”, and “Process/Industry”). Other
restrictions were used to keep the total number of abstracts
obtained from each database below 400. As LIBs may have
different chemistries, we did not restrict our search to one
particular cathode material. However, to avoid novel, yet
commercially irrelevant materials, we did not include solid state
batteries, ionic or gel electrolytes and silicon anodes in our
search. Review articles and those published most recently, as
well as state-of-the-art and commercial techniques were given
the highest priority for inclusion in this review.
Ian Cousins is a Professor in the
Department of Environmental
Science at Stockholm University,
Sweden. He holds a BSc (Hons)
in Chemistry from the University
of York (UK), an MSc in Envi-
ronmental Management from
the University of Surrey (UK)
and a PhD in Environmental
Science from Lancaster Univer-
sity (UK). He was formerly an
Environmental Chemist at the
Water Research Centre plc (UK)

and a postdoctoral fellow at Trent University (Canada). His
research program comprises a combination of experimental and
modelling approaches to investigate the sources, transport, fate
and exposure of contaminants, with a recent focus on PFAS.

This journal is © The Royal Society of Chemistry 2023
Fluorinated lithium-ion battery
components

LIBs are electrochemical cells in which chemical energy is
converted into electrical energy (and vice versa). Their principle
of operation is the same as other battery chemistries (e.g. lead-
acid), but the voltage difference between the two electrodes in
a LIB is much larger (i.e. 3–4 V), providing improved perfor-
mance in terms of energy and power density.4,37 The battery
consists of a positive electrode (cathode) and a negative elec-
trode (anode), both of which are surrounded by electrolyte and
separated by a permeable membrane (the separator; Fig. 1). The
electrodes consist of electroactive materials but also a binder
material which imparts structural integrity while improving
interconnectivity within the electrode, adhesion to the current
collector, and formation of the solid electrolyte interface (SEI)
during the rst battery cycles.38–40 Fluorinated substances were
identied in electrodes and binder, electrolyte (main compo-
nents and additives), and separator, and are described in detail
below.
Electrodes

Anodes usually consist of graphite combined with styrene-
butadiene rubber and carboxymethyl cellulose binders, but
polyvinylidene uoride (PVDF; Fig. 2A) may also be used.38–42

Cathodes, in comparison, consist mostly of an electroactive
material (e.g. lithium nickel manganese cobalt oxide (NMC) or
lithium iron phosphate (LFP)) along with a binder (1–8 wt%),
which is oen uorinated.20,38,39,43 The binder is generally
considered an inactive part of the battery, but it can inuence
formation of the SEI as well as the conductivity and the overall
performance of the battery.40,44 Fluorinated binders offer higher
stability due to their resistance to oxidation compared to non-
uorinated binders.39 They can also prevent self-discharge by
inhibiting some electrochemical reactions and thus improve
the energy density as well as lifespan of the battery.45 Binder
Jonathan Benskin is a Professor
in the Department of Environ-
mental Science at Stockholm
University, Sweden. He holds
a BSc in Chemistry from the
University of Victoria (Canada),
and a PhD in Medical Sciences
from the University of Alberta
(Canada). He was formerly an
NSERC Industrial Fellow and
Principle Scientist at AXYS
Analytical Services Ltd and
a Visiting Scientist at the Insti-

tute of Ocean Sciences (Fisheries and Oceans Canada). His
research program focuses on understanding the occurrence, fate,
and behaviour of emerging organic contaminants, in particular
PFAS, using novel analytical tools.
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Table 1 Literature review keywords within various databases, utilizing the Boolean command AND between each search word if not otherwise
stated, where * serves as the truncation operator

Database LIBs Fluoropolymer Process/industry Other restrictions Results

Web of
science

Lithium ion batter* OR LIB Fluoropolymer Binder OR additive OR
separator OR electrolyte

10

Lithium ion batter* OR LIB Fluorinated Binder OR additive OR
separator OR electrolyte

362

Battery recycling HF 4
Lithium ion batter* PVDFa Recycling Products 4
Lithium ion batter* PVDFa Recycling HF 7

PVDFa Decomposition OR
degradation

Thermal treatment 10

Google
Scholar

LIB Fluorinated
organics

Commercial AND state-
of-the-art

Additives 12

Lithium ion Fluorinated
organics

State-of-the-art Additives 2

Lithium ion Fluoropolymer State-of-the-art Additives NOT = (PVDF AND
FEC)

90

SCOPUS Lithium ion batter* OR lib Recycling OR recycle LIMIT TO = (uorine
compounds)

34

Lithium ion batter* OR lib Recycling OR recycle LIMIT TO = (heat treatment) 38
Lithium ion batter* OR lib Recycling OR recycle LIMIT TO = (recycling process

AND hydrometallurgy)
13

Lithium ion batter* OR lib Recycling OR recycle LIMIT TO = electric vehicles
(evs) AND battery industry

78

Lithium ion batter* OR lib Recycling OR recycle LIMIT TO = (recycling
technology)

63

a PVDF searched for as: PVdF OR PVDF OR P(VDF) OR P(VdF).
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material may exist as either a homopolymer (e.g. PVDF; most
common) or copolymer (e.g. polyvinylidene uoride co-
hexauoropropylene [PVDF-HFP] or polyvinylidene uoride
co-triuoroethylene [PVDF-TrFE]; Fig. 2A).39,40,45–49 Other uo-
rochemical binders include polytetrauoroethylene (PTFE),20

uoroacrylate polymers (noted only by the general name in the
scientic literature or a patent under the trade name
Fig. 1 Simplified schematic of a lithium-ion battery, adapted from Bress
many batteries, some of which are classified as PFAS under the OECD d

1018 | Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030
TRD202A),50,51 or uorinated ethylene propylene (FEP), which is
less common commercially (Fig. 2A).23 In order to avoid side
reactions between the cathode materials and the electrolytes
(which could pose a safety risk), surface uorination of the
electroactive materials is commonly performed using, for
example, AlF3.11,38,52–58
er et al. (2015),38 including examples of fluorinated species included in
efinition.

This journal is © The Royal Society of Chemistry 2023
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Fig. 2 Examples of fluorinated substances found in LIB components with their CAS numbers in parentheses. (A) Fluorinated binders and
separators: polyvinylidene fluoride (PVDF, 24937-79-9), polyvinylidene fluoride co-hexafluoropropylene (PVDF-HFP, 9011-17-0), polyvinylidene
fluoride co-trifluoroethylene (PVDF-TrFE, 28960-88-5), polytetrafluoroethylene (PTFE, 9002-84-0), and fluorinated ethylene propylene (FEP,
25067-11-2); (B) fluorinated salt and salt additives: LiPF6 (21324-40-3), LiAsF6 (29935-35-1), LiBF4 (14283-07-9), lithium bis(fluorosulfonyl)imide
(LiFSI, 171611-11-3), lithium fluorosulfonyl-trifluorosulfonyl imide (LiFTFSI, 192998-62-2), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI,
90076-65-6), lithium difluoro(oxalate)borate (LiDFOB, 409071-16-5) and lithium bis(perfluoroethanesulfonyl)imide (LiBETi, 132843-44-8), tri-
flate (37181-39-8); (C) advanced fluorinated salt additives: including for example lithium tri(pentafluoroethyl)triphosphate (LiFAP); (D) fluorinated
solvent additives: fluoroethylene carbonate (FEC, 114435-02-8), difluoroethylene carbonate (DFEC, 171730-81-7), trifluoropropylene carbonate
(TFPC, 167951-80-6), methyl difluoroacetate (MDFA, 433-53-4) and tetrafluoroethyl tetrafluoropropylether (F-EPE, 16627-68-2). Subscripts k, l,
m, n refer to various lengths of backbone repeating units for binders, separators and salt additives.
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Separator

Within the battery, separation of the two electrodes by a semi-
permeable barrier is necessary in order to extract electrical
energy.59 The separator should be porous and allow for wetting;
thus, ber-structured materials are oen used.37 While the
battery separator is usually polypropylene or polyethylene, u-
oropolymers such as PVDF or its copolymer PVDF-HFP have also
been used (Fig. 2A).9,39,45,52,59–62
Electrolyte

The electrolyte is comprised of salt(s) (Fig. 2B) dissolved in
solvent(s). Examples of the latter include ethylene or propylene
carbonates.37,38,63 LiSO3CF3 (triate) has been used as a main
salt in batteries since the 1970s,11 but today, LiPF6 is the prin-
cipal electrolyte salt used in commercial batteries due to its
high ionic conductivity and potential to passivate the Al current
collector (Fig. 2B).52,64,65 Less common salts include LiAsF6,
LiBF4, lithium bis(triuoromethylsulfonyl)imide (LiTFSI),
lithium bis(peruoroethanesulfonyl)-imide (LiBETI), lithium
diuoro(oxalate)borate (LiDFOB), lithium bis(uorosulfonyl)
imide (LiFSI), and lithium uorosulfonyl-triuorosulfonyl
imide (LiFTFSI) (Fig. 2B).6,11,38,52,63,64,66–71
This journal is © The Royal Society of Chemistry 2023
Electrolyte additives

Additives in the electrolyte include co-solvents or minor salts
(i.e. in addition to the main salt or solvent), which may account
for 5–10 wt% of the electrolyte (Fig. 2B). These substances are
important to improve battery properties, including SEI forma-
tion, conductivity, ame retardance, and reduced gas build-up
within the LIB cells.3,4,11,37,38,72–75 For example, LiFSI (an addi-
tive) is oen used together with LiPF6 (a main salt).68 Other
examples of additives include imides substituted with electron
withdrawing groups (e.g. –COCF3 or –SO2CF3), such as TFSI−

(Fig. 2B).11,38

New additive salts (i.e. advanced alternatives), which have
until now been mostly used for lab-scale experiments, include
peruoroalkyl carboxylates (PFCAs), peruoroalkyl phosphi-
nates and peruoroalkyl disulfonates (Fig. 2C).11,43,71 There are
also examples of peruorinated analogues of the PF6

− and BF4
−

anions, of which lithium tri(pentauoroethyl)triphosphate
(LiFAP) has shown promising results for increasing the ash
point of the electrolyte solvent (Fig. 2C),11,52,76 among other
properties. Organoborate, organophosphate and organo-
aluminate analogues may also include peruorinated carbon
atoms, which could improve resistance to hydrolysis; however,
these advanced salts are not expected to occur on the market in
Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030 | 1019

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2em00511e


Environmental Science: Processes & Impacts Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
ap

ri
l 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

3/
02

/2
02

6 
12

:0
3:

07
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
large amounts.11 The potential of these salts to be widely
commercialized in the future still remains doubtful, given their
high cost and uncertainties over conductive performance.11,52

Additive solvents can consist of a uorinated derivative of
the main electrolyte solvent (Fig. 2D). Examples include uori-
nated carbonates (e.g. uoroethylene carbonate), carboxylates
(e.g. methyl diuoroacetate) and ethers (e.g. tetrauoroethyl
tetrauoropropylether) (Fig. 2D).11,43,52,71,74,76–81 In addition to
reducing ammability, uorine substitution in solvents
increases oxidation potential and, consequently, anodic
stability under high temperature and voltage.76,77 However, the
electrolyte solvent should also be capable of solvating lithium
ions, which becomes increasingly difficult with uorination.
Thus, partially (i.e.mono- or di-)uorinated organic solvents are
expected in future batteries used in, for example, EVs.11
Future battery components

The future outlook of battery usage predicts LIBs with higher
energy densities, where the current LiPF6 salt and other func-
tional components may be unsuitable.3,11 To address this limi-
tation, new materials must be developed. In addition to
accommodating LIBs with higher energy densities, future salts
should display improved thermal stability, SEI-formation, low-
temperature operation and compatibility with emerging
solvents. Moreover, general electrolyte conditions such as high
ionic conductivity, salt solubility, and stability are required.11 At
very high voltages, cathode electrolyte interface (CEI)-forming
salts are required which may increase the number of additives
in one electrolyte.76,82 Fluorinated electrolyte species (i.e. both
salt and solvent) fulll many of these requirements, suggesting
that these substances may be strong candidates for future
battery components.11,71,78 However, challenges remain for
uorinated binder materials such as PVDF, which may not meet
adhesion and mechanical strength requirements under high
voltages. Multilayer binders of the aforementioned polymers or
other materials have been proposed,44 which may complicate
the recycling procedure.
LIB recycling processes

LIB recycling may involve pyrometallurgical, hydrometallur-
gical, or direct recycling processes (Fig. 3), of which pyromet-
allurgical recycling with or without down-stream
hydrometallurgical processing are among the most common
practices today.20,83,84 Hydrometallurgy-dominant recycling
processes are generally considered superior in terms of imme-
diate recovery of battery-grade materials and compliance with
the upcoming EU battery regulation; consequently, these
processes are anticipated to dominate the industry in the near
future.6,14,17,20,72,85–87 Within the LIB recycling research eld,
there is also great interest in recovery of battery components
without decomposition (i.e. direct recycling). However, this
process has not yet been commercialized86 or it is limited to
handling in-house LIB production scrap on a very small scale.
The following section describes each of the major LIB recycling
1020 | Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030
approaches in detail, along with their potential for PFAS
emissions.
Pyrometallurgical recycling process

Pyrometallurgical recycling is a high-temperature smelting
reduction process (up to 1600 °C), in which LIBs with or without
pretreatment are added to a smelter or arc furnace together with
slag formers. During this process, electrode-active materials are
reduced by graphite in the LIBs. The high temperatures serve to
incinerate organic components (such as volatile organic
compounds, binder material etc.).17,20,87,88 The end product is
a metal alloy consisting of Ni, Co, Fe and Cu, while Li, Mn, and
Al are usually lost to slag. When followed by a hydrometallur-
gical process, Li in the slag can be recovered.9,13,17,59 In an
optimized pyrometallurgical process it is also possible to
concentrate and recover lithium in the ue dust.89 While the
high temperatures applied during pyrometallurgy favor
decomposition of PFAS and other organouorine components,
the large quantity of hazardous gas generated from this process
(including hydrouoric acid), along with intense energy use and
production of metal alloys (which require further handling)
represent signicant drawbacks. Other disadvantages of the
pyrometallurgical recycling process lie in the production of
a metal alloy instead of battery precursor materials, and the
generation of carbon dioxide caused by carbothermic reduction
and graphite burning.17,20,85,86
Pretreatment + hydrometallurgical recycling

A multi-step pretreatment process is required to prepare LIBs
for hydrometallurgy. While procedures for pretreatment are still
under development, this method typically involves sorting fol-
lowed by a combination of deactivation, dismantling, and
binder removal. Of these steps, deactivation is particularly
important for reducing the risks of overheating (and by exten-
sion, production of toxic and ammable gasses) within the
battery cell during recycling.85 LIB deactivation is oen initiated
by discharging the battery in a salt solution (NaCl or
Na2SO4),15,20 which risks production of HF gas.20,85 Alternatively,
discharge may be achieved through an electrical circuit9 which
enables recovery of the residual energy, although this has yet to
be commercialized.15,85 The second part of deactivation is the
electrolyte recovery, which involves thermal treatment (at
temperatures around 160 °C)9,90 or solvents (e.g. N-methyl-2-
pyrrolidone87) for extraction. Since the conduction salt LiPF6 in
LIB electrolytes may release HF (and other substances) when in
contact with air, this treatment step is run under an inert
atmosphere together with a gas scrubber.7,60 Due to electrolyte
decomposition during the use-phase and absorption processes
at the electrodes, 100% electrolyte recovery is not possible.72

Increased yields of electrolyte with supercritical CO2 extraction
methods are currently a new eld of research which allows
milder process conditions and minimizes impurities.85 It is also
possible to combine the different treatments for electrolyte
evaporation, such as elevated temperature for solvent extraction
or solvents with supercritical CO2.72,90
This journal is © The Royal Society of Chemistry 2023
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Fig. 3 Overview of handling, material losses, andmaterial recovery for the threemajor LIB recycling processes: pyrometallurgy, hydrometallurgy
and direct recycling. Temperatures are y ambient when not stated. Dashed arrows indicate fractions that are not possible to recycle using
a given process. Figure adapted from Kushnir, 2015 86 and Lv et al., 2018.83
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Following deactivation, LIB components such as separators,
wiring, plastic covers and steel cases are dismantled.6,91 These
components have established recycling streams,86 while anodes
and cathodes that contain the main fraction of rare metals
undergo further processing.91 Thereaer, dismantled LIBs are
crushed and ground to release the electroactive compounds for
hydrometallurgical recycling.6 This mechanical treatment can
also be applied directly, without a deactivation or dismantling
step, by applying a controlled atmosphere, which may also
increase the yield of the desired metal salts.6,20,85 Granules of the
crushed materials (mainly electrodes) are sorted into fractions
by various sorting methods (e.g. sieving).91

The ne powder of the shredded LIB materials (i.e. “black
mass”17) requires further processing to liberate the desired
transitionmetals. The binder removal step is aimed at removing
the remaining organic components in the battery before the
black mass is subjected to a leaching process. The separation of
the electroactive material in the electrode (e.g. lithium oxides)
from the organic binder matrix (e.g. PVDF), which is coated to
the aluminum and copper current collectors, is performed by
thermal treatment, solvent dissolution or a combination of
both.5,55,87,91 In literature, thermal treatments are oen
described to run at approximately 400–600 °C, which is above
the temperature required for binder degradation but below that
of active materials decomposition.55,87,91 This process may occur
This journal is © The Royal Society of Chemistry 2023
either in the presence of oxygen (incineration) or under vacuum
atmosphere (pyrolysis).17,54,60,85 Still, literature disagrees on the
optimal temperature for binder removal, which ranges from
500–650 °C (belowmelting temperature of Al)20,54,60,88 or$700 °C
(complete calcination temperature with phase transition).55,92

To ensure decomposition of PVDF, it is arguably better to have
as high temperatures as possible; however, high temperatures
are generally avoided for hydrometallurgy due to reasons
mentioned above, such as reduced metal yield and increased
energy consumption as well as the possibility of Al melting
around the binder material. Thus, it is reasonable to assume
that the applied conditions in industry would be as low as
possible while still burning off the binder (e.g. around or
slightly above 500 °C). Removal of PVDF in the binder by solvent
dissolution most commonly uses N-methyl-2-pyrrolidone as it is
also the solvent for the production of the binder slurry in
upstream battery production.87

Aer binder removal, the material is ready for hydrometal-
lurgical processing, which is initiated via an acid leaching
process involving inorganic acids (e.g. sulfuric acid, nitric acid
or hydrochloric acid),14 followed by a series of additional
processing/rening steps such as precipitation, solvent extrac-
tion, ion exchange and/or electrolysis.5,9,17,88,91 The metals iso-
lated from this process, oen in the form of salts, are used up-
stream in production of cathode materials for new batteries.9
Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030 | 1021
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Fig. 4 Examples of inorganic (top) and organic (bottom) fluorinated
substances reported in the literature from LIB recycling
experiments.1,3,6,13,16,21,47,53,55,64,72,85,92,94–98,101–103

Environmental Science: Processes & Impacts Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
ap

ri
l 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

3/
02

/2
02

6 
12

:0
3:

07
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Overall, hydrometallurgical LIB recycling has several advan-
tages, including improved yields for metal recovery and lower
energy demands, but requires extensive pretreatment steps to
liberate the cathode active materials for the leaching
process.17,88,91

Direct recycling

At the end of a lithium-ion battery's service life, the chemistry
has been altered, for example by a lack of lithium ions or crystal
structure failure (among others).9,87 Direct recycling is an
emerging approach which involves replenishing depleted
lithium in a used LIB.88 The method is thus selective and non-
destructive and the cathode regains its electrochemical prop-
erties, thus by-passing steps in both the downstream and
upstream production compared to pyro- or hydrometal-
lurgy.7,87,88 This process is still under development and to the
best of our knowledge has not yet implemented on a commer-
cial scale.9

Possible fluorochemical emissions
from LIB recycling

While the use of uorinated substances in LIBs is well known,
there is a paucity of information on the fate of these substances
(or the potential formation of new substances) during recy-
cling.18 Ultimately, the identity of substances emitted during
recycling will depend on battery chemistries and recycling
conditions.6,92 As such, mapping of uorinated components and
potential transformation products is urgently needed. In this
section, we consider the fate of uorinated ingredients used in
the major uorochemical-containing LIB components (i.e.
electrolyte and binder) during recycling, and thereaer
summarize the literature investigating overall emissions during
LIB recycling. While a discussion of hazards associated with
these substances is beyond the scope of this review, we note that
most uorinated species formed during recycling are likely to
be persistent, and this property alone justies concern over
environmental emissions.28

Electrolyte emissions

Decomposition of the electrolyte salt, solvent or a combination
thereof during LIB recycling can lead to formation of a wide
range of organic and inorganic uorinated species, such as
organophosphates and organouorophosphates (e.g. mono-
and diuoroethylphoshpates).3,72,93 Among electrolyte salts,
lithium hexauorophosphate (LiPF6) was reported to decom-
pose to PO2F2

−, HPO3, POF3, PF5, LiF and HF or F− (Fig. 4)
under conditions relevant to recycling, but also during aging
and abuse situations (e.g. EV accidents).3,6,21,53,64,72,85,90,92,94,95 Of
these products, HF is of particular concern due to its toxicity
and corrosive nature. Decomposition of electrolyte solvents may
also lead to formation of gaseous products (e.g. hydrocarbons
and COF2)85,94 and/or react with decomposed electrolyte salts.
For example, reactions between PF5 and organic carbonates at
elevated temperatures and in the presence of a catalyst such as
lithium metal or oxygen are widely reported.3,21,72,92,93,96 One ex
1022 | Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030
situ study simulating thermal runaway at 89 °C (where only the
positive electrode materials were present) reported formation of
bis-(2-uoroethyl)-ether, which is presumably formed from
reaction between the electrolyte solvent and salt (Fig. 4).96 This
was further supported by detection of an ethylene uoride
fragment identied in a separate study by nuclear magnetic
resonance (Fig. 4).97 Unfortunately, emission of uorinated
products are only mentioned intermittently in the scientic
literature and with limited accompanying information on
reaction pathways or analytical methods.
Binder emissions

As the most frequently used binder material, PVDF (homopol-
ymer or copolymer) is the focus of most of the existing literature
on binder removal during recycling. Binder removal conditions
have been studied for PVDF in cathodes, where a temperature of
at least 400 °C was required for degradation to be initiated
(PVDF decomposes in the range of 350–600 °C).54,60,88 Investi-
gations into the thermolysis of pure uoropolymers indicate
formation of a large and diverse suite of transformation prod-
ucts, only some of which have been identied.98–100 Examples
include hydrouoric acid, diuorobenzene and tri-
uorobenzene, uorinated alkanes, vinylidene uoride (VDF)
(and related PVDF degradation products) as well as undened
oligomers and polymerized species (Fig. 4).1,13,16,47,92,101–103 Given
these observations, and considering the extensive use of uo-
rinated substances (including uoropolymers) in LIBs, it is
reasonable to expect that an equally diverse range of trans-
formation products may form during LIB recycling.

The mechanism of PVDF thermolysis proceeds via a dehy-
drouorination reaction which removes one uorine atom and
This journal is © The Royal Society of Chemistry 2023
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one hydrogen atom in the PVDF chain, forming a carbon–
carbon double bond.46,92,98,104 This is also called “unzipping” if it
occurs throughout the main carbon chain.13,105 It is proposed
that the mechanism begins with removal of one hydrogen from
the main carbon chain, forming a radical which then removes
one uorine atom forming a double bond. Unsaturated bonds
are possible in a polyenic sequence which can then form other
molecules by polyaromatization. They could also cross-link,
forming cyclic organouorines.104 The presence of Li can also
induce dehydrouorination, producing a lithiated unsaturated
polymer, which may lead to formation of unsaturated organo-
lithium uoropolymers under conditions relevant to LIB recy-
cling.15,44,46 For example, PVDF can react with metallic Li or
lithiated graphite forming unsaturated uorine compounds.106

Another process of degradation is by scission at the carbon–
carbon bond forming halogenated or oxygenated compounds,
as well as radicals.98,105 The scission can occur throughout the
full polymer, resulting in the monomer VDF (Fig. 4).98

Apart from elevated temperatures, another recycling method
for binders is solvent dissolution. Sarkar et al. (2021)47 observed
that while pure PVDF was readily soluble in organic solvents
such as tetrahydrofuran, the polymer became insoluble when it
occurred as a lm on Al substrates. Alternatively, concentrated
sulfuric acid used in the main process of leaching during the
hydrometallurgical stage may introduce unsaturated bonds,
leading to break down of PVDF.14
Fluorochemical emissions measured during LIB recycling
experiments

Only a handful of studies have begun to characterize product
formation during LIB recycling and most have focused on gases.
For example, in a benchtop study on combined mechanical and
thermal treatment of LIBs, Hu et al. (2022)94 reported an increase in
both the number and concentration of gaseous uorinated
substances formed with increasing treatment temperature.
Detection of CHF, CH3F, CF4, COF2, CH2Fc radical and SiF4 were
attributed to decomposition of the binder, while the detected POF3
and PF5 likely appeared as a result of decomposition of LiPF6
(Fig. 4).94 Other studies have detected products such as SiF4, LiBF4,
and AlF3, the latter of whichmay be attributed to HF corroding the
Al current collector (Fig. 4).6,53,55,95 In general, the solids formed at
elevated temperatures in LIB recycling are not well investigated as
they oen are considered as byproducts in the process, mentioned
as residue, organic oil, char or tar.13,15,16,21,60,92,94 Characterization of
these products is clearly needed to get a complete picture of
emission of uorinated substances (including PFAS) during LIB
recycling.
Occurrence of LIB-derived PFAS in the
environment

The use of PFAS in LIBs is primarily associated with PVDF in the
binder material. Despite increasing uoropolymer production in
recent years,107 PVDF has not yet been identied in environmental
samples. However, other uoropolymermicroparticles, such as the
aforementioned binder material polytetrauoroethylene (PTFE),
This journal is © The Royal Society of Chemistry 2023
have been reported inMediterranean sh and remote Arctic Ocean
sediment samples demonstrating a global presence.108,109 PTFE,
followed by PVDF, have the highest global production volumes
among uoropolymers.107 The increasing use of PVDF in the
renewable energy sector is likely to lead to increasing emissions
and increasing likelihood of its detection in environmental
samples. This is also expected for processing aids/emulsiers
which are necessary for the production of uoropolymers.110–112

For example, PTFE has beenmanufactured using ammonium salts
of PFOA and hexauoropropylene oxide dimer acid (HFPO-DA;
“GenX”), both of which are highly persistent and widespread
contaminants of the global environment. While these substances
occur at very low concentrations inuoropolymers and are unlikely
to contribute signicantly to uorochemical emissions during LIB
recycling, their emission during the production of uoropolymers
has been shown to be considerable.113–115 The ammonium salt of
peruorononanoic acid (PFNA) was historically used as a process-
ing aid in emulsion polymerization process for manufacturing
PVDF, and released to the environment in large quantities.116 Due
to regulatory pressure on long-chain PFAAs such as PFOA and
PFNA, Solvay replaced them with other alternative PFAS (cyclic or
polymeric functionalized peruoropolyethers) for its PTFE and
PVDF manufacture.117 In recent years, some of the major global
manufacturers (namely Solvay, Arkema and Gujarat Fluo-
rochemicals)118 have switched to using non-uorinated processing
aids (NFPAs) as substitutes for PFAS. While the use of NFPAs
eliminates the concerns regarding releases of uorinated surfac-
tants such as PFNA etc. to the environment during manufacture of
PVDF, a wide range of other uorinated organic substances (i.e.
uorinated gases, residual monomers and oligomers, and uori-
nated byproducts) will still be released, and these emissions
should be closelymonitored and regulated.119 Although newNFPAs
exist for PVDF synthesis, emissions of PFAS-based emulsiers
might still occur from producers that have not changed their
processes. Analysis of river water downstream of uoropolymer
manufacturing sites (including PVDF) detected high levels of PFAS
contaminations in the recent past.113,120

PFAS used in electrolytes belong to a larger group of substances
known as ionic liquids (ILs).121 Although not noted as an electro-
lyte, Zahn et al. (2016)122 identied the rst uorinated ionic
liquid, triuoromethane sulfonic acid (TFMSA), to be recognized
as an environmental contaminant. TMFSA was detected in
a variety of water compartments implying high persistence and
mobility in the water cycle. Later, Neuwald et al. (2020)123 further
identied another ionic liquid, categorized in this review article as
an advanced electrolyte additive, tri(pentauoroethyl)triphosphate
(FAP), in mg L−1 levels in several German surface waters. Both
TFMSA and FAP were rst tentatively identied using tandem
mass spectrometry experiments and their identities later
conrmed with reference standards. Neuwald et al. (2021)121 used
a suspect screening approach to identify 65 substances including
substances noted above as possible compounds in LIB electrolyte,
namely; PF6

−, BF4
−, bis(triuoromethylsulfonyl)imide LiTFSI,

bis(uorosulfonyl)imide (LiFSI) and tris(triuoromethylsulfonyl)
methanide. They again identied TFMSA and FAP in these new
samples. The inorganic ions FSI−, PF6

− and BF4
− are not PFAS22

but four of the identied uorinated ionic liquids, namely;
Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030 | 1023
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TFMSA, FAP and bis(triuoromethylsulfonyl)imide and tris(tri-
uoromethylsulfonyl) methanide, meet the PFAS denition.22

These four uorinated ILs could potentially be used in LIB elec-
trolytes, but are likely to have other uses as well. For example,
triuoromethanesulfonic acid (TFMSA) and tris(tri-
uoromethanesulfonyl)methanide are mainly used as catalysts for
chemical synthesis.124–126 FAP is used in electrochemical devices,
including the above mentioned use in LIBs, and as a new media
for application in modern technologies and chemical
synthesis.127,128 Bis(triuoromethylsulfonyl)imide and similar ILs
have mostly been investigated for their use as corrosion
inhibitors.129

While beyond the scope of this study, electronics associated
with LIBs may also represent an important source of PFAS to the
environment. Apart from the presence of uorinated
substances in LIBs such as electrodes and binder, electrolyte
(and additives), and separator, this indicates that PFAS emis-
sions in LIB recycling may also derive from the electronic
components of LIBs as well as the devices which use LIBs.
Indeed, a non-target investigation of wastewater from three US
electronics fabrication facilities revealed >130 homologues
spanning 41 PFAS classes, with peruorobutane sulfonate
(PFBS) occurring at concentrations of up to 8000 ng L−1.130

Further information on the use of PFAS in electronic products
along with exposure risks during e-waste handling can be found
in the recent review by Tansel (2022).131

Literature review outcomes

The following key ndings from this review are summarized
below:

� Information pertaining to the occurrence of PFAS in LIBs
or their potential for emission to the environment during
recycling is limited. This may be due to the condential nature
of LIB components and/or because the LIB recycling industry is
still in its infancy.

� A wide range of organic and inorganic uorinated
substances (including PFAS) were reported in LIB components,
including the electrodes and binder, electrolyte (and additives),
and separator.

� Emission of uorinated substances (including PFAS) may
occur directly from LIB components, but also from formation
during the recycling process.

� Hydrometallurgical recycling processes (including
pretreatment steps) generally involve lower temperatures than
pyrometallurgy. These lower temperatures may favor incom-
plete mineralization of PFAS and/or production of novel uo-
rinated substances.

� As LIB technology develops to meet increasing perfor-
mance demands, an increasing number of uorinated
substances could be expected to be incorporated into LIBs. This
development is uncertain due to the broad restriction proposal
for PFAS in the EU.

� LIB recycling processes are undergoing constant rene-
ment in response to economic incentives and regulatory
measures but also to increase product yields. These changes
(which will likely favor a hydrometallurgical process in the
1024 | Environ. Sci.: Processes Impacts, 2023, 25, 1015–1030
future) are expected to have an impact on the types of uori-
nated substances formed and/or emitted during LIB recycling.
Future outlook and implications for
policy makers, scientists, and industry

On 13 January 2023, authorities in Denmark, Germany, the
Netherlands, Norway and Sweden submitted a restriction
proposal for ∼10 000 PFAS to the European Chemicals Agency
(ECHA).25 The proposal aims to reduce PFAS emissions into the
environment and make consumer products and industrial
processes safer for society. Notably, the proposal highlighted
that PFAS-free alternatives for LIBs are currently unavailable,
and that in order to meet the goals of the European Green Deal
initiative, LIB production will continue to grow. While this
implies that the European Commission (together with member
states) will likely grant derogations for the continued use of
PFAS in LIBs, industry will be strongly incentivized to look for
alternatives, since derogations are not permanent and are
proposed to be 5 or 12 years for applications within the energy
sector which includes LIBs.25 Moreover, during the derogation
period, manufacturers are expected to actively innovate towards
eliminating uses of PFAS in their products and processes. In
parallel to the PFAS restriction proposal, the latest EU proposal
for battery regulation requires manufacturers to share infor-
mation showing how vehicle batteries can be dismantled,
transported and recycled safely, including reporting of envi-
ronmental and/or human health impacts associated with
battery components.4 Given this impending regulation, the EU
battery recycling industry and associated actors in the product
supply chain (e.g., automobile manufacturers) need to (a)
identify and substitute current PFAS-containing LIB compo-
nents with PFAS-free alternatives, and (b) identify, and mitigate
any emission of PFAS which may occur during recycling.

Clearly, much work is needed by the research community as
well as regulators and industry in order to quantify the scope of
the problem regarding PFAS occurrence in LIBs, starting with
estimates of the total volume of uorochemicals used in LIBs to
date. Only by developing such estimates can the relative
importance of recycling-based emissions compared to other
sources (e.g. municipal waste incineration) be determined.
Once these inventories are performed, lab-based studies on the
fate of uorinated chemicals during LIB recycling are needed,
as are investigations of solid, liquid and gaseous emissions
from recycling facilities, using so-called “non-target” based
analytical approaches. These data can be used to identify where
emission reduction strategies should be introduced. Ultimately,
such information is useful for life cycle toxicity assessment of
LIBs, which will, in turn, facilitate comparisons among battery
and recycling technologies.
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