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Photocatalytic C(sp®) radical generation via C—H,
C-C, and C-X bond cleavage
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C(sp®) radicals (R") are of broad research interest and synthetic utility. This review collects some of the most
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recent advancements in photocatalytic R* generation and highlights representative examples in this field.

Based on the key bond cleavages that generate R°, these contributions are divided into C-H, C-C, and

DOI: 10.1039/d2sc00202g

rsc.li/chemical-science discussed in each section.

1. Introduction

The C(sp®) radical (R) represents one of the fundamental
organic species in synthetic chemistry, which is highly enabling
in various settings. R’ can be derived from feedstock chemicals
such as alkanes, alkenes, alcohols, amines, aldehydes, ketones,
carboxylic acids and their derivatives, making it a versatile
option for different synthetic purposes. Besides, it features
complementary reactivities to other alkyl intermediates (e.g.,
carbocation, carbanion, and carbene), providing flexible
synthetic routes to build up the C(sp®)rich scaffold and
complexity.

Historically, R* was rarely involved in reaction designs since
it was often produced via energy-intensive or user-unfriendly
pathways. In these cases, R* was less controllable, which
could lead to non-productive quenching or other undesired side
reactions (Scheme 1A). For instance, thermolysis of peroxides or
persulfates at high temperatures exemplified one common
practice of delivering R" via activating aliphatic C-H bonds or
carboxyl groups. Utilizing toxic metals such as organotin
reagents to fragment alkyl (pseudo)halides was another routine
method for R* generation. Aside from the thermochemical
protocols, direct irradiation of radical precursors in some
earlier photochemical strategies could significantly lower the
reaction temperature, although ultraviolet (UV) light was often
required (Scheme 1B). Consequently, global excitation of reac-
tion components was often inevitable, and radical dimerisation,
disproportionation and other off-target processes
frequently observed.

In this context, developing efficient and controllable radical-
generating methods for sp® carbon functionalisations was long-
sought-after. Pioneered by MacMillan, Stephenson, Yoon and
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others, photoredox catalysis experienced an impactful renais-
sance and stood out as a promising solution to previous limi-
tations (Scheme 1C). Unlike conventional approaches,
photocatalysis liberates radicals catalytically, usually under
visible light, therefore, effectively managing a low concentration
of radical species and minimizing the counterproductive
radical accumulation. Besides, photocatalysts are commercially
available in numerous forms, which could be organic or inor-
ganic, homogeneous or heterogeneous. They are tunable in
terms of redox potentials, excited-state energies and other
photophysical properties, hence, suitable for multiple synthetic
cases. More importantly, the resulting radicals were well
orchestrated by the catalysts in these systems, which could elicit
reactivities that were unattainable by conventional means, e.g.,
enantioselective alkylation, radical-radical cross-coupling and
photoredox/transition metal dual catalysis.

Armed with these benign features, it is unsurprising that
photocatalytic R* generation has become the mainstream for

| Re generation via thermal pathway

\'J;—FG

N IVesd Bl hemical R+ g

[ FG .%
Catalyst-free C

Hazardous reagents
High temperature

Cat. [TM] or [TM]-free
Controllable R+ formation
Visible light irradiation
Mild temperature

Scheme 1 General approaches toward R* formation.
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radical-based organic synthesis in recent years. Indeed, some of
the aforementioned content has been reviewed in the literature,
which was categorised either by types of the photocatalysts*™
bond formation.>*®

In this regard, we would like to contribute a review from
a different perspective by focusing on the photocatalytic R’
generation. These elegant reports will be organised based on
the key bond cleavage during the R" generation, thus, high-
lighting the diversity of C(sp®) radical precursors and the cor-
responding photocatalytic bond-cleavage strategies and
retrosynthetic possibilities (Scheme 2). We envision that this
review could provide a quick overview of this field to the audi-
ences, keep them updated with modern pathways to strategise
R’ generation, and facilitate the new design of photocatalysis
reactions. Toward this goal, three types of bond cleavages that
generate R’ via the cleavage of (a) C-H bonds, (b) C-C bonds,
and (c¢) C-X (X # H and C) bonds will be covered. In the C-H
cleavage section, the reactions will be arranged according to
hydrogen atom abstractors, while the reactions in C-C and C-X
parts will be grouped on a substrate basis.

To be noticed, R" in this review referred to all types of C(sp®)
radicals, including hydrocarbon-based alkyl radicals or C-
centred ones that contained at least one heteroatomic substit-
uent (i.e., a-ethereal, a-amino). Giving a comprehensive list of
all related literature in this evolving field is beyond our reach;
therefore, only representative publications within a decade that
featured new mechanistic insights or synthetic applications will
be included. To keep this review concise, some photoenzymatic
examples from Zhao's and Hyster's groups will not be
included.**

2. C-H cleavage

C-H bonds are ubiquitous in organic molecules and readily
available in nearly any synthetic stages; therefore, C(sp®)-H
bonds have been conceived as ideal sources of C(sp?) radicals.
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Scheme 2 Representative precursors for photocatalytic R* formation.
[X], activating group.
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Scheme 3 HAT-enabled R* generation.

However, due to their high bond dissociation energies (BDE¢_g
~85 to 105 kcal mol™ %), the thermodynamic barrier of either
direct or indirect hydrogen atom transfer (HAT) with C(sp®)-H
bonds needs to be overcome.”'*** Electrophilic hydrogen atom
abstractors are often required to cleave C(sp®)-H bond homo-
Iytically, which are typically electronegative-element-based
radicals (X°) featuring stronger H-X bonds (BDEx_y; > BDEq_g,
Scheme 3). Nonetheless, considering the instabilities of elec-
trophilic radicals and difficulties in distinguishing similar
C(sp®)-H bonds, enabling the generation of X' and selective
HAT pose significant challenges in the HAT regime and
encourage numerous efforts on designing new HAT reagents
and reactions.

Among them, photocatalysis represents one of the state-of-
the-art solutions, which could efficiently deliver the electro-
philic radicals under mild conditions, set the stage for subse-
quent HAT and foster the C(sp’) radicals. Accordingly, the
following sections will be organised based on the types of HAT
agents.

2.1. HAT with oxy radicals

In light of the high electronegativity of oxygen and the strong
O-H bond, oxy radicals should be a potent hydrogen atom
abstractor for electron-rich C(sp®)-H bonds. Moreover, as oxy-
genous compounds are abundant, many of them could be used
or engineered as oxy radical precursors. Among them, molec-
ular oxygen (O,), peroxide and persulfate exemplified some
classic options of oxy radical precursors, demonstrating their
versatile HAT reactions with C(sp®)-H bonds under photo-
catalytic conditions.’®"” Other than these choices, using alkox-
ides, carboxylates and some inorganic oxides to generate oxy
radicals photocatalytically is gaining popularity in recent years.

Mindful of the tunable redox potentials of photoredox cata-
lysts and the weak O-O bonds of peroxides/persulfates, their
combination could be a facile method to release oxy radicals
catalytically for HAT with C(sp®)-H bonds. In 2015, MacMillan's
group employed Ir(m)-photocatalyst and persulfate for Minisci
reaction between heteroarenes and ethers (Scheme 4)."* Mech-
anistically, in this photoredox cross-dehydrogenative coupling
(CDC),"* K,S,05 received an electron from the photoexcited
Ir(m), generating the sulfate radical anion for ethereal o-C-H
abstraction. The resulting R* was added to the electron-deficient
heteroarene, followed by oxidative aromatisation with Ir(v) to
give the desired ethereal heteroarene.

With the same Ir-photocatalyst, the organic-based benzoate
could also serve as the oxy radical precursor. In 2016, the group
of  Glorius  reported  site-selective  C(sp®)-H tri-
fluoromethylthiolations using a catalytic combination of Ir(u)

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 HAT with persulfate.

polypyridyl complex and sodium benzoate under light irradia-
tion (Scheme 5A).*> Based on the Stern-Volmer analysis, the
benzoate was oxidised by the Ir(u) to form a benzoyloxy radical
(kq=5.6 x 10’ M ' s~ '), which implemented the HAT with R-H
to generate an R'. The higher rate of HAT (k = 1.2 x 10" s7')
than decarboxylation (k = 1.4 x 10° s™") is one crucial concern
when choosing the benzoate as co-catalyst. The R* then coupled
with N-trifluoromethylthiolated phthalimide to afford the
product. Such an HAT protocol with photocatalytically gener-
ated oxy radical exhibited superior site selectivity. Tertiary
C(sp®)-H was abstracted in preference over secondary and
primary ones (>19: 1 ratio), and the a-oxygenated secondary
C(sp®)-H was more reactive than the unactivated tertiary ones.

With opposite electronic demand, the aryloxy radical could
also be acquired from the reductive SET of the 1,2-benziodoxol-
3-(1H)-one, a benzoate-type hypervalent iodine. In 2016, Chen
et al. showcased a C(sp®)-H azidation using 1-azido-1,2-ben-
ziodoxol-3-(1H)-one (BI-N3) as both HAT agent and azide source
in the presence of a Ru(u)-photoredox catalyst (Scheme 5B).>®
Unlike the example in Scheme 5A, single-electron reduction
between Ru*(u) and BI-N; occurred, and the latter underwent
O-I cleavage to form the 2-iodobenzoyloxy radical, which was
highly selective toward tertiary C(sp®)-H bonds. The generated
R’ initiated homolytic substitution with another BI-N; and
propagated the radical chain (quantum yield, ¢ ~18). Notably,
the authors showed that other than azidation, chlorination and
bromination were also achievable by adding corresponding

© 2022 The Author(s). Published by the Royal Society of Chemistry
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halide salts, which served as halogen sources through the azide-
halide exchange with BI-Nj.

Recently, alcohols were shown as effective organic precur-
sors of oxy radicals, and various strategies were developed to
tackle the challenging single-electron oxidation of alcohols. In
2018, Zhu's group documented a photocatalysed remote C(sp®)-
H heteroarylation reaction (Scheme 6A).>* With K,S,0; as the
terminal oxidant, a-heteroaryl tertiary alcohols were converted
to y-heteroaryl ketones through sequential HAT/migratory ary-
lation. An intramolecular proton-coupled electron transfer
(PCET) might be operative to facilitate the sluggish oxidation of
the -OH group, which was enabled by the cooperative interac-
tion of Ir(iv) species and internal heteroaromatic base. 1,5-
Hydrogen atom transfer (1,5-HAT) ensued to give the long-chain
R’ and triggered the heteroarene transfer. The ketyl radical
resulted from the migration was then oxidised to the ketone
product. In addition to this work, migratory C(sp*)-H cyanation,
alkenylation and alkynylation were achieved by replacing het-
eroaromatic ~ moiety under  similar  photochemical
conditions.>>?*

Ligand-to-metal charge transfer (LMCT) of high-valent metal
alkoxide complexes is another powerful means to generate oxy
radicals from alcohols, as demonstrated by Zuo and his co-
workers (Scheme 6B).”° In 2018, they conceived a cerium/
alcohol co-catalysed alkane C-H functionalisation reaction
and successfully upgraded the light hydrocarbons into value-
added products. Albeit the mechanism was still under
debate,* Zuo proposed that through the ligand exchange with
methanol or 2,2,2-trichloroethanol, the photoreactive cerium
alkoxide complex was formed in situ, which was excited and
homolysed to give the alkoxy radical (RO").

Methane, ethane, propane, butane, and cyclohexane were all
amenable HAT substrates and functionalised by the di-tert-butyl
azodicarboxylate (DBAD) to furnish hydrazide products. Such
an amination was scalable with continuous-flow reactors. Other
than the DBAD, electron-deficient alkene and heteroarene were
also applicable alkyl radical acceptors.

Similar to alcohols, N-hydroxy compounds that could result
in N-oxy radicals are also viable HAT agents. In 2011, Li and co-
workers exploited N-hydroxyphthalimide (NHPI) for C(sp®)-H
oxygenation with graphitic carbon nitride (g-C3N,) under pho-
toirradiation (Scheme 7).*' In the presence of g-C3N, catalysts,
0O, mediated the N-oxy radical generation from NHPI, which was
proposed as the key radical species to transform allylic or
benzylic C-H bonds into C=0. Likewise, Gong et al. utilised N-
hydroxysuccinimide (NHS) as the HAT agent for formylation of
fluoroalkyl imines through the HAT of 1,3-dioxolane, wherein
diacetyl was responsible for the oxidation of NHS to generate
the N-oxy radical.®®

Interestingly, some common inorganic salts could produce
oxy radicals, however, under strongly oxidizing conditions. As
such, these classes of oxy radical precursors remained
underutilised thus far. Organophotoredox catalysts (OPCs)
often possess broad redox windows, thereby representing ideal
chaperones of the inorganic oxides to give oxy radicals under
visible light irradiation.

Chem. Sci., 2022, 13, 5465-5504 | 5467
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In 2018, the collaboration between Nicewicz's and Alexa-
nian's group showed that the strongly oxidising excited acridi-
nium OPC could catalyse the azidation of non-activated C(sp®)-
H bond using K;PO, as the HAT agent (Scheme 8).** Taking
advantage of the photoexcited acridinium [Mes-Acr’-Ph]*
(Nicewicz's catalyst, Ej;;d =+2.08 Vvs. SCE in MeCN), K;PO, was
directly turned into the phosphate radical and afforded the R’
via HAT with R-H. Aside from azidation, platform reactions,
including fluorination, chlorination, bromination, tri-
fluoromethylation, and alkylation, were successful with the
corresponding functionalising reagents to trap the R’.

Another inorganic oxide, nitrate, has also been employed for
HAT by Nicewicz's group with a similar acridinium OPC
(Scheme 9).** In general, benzylic C-H bonds are more prone to
oxidation relative to their adjacent analogues due in part to the
weaker bonding of the former. In Nicewicz's homobenzylic
oxygenation reaction of alkylarenes, an OPC/Co dual catalytic
system was employed to tackle the challenging C-H oxygenation
at homobenzylic positions in favour of benzylic ones. In the
plausible mechanism, the nitrate was first oxidised by the
photoexcited acridinium, generating a nitrate radical for
benzylic HAT. The benzylic radical (R') was intercepted by the
cobaloxime catalyst to yield a styrene intermediate, which was
further subjected into anti-Markovnikov Wacker-type olefin
hydration, granting the benzyl ketone product. Interestingly,
homobenzylic oxidation could still occur without nitrate for
electron-rich substrates.

Complementary to the examples above, which accommo-
dated separate photocatalyst and oxy radical precursor in their
conditions, some photocatalysts themselves could behave as
oxy radicals after light excitation. Ketone is a well-known
representative in this class, considering the long and

© 2022 The Author(s). Published by the Royal Society of Chemistry
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prosperous history of Norrish chemistry. In 2013, Chen's group
reported a photocatalytic benzylic C-H fluorination using 9-
fluorenone as the HAT agent with Selectfluor as the fluorine
source (Scheme 10).** Under compact fluorescent lamp (CFL)
irradiation, the triplet diarylketone abstracted hydrogen at the
benzylic position and generated the benzyl radical (R’). The
Selectfluor served as both the fluorine atom source to fluorinate
the R’ and the oxidant for photocatalyst turnover. Interestingly,
switching to xanthone gave divergent reaction outcomes under
the same photo conditions, making benzyl difluorides the
major products. Moreover, this photocatalytic C(sp®)-H fluori-
nation was also feasible for cyclic and acyclic alkanes.

Organic dye eosin Y also belongs to this class of photo-
sensitiser. It is visible-light-absorbing and normally used for
the single-electron transfer (SET) and energy transfer (EnT)
catalysis. In 2020, Wu's group discovered a neutral-eosin Y-
catalysed Giese reaction between the ethers and alkenes, in
which the underexplored HAT capability of eosin Y was
revealed (Scheme 11).** Mechanistically, the neutral eosin Y,
more specifically, its para-quinone methide moiety, was
excited to a diradical form and responsible for the HAT with
ethereal a-C-H bond. Then, the R" was engaged in the Giese
reaction with electron-deficient double bonds to give the R’".

Owing to the steric and captodative effect, the reduced eosin
Y radical intermediate was relatively stable, which was reformed
into the active catalyst by another formal HAT with the R". As
such, good to excellent yields of Giese reaction products were
also obtained with other C(sp*)-H substrates like alcohols, and
amides, while cyclohexane gave only a poor yield. It was worth
mentioning that moderate heating was required to increase the

Chem. Sci., 2022, 13, 5465-5504 | 5469
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reaction efficiency, and eosin Y disodium salt (Na,-eosin Y) was
ineffective for this chemistry.

Beyond organophotocatalysis, some metal oxides such as
decatungstate (W;003,*", DT), uranyl dication (U0,**),*” and
antimony porphyrin complexes (SbTPP)*® could host formal oxy
radicals on their periphery under near-ultraviolet (UVA) light
irradiation. Capitalizing on this property, Wu et al. designed
a CDC reaction™>* between alkanes and alkenes by merging
tungsten and cobalt catalysis (Scheme 12).*° In this dual catal-
ysis system, tungsten was responsible for R* generation via HAT,
while cobalt was proposed to turn over such a net oxidative
coupling via H, evolution. Specifically, HAT occurred between
the photoexcited decatungstate [W;,05,* ]* and alkane,
affording an R* and [W;003,]> H'. While R underwent the
Giese addition toward alkenyl C=C bond and produced a new
stabilised R’", the latter (Eﬁg = —0.97 V vs. SCE in MeCN)
reduced the Co(m) (ES3 = —0.16 V vs. SCE in MeCN) into Co(u).
Binding of Co(u) and R’* followed by B-hydride elimination
furnished the alkylated alkene products with a high E/Z ratio
and a Co(m)-H. Later, the cobaloxime cycle was closed by
quenching the Co(m)-H with proton and releasing H,.

2.2. HAT with nitrogen-centred radicals

Adjacent to oxygen, nitrogen is also a highly electronegative
element, and its radicals are suitable for the HAT with C(sp®)-H
bonds. Early examples of N-centred radical (NCR) could be

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 12 TBADT-catalysed C—H alkenylation of alkanes.

traced back to the Hofmann-Loffler-Freytag (HLF) reaction, an
intramolecular NCR-mediated HAT reaction.**** Although
nitrogen is less electronegative than oxygen, NCRs could fine-
tune their steric and electronic properties by varying the N-
substituents.

A photocatalytic example of an HLF reaction to synthesise
cyclic amides from N-chloroamides was developed by Yu's
group in 2015 (Scheme 13A).** The photoreduction of the N-
chloroalkyl amide by Ir*(m) induced the N-Cl cleavage and
formed an NCR, which underwent 1,5-HAT with its pendant
alkyl chain to engender a C(sp®) radical (R*). The R’ could be
oxidised by Ir(iv) following chloride attack, or alternatively,
chlorinated by another N-chloroamide, to afford a 5-chloroalkyl
amide. With the stepwise addition of a base, intramolecular Sy2
amidation occurred, giving the cyclic amide products.

A similar photocyclisation reaction could also be realised
using simple secondary amides as NCR precursors as well as
HLF substates, which was revealed by Rovis et al. in 2016
(Scheme 13B).** Based on their mechanistic studies, acidic
amide substrates were crucial, which was partially deprotonated
and subjected to oxidation with Ir*(m). Alternatively, PCET
might be operative. The NCR triggered the C(sp®) radical
generation via 1,5-HAT, which was engaged in the Giese reac-
tion with electron-deficient olefins.

Concurrently, the group of Knowles reported the same
photocatalytic remote C-H alkylation but with catalytic Bu,-
NPO,(OBu), as the base.** Inspired by these elegant chemis-
tries, several amide catalysts were designed to pair with the Ir-
photocatalyst, enabling a series of C(sp®)-H alkylation,* alke-
nylation*® and arylation.*”

In addition to amides and their derivatives, simple amine
could accomplish the HAT/Giese reaction sequence under
photocatalytic conditions. In 2015, MacMillan et al. reported an
iridium/quinuclidine/phosphate triple-catalysed photoredox
reaction between alcoholic a-C(sp*)-H bonds and electron-poor
alkenes (Scheme 13C).* In their tentative mechanism, the NCRs
was generated from the oxidation of quinuclidine (<5 =
+1.10 V vs. SCE in MeCN) by the photoexcited (Ir[dF(CF;)
ppyl.(dtbpy))(PFe) (ELs Ir*(m)/Ir(n) = +1.21 V vs. SCE in MeCN),
producing the key R" selectively at the alcoholic a-position. The
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unique regioselectivity, in this case, might stem from hydrogen
bonding between alcoholic O-H and phosphate, which weak-
ened the a-C(sp®)-H of alcohol. Such an interaction would allow
the selective alkylation with strong C(sp®)-H bond in the pres-
ence of weaker ones such as allylic, benzylic, a-ethereal and a-
carbonyl C(sp®)-H bonds.

Apart from amines and amides, which formed sp®-hybri-
dised NCRs, sp” nitrogen radicals are also effective in HAT.
Among them, iminyl radicals were often employed in imine
remote C(sp’)-H functionalisations, giving ketones after
hydrolysis.*>** Taking Studer's y-alkylation of ketone as an
example (Scheme 14A),°* an o-aminoxy acid auxiliary was
condensed with the ketone, of which the carboxylate group
could be oxidised by the Ir*(m) to implement decarboxylation
and deacetylation, giving an iminyl radical for remote C(sp*)-H
abstraction.

In 2020, Cresswell and his team conceived an a-tertiary
amine synthesis via azide radical-enabled HAT with unmasked
amines (Scheme 14B)** Similar to MacMillan's quinuclidine
radical-mediated HAT (Scheme 13C), the anionic azide was
oxidised by photoexcited 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-
dicyanobenzene (4CzIPN) to provide an azide radical (Nj),
which performed regioselective C(sp®)-H abstraction from an o-
secondary amine and delivered an a-amino R’". After R" addition
to a conjugate alkene, the resulting amine could be isolated or
subsequently cyclised to afford a lactam.

Similar to oxy radicals, some special photocatalysts could
serve as NCR precursors directly, albeit rarely reported in the
literature. For instance, trisaminocyclopropenium ion (TAC),
which Lambert's group widely applied, was reported to enable
site-selective  heteroarylation of ether wunder photo-
electrochemical conditions (Scheme 15).%* According to their
proposed mechanistic rationale, the TAC was first oxidised into
TAC"" via anodic oxidation. After photoexcitation, it was trans-
formed into an aminyl radical cation, which could abstract the
ethereal o-C(sp®)-H to produce R’ or rearomatise R'/hetero-
arene adduct to give the Minisci reaction products. On the other
side, cathodic reduction of H" would release H,. Following the
success of this work, C(sp*)-H diamination and amidation were
later achieved using the same TAC photocatalyst.>**
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Scheme 13 NCR-assisted remote C—H functionalisations.

2.3. HAT with thiyl radicals

Moving downward in the chalcogen column, S-centred (thiyl)
radicals, despite being less electrophilic relative to oxy radicals,
could also perform HAT with some C(sp®)-H bonds. In general,
thiyl radicals could be generated more easily because of the
more polarisable and less electronegative sulfur centres.

Like the oxy radical, thiyl radicals can be formed from thiols,
thiocarboxylic acids and thiophosphoric acids.***” By merging
a thiol catalyst and Ir-photocatalyst, the group of MacMillan
reported a dehydrative Minisci alkylation using thiol as the HAT
agent and alcohols as the alkyl sources (Scheme 16A).>® Mech-
anistically, the essential thiyl radical came from the SET
between [Ir(ppy)(dtbpy).]*" (EXs Ir(v)/Ir(m) = +1.21 V vs. SCE in
MeCN) and mercaptan co-catalyst (Ef5s = +0.85 V vs. SCE in
MeCN for cysteine). Then, the thiyl radical abstracted the
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hydrogen atom from alcoholic a-C(sp®)-H assisted by the polar
effect; otherwise, such transformation would be thermody-
namically unfavourable (BDEgy for thiol ~87 kcal mol %
BDE_y for MeOH = 96 kcal mol ™). The nucleophilic addition
of R" to the protonated heteroarene, which was followed by
a spin-centre shift (SCS)-induced dehydration and some proton/
electron transfer steps to give the alkylated Minisci products.
Notably, the successful application of methanol for aromatic
methylation represented a major breakthrough in the field.
Using thiobenzoate as a catalytic HAT agent, Hamashima
et al. reported a redox-neutral C(sp®)-C(sp®) coupling of benzyl
amines and cyanoarenes in aid of Ir-photocatalyst (Scheme
16B).%® The photocatalytic cycle was initiated by reduction of the
photoexcited Ir(m) by dicyanoarene to form a radical anion
intermediate. Subsequently, electron transfer between Ir(v) and
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Scheme 14 Amine- and azide-catalysed a-C(sp®)—H functionalisations.

thiobenzoate oxidised the latter and generated the thiyl radical
for benzylic HAT. Due to the persistent radical effect, coupling
the o-aminobenzylic radical (R') and cyanoaryl radical anion
was feasible, which could afford the product after cyanide
extrusion.

Switching to another thiyl radical HAT system with acridi-
nium, thiophosphoric acid (TPA) and Ni(u), Mitsunuma and
Kanai reported a photocatalytic acceptorless dehydrogenation
reaction of alcohols in 2020 (Scheme 16C).*> Based on their
seminal results,* a triple catalytic cycle was designed. The TPA
was oxidised by the excited Fukuzumi catalyst to form a thiyl
radical for HAT with the alcoholic «-C-H bond. The ensuing R’
was intercepted by nickel(u), followed by B-hydride elimination
and tautomerisation to deliver the ketone product. Terminal
oxidant was absent in this reaction because the nickel promoted
the H, evolution and closed the catalytic cycle. Notably, under
the same C(sp®) radical generation scenario, intermolecular
reactions such as the Giese reaction and oxidative esterification
between alcohols and aldehydes were successful.

2.4. HAT with halogen radicals

The application of halogen radicals in organic synthesis could
date back to more than 150 years ago when Regnault discovered
that dichloromethane could be formed by exposing chloro-
methane and chloroform to sunlight.®* While the Cl'-involved

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

Cresswell (2020)

NH, PG ( N
o1 o
i 4CzIPN (1.0 mol%)
BusN*N3™ (10 mol%) EtsN (4.0 equiv) H
- HN
o MeCN, 25-26 °C MeOH, reflux, 2 h

425 nm LED
Nitrogen, 20 h

selected examples

9 o]
HN HN Me
G ey’ "
i Me BocN BDCHN/J\\/COZ'\AS
84% 56% 78% 49%

-------------------------- proposed mechanism

[4CzIPN] Ns't—\H
K oo ¥ o
oo Mo X

o
Hg—go H:>,H;< Ro‘go /\j\m

[4CzIPN]

Z

process remains a common practice for alkyl chloride synthesis,
many novel C(sp®)-H functionalisation reactions have been
established by embedding the halogen radical-mediated HAT in
visible light photocatalysis.

Inorganic chlorides (Cl™) represent a convenient source of
Cl" for laboratory synthesis. However, oxidation of CI~ to Cl’
(ESY = +2.03 V vs. SCE in MeCN) mandates strong oxidants,*
and controlling the reactivity of Cl" stays challenging. In 2018,
Barriault and his group reported an elegant solution to solve
these two problems and realised an (Ir[dF(CF;)ppy].(dtbpy))Cl-
catalysed Giese reaction with alkanes (Scheme 17A).** Mecha-
nistically, a radical process with Cl" and R" was proposed. The
former was produced from the SET between excited Ir(m) and
chloride under gentle heating conditions since the Cl™ oxida-
tion was unfavourable in this case (E1Sy Ir*(ur)/Ir(i) = +1.21 V vs.
SCE in MeCN). The latter was derived from the HAT between Cl°
and alkanes and was subjected to the Giese pathway. Interest-
ingly, the reactivity of Cl" could be tamed at low concentration
with pyridine as the solvent, wherein it exhibited enhanced
selectivity toward tertiary C(sp®)-H bonds than others in cyclo-
pentyl methyl ether.

Complementary to SET, LMCT is also effective in generating
Cl'.*»** Inspired by Nocera's observation on photoinduced
LMCT of nickel(m) trichloride,* in 2016, Doyle and colleagues
designed a dual metallaphotoredox catalysis reaction for
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Scheme 15 TAC-catalysed HAT under

conditions.

photoelectrochemistry

a redox-neutral coupling of aryl chlorides and ethers (Scheme
17B).** By merging iridium photocatalysis and nickel catalysis
under visible light, the key Cl" could result from an LMCT
process of the excited Ni(u)(Ni-Cl. This strategy could bypass
the unfavourable outer-sphere oxidation of Cl~ by photo-
catalyst, and external C1~ was absent in Doyle's conditions since
oxidative addition of Ni(0) could gain CI~ from a broad range of
aryl chlorides. Noticeably, C(sp®)-H arylations with toluene and
cyclohexane were also feasible, albeit in lower yields.

Consistent with the trend of the oxygen-to-sulfur switch,
compared to Cl~, bromide (Br ) has a less positive reduction
potential (ES = +1.60 V vs. SCE in MeCN), weaker hydrogen-
halide bond (BDE for H-Br = 87 kcal mol™") and lower elec-
tronegativity; therefore, bromine radical (Br") could be a theo-
retically more selective HAT agent that is easier to obtain.*®
Based on these properties, Ishida and Murakami et al. utilised
the nickel/iridium dual metallaphotocatalytic system for the
CDC between toluene derivatives and benzaldehydes (Scheme
17C).*” The direct Br -to-Ir*(u) electron transfer of the in situ
formed [Ir(ppy).(dtbpy)]Br led to the Br' formation. Impres-
sively, the yield of cross-coupling products could be optimised
by fine-tuning the molar ratio of toluenes and aldehydes.

As demonstrated by Wu's laboratory, the same Br" could also
be derived from the CH,Br, oxidation by photoexcited
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acridinium catalyst, which was submitted to achieve alkyl C-H
abstraction for Giese reaction.®® To be noted, the HAT byprod-
uct, HBr, could serve as additional Br" sources.

2.5. HAT with carbon-centred radicals

Unlike heteroatom-based radicals, most non-functionalised C-
centred radicals are nucleophilic. Since the components on
both sides of the HAT equation are very similar in terms of the
C-H bond strength and C-centred radical polarity, low kinetics
of the HAT step, premature coupling process and other side
reactions are major concerns of this HAT protocol. This
explained its rare application in the intermolecular process.

However, C-centred radical-mediated HAT enjoyed rapid
development in recent years owing to the renaissance of pho-
tocatalysis. Along this line, Gevorgyan, Reiser, Zhu and other
research groups have devoted themselves to advancing HAT
chemistry with C-centred hydrogen abstractors in transition
metal-catalysed or metal-free reactions.**”*

In 2020, Gevorgyan's group described a photoinduced
intramolecular atom-transfer radical cyclisation (ATRC) reac-
tion of vinyl iodides to synthesise 3-iodomethyl dihy-
drobenzofurans under palladium photocatalysis (Scheme 18).7>
An unprecedented hybrid vinyl/Pd(1) radical pair intermediate
was proposed as a consequence of SET between the photoex-
cited Pd(0) catalyst and vinyl iodide. A 1,5-HAT process between
the vinyl radical and tertiary C(sp®)-H bonds then proceeded,
generating an R’ for the iodocyclisation.

Other than C(sp®)-centred radicals, C(sp*)-centred radicals
were also versatile HAT agents. In 2019, Studer's group reported
photocatalysed o-C-H alkylation and arylation of alkylboronic
esters, in which trifluoromethyl iodide mediated the HAT under
photocatalytic conditions (Scheme 19).”* In their original
mechanistic proposal, the trifluoromethyl radical (CF;) was
generated through SET between the CF5I (E5SS = —1.52 V vs. SCE
in DMF) and Ir*(m) (E%s Ir(v)/Ir¥(m) = —1.73 V vs. SCE in
MeCN). The CF; could execute HAT with the pre-synthesised
boronate complex and form a radical anion intermediate (R"),
which was further oxidised by Ir(iv) or another trifluoromethyl
iodide and underwent 1,2-alkyl or aryl migration to afford the o-
substituted boronates. It should be noted that the radical chain
process was supported by the reaction quantum yield
measurement (¢ = 8.8). Also, the fluorescence quenching of the
Ir-photocatalyst with the boronate complex indicated another
plausible catalytic cycle initiated by the borate oxidation.

Very recently, Doyle's group documented a methyl radical
(Me')-mediated C(sp®)-H fluorination using N-acetyloxyph-
thalimide as Me" precursor and triethylamine trihydrofluoride
(Et;N-3HF) as the fluoride (F~) source under radical-polar
crossover mechanism (Scheme 20).”* In their tentative cata-
Iytic cycle, N-acetyloxyphthalimide was reduced to Me" by
excited Ir(m), with the concurrent release of CO, and phthali-
mide. The alkane substrate underwent HAT with the Me’.
Afterwards, the generated R* was transformed into a carboca-
tion, which was intercepted by the F~ to give the fluorinated
product. Distinct HAT selectivity toward electron-deficient
C(sp’)-H bonds was observed with the nucleophilic Me’,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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