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A coarse-grained xDLVO model for colloidal
protein–protein interactions†

Srdjan Pusara, a Peyman Yamin,‡a Wolfgang Wenzel, *a Marjan Krstić ab and
Mariana Kozlowska *a

Colloidal protein–protein interactions (PPIs) of attractive and repulsive nature modulate the solubility of

proteins, their aggregation, precipitation and crystallization. Such interactions are very important for

many biotechnological processes, but are complex and hard to control, therefore, difficult to be under-

stood in terms of measurements alone. In diluted protein solutions, PPIs can be estimated from the

osmotic second virial coefficient, B22, which has been calculated using different methods and levels of

theory. The most popular approach is based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory

and its extended versions, i.e. xDLVO. Despite much efforts, these models are not fully quantitative and

must be fitted to experiments, which limits their predictive value. Here, we report an extended xDLVO-CG

model, which extends existing models by a coarse-grained representation of proteins and the inclusion of

an additional ion–protein dispersion interaction term. We demonstrate for four proteins, i.e. lysozyme

(LYZ), subtilisin (Subs), bovine serum albumin (BSA) and immunoglobulin (IgG1), that semi-quantitative

agreement with experimental values without the need to fit to experimental B22 values. While most likely

not the final step in the nearly hundred years of research in PPIs, xDLVO-CG is a step towards predictive

PPIs calculations that are transferable to different proteins.

1 Introduction

Protein–protein interactions play an important role in biological
function and processes in biotechnology. Specific interactions,
known as ‘‘lock-and-key’’, are characterized by a strong binding
affinity and occur during processes such as antigen binding to
the antibody or ligand binding to a receptor. In contrast, the
state of proteins in solution, including the propensity to aggregate,
is steered mostly by the weak non-specific interactions, i.e.
colloidal protein–protein interactions (PPIs). These include
steric repulsion, van der Waals or hydrophobic interactions,
as well as long- or short-ranged electrostatic repulsion and
attraction, all of which are modulated by the solution pH,
temperature, ionic strength, protein concentration and the
presence of excipients. The balance between attractive and
repulsive forces determines the stability of protein solutions
and their precipitation and crystallization, when the screening
of the repulsive forces is achieved. Both processes are complex

and not fully understood, yet, they are extremely important for
protein processing and manufacturing, especially in health care
or food applications.1,2 Control and design of such processes and
the assessment of the PPIs during the pre-formulation develop-
ment phase require information regarding protein solubility and
its modulation by the solution conditions.3,4

The solubility of molecules is affected by their solid–liquid
equilibrium, which depends on solute–solute and solute–solvent
interactions.5 Macroscopic deviation of the osmotic pressure
from that on an ideal solution can give information about
solute–solute interactions. This deviation is characterized by
virial coefficients. Here, the most relevant quantity is the second
virial coefficient, known in diluted systems as B22, which gives
information about average two-body interactions between
protein molecules. B22 is a measure of the non-specific protein
binding capacity6 and stickiness, and it has been investigated
widely as a semi-quantitative approach to characterize protein
solubility,7–12 phase behavior13–16 and crystallization.2,7,9,16–18

Positive values of the B22 coefficient indicate the dominance of
repulsion interactions between proteins and correspond to good
protein solubility. When attractive interactions between proteins
increase, enabling protein assembly and aggregation, the B22

values become negative. A quantitative relation between the B22

and the ideal protein crystallization conditions was proposed by
George and Wilson,19 who determined a narrow range of the B22,
when crystallization occurs.7,8,20 Since then, several empirical
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models were proposed aiming to correlate B22 quantitatively
with solubility and self-assembly with parameters fitted from
experimental data.11,18,21 Moreover, thermodynamic relations
between the protein solubility and B22 were developed,7,12 where
the solubility, S, is calculated from the measured B22 using:

B22 ¼
�Dmp
RT

1

2MwS
� lnS

2MwS
(1)

where Mw is the weight-averaged molecular weight of a protein, R
is the gas constant, T is the temperature, and Dm is defined as the
difference of the standard chemical potentials of the protein
between two states, i.e. mo

p in solution and �mo
p in the crystal.

Experimentally, the osmotic second virial coefficient is often
measured using membrane osmometry, static light scattering,
cloud-point measurements, fluorescence-anisotropy, self-interaction
chromatography or by sedimentation equilibrium.14,22–24 As an
example, the functional form to relate PPIs with Rayleigh scattering
in static light scattering (SLS) is the following:25

Rex

K
¼Mwcþ G22c

2 (2)

where G22 is a protein–protein Kirkwood–Buff integral, c is the
concentration (mass per vol) of a protein, Rex is the excess Rayleigh
ratio, and K is an optical constant that is a function of the refractive
index of the solution. Eqn (2) illustrates the relevance of B22 in SLS.
In the case of diluted protein solutions, G22 is replaced by�2B22.26,27

Unfortunately, the experimentally determined values of B22

cannot be decomposed into the specific PPI contributions,
limiting the systematic understanding of PPI. Presently, the
number of reported B22 coefficients is still limited to specific
examples, therefore, considering the huge number of proteins
of industrial interest and the various conditions occurring in
industrial processes, there is a huge space for improved models
and theories for the B22 calculation. Quantitative models
to compute the B22 coefficients for specific proteins and
environmental conditions can accelerate the optimization of
the industrial processing towards the stability of the protein
solutions or protein crystallization beyond the current ‘‘trial and
error’’ experiments based on the several empirical rules.28,29

From the perspective of thermodynamics, the osmotic second
virial coefficient is the solvent-averaged free energy of interaction
between a pair of proteins, which is Boltzmann-averaged over
the relative protein orientations and separations. It has been
estimated by the integration over the configuration space,
Monte-Carlo simulations30,31 with the Mayer sampling,13,32–36

from molecular simulations27,37,38 using radial distribution
functions or potentials of mean force or by counting all
configurations in which proteins interact.36 Among available
theoretical tools aimed to calculate B22 coefficients, one of the
most commonly used approach is the DLVO theory, that was
originally developed by Derjaguin–Landau and Verwey–Overbeek
for colloidal systems.39 It models PPI by representing proteins by
spheres and accounts for van der Waals and electrostatic
interactions in protein solutions of a specific ionic strength.
The protein is represented by the charged sphere using a
Debye–Hückel model for the screening by hydrated salts and a

continuum representation of the solvent. When fitted to
experimental B22 data, DLVO theory represents the overall trends
well.1 Several improvements of DLVO were reported, including
introduction of the multiple binding sites to other proteins40 or
addition of a salt-induced osmotic attraction potential.41 The
latter model was also extended to compute B22 of protein
solutions with excipients42 in the presence of polymers.43 Details
of the extended DLVO (xDLVO) method are given in Section 2.2.

Since proteins exist in a variety of different shapes with an
inhomogeneous charge distribution, resulting in anisotropic
PPIs,31,44 the spherical approximation in xDLVO may be one of
the reasons, why such models fail to quantitatively describe B22

coefficients without fitting to an experimental baseline.
Moreover, even for the globular proteins, the surface roughness
can play significant role on the solvent accessible area, and
therefore, on the total potential of mean force (PMF) and B22.45

Anisotropic shape is also important for the protein surface
complementarity during the assembly and crystallization
processes.46 Methods using coarse-grained (CG) representations
of proteins improve the accuracy of B22 calculation for different
types of proteins,27,47,48 starting from the small globular
lysozyme to monoclonal antibodies. In most cases, the protein
model was parameterized based on the experimental
data.13,27,30–36 One might assume that using a fully atomistic,
but computationally costly representation would fully resolve the
difficulties stemming from the spherical approximation, but this
is not the case: investigations with fine-grained protein models
using atomistic and MARTINI force fields have shown significant
deviations from experiment, in particular they result in a large
overestimation of the PMF well depths.31,37,38

Here, we aim to develop a transferable model for reasonably
efficient B22 calculations using optimized coarse-grained (CG)
representation for the protein that is better able to account for
the shape of non-spherical proteins, while not incurring the
cost of fully atomistic models. We show that a shape based
representation of the protein and the introduction of an additional
term representing ion–protein dispersion interactions improve
an agreement between experiment and model, both in values
and limiting behavior. Going beyond spherical models we must
sample the conformational space of the relative orientations
of the proteins. We validate the model on lysozyme (LYZ),
subtilisin (Subs), bovine serum albumin (BSA) and immuno-
globulin type 1 (IgG1), where we find a good agreement with the
available experimental data.

2 Theory
2.1 B22 from the potential of mean force

The osmotic second virial coefficient, B22, can be defined via
the virial expansion of the osmotic pressure as:

P ¼ RTcp
1

MW
þ B22cp þ � � �

� �
(3)

where P is the osmotic pressure, cp is the protein concentration
(in mass units), R is the gas constant, T is the absolute
temperature and MW is molecular weight of the protein. This
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equation permits a molecular interpretation of B22, where
positive values of B22 correspond to repulsive two-body protein
interactions, causing higher, than ideal-gas, osmotic pressure.

McMillan and Mayer used a statistical mechanics approach
to describe the osmotic properties of solutions, reducing the
virial equation of state to the osmotic equation of state, where
the solute particles interact with each other via effective
potentials.49 Therefore, the relationship between the osmotic
second virial coefficient and the potential of mean force (PMF),
W22, between two proteins in solution can be derived as:49,50

B22 ¼
1

2

NA

MW
2

ð1
0

1� e
�W22ðrÞ

kBT

� �
4pr2dr (4)

where r is the intermolecular center-of-mass distance between two
proteins, NA is the Avogadro constant and kB is the Boltzmann
constant. Eqn (4) denotes idealized description of PPIs between
two proteins represented with spherical particles. Thus, the
osmotic second virial coefficient can be calculated, if the potential
of mean force is known and it is a statistical average over all
distances and orientations of two molecules in a liquid phase,
with each PPIs configuration weighted by a Boltzmann factor.

2.2 DLVO and xDLVO theory

DLVO theory is a traditional approach that is often used also to
compute B22 as a function of ionic strength.39 Proteins are
represented by spheres, which interact via van der Waals inter-
actions (Hamaker model) and electrical double layer forces
(Debye–Hückel). When fitted to experimental B22 data, DLVO
theory represents the overall trends well with larger discrepan-
cies at higher ionic strengths.1 Extended DLVO models (xDLVO)
as, for example, reported by Herhut et al.,41 overcome some of
the limitations of DLVO by adding salt effects via osmotic
potential, while retaining the spherical model for the proteins.
Here, by fitting of the Hamaker constant and B22 to experiments
at low ionic strengths, they improved B22 coefficients at high
ionic strengths. Their model included the contribution of a hard
sphere potential WHS(r), a dispersion potential Wdisp(r), an
electrostatic potential Wel(r), and an osmotic potential Wosm(r):51

W22(r) = WHS(r) + Wdisp(r) + Wel(r) + Wosm(r) (5)

The hard sphere potential, WHS(r), was used to describe repul-
sive forces between proteins at short distance due to their
excluded volume:39

WHSðrÞ ¼
0; r4 2ðR2 þ sÞ
1; r � 2ðR2 þ sÞ;

�
(6)

where R2 represents the spherical radius of the protein and s is
the thickness of the water layer around the protein surface
(estimated as 0.1 nm52).

The dispersion potential:

WdispðrÞ ¼ �
AH

12

ð2R2Þ2
r2 � ð2R2Þ2

þ ð2R2Þ2
r2

þ 2 ln 1� ð2R2Þ2
r2

� �� �
;

r4 2ðR2 þ sÞ
(7)

describes the attraction forces between macroscopic uncharged
proteins. Here, AH is the Hamaker constant for the system
consisting of proteins, solvent and salt. In eqn (7), AH depends
on the dispersive surface energy of a protein and the solvent at
specific pH and salt concentration. It was derived from a set of
experimental measurements as reported in ref. 41.

The electrostatic potential was derived from Debye–Hückel
theory,53 which models the repulsive forces of two identical
protein molecules:

WelðrÞ ¼
Z2e2 expðkð2R2 � rÞÞ

4pe0err 1þ kR2

2

� �2
; r4 2ðR2 þ sÞ; (8)

where er is the relative permittivity, Z is the charge of a protein
and k is the inverse Debye length53 given by:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NAe

2I

e0erkBT

s
(9)

Eqn (8) cannot take into account the effect of electrolytes at
ionic strengths higher than 10 mM, therefore, the salt effects
were modeled via the osmotic potential,54 Wosm(r):

WosmðrÞ ¼ �
4pkB
3

Tr23
3r3 1� 3r

4r23
þ r3

16r233

� �
;

2ðR2 þ sÞ � r � 2r23

(10)

where r23 = R2 + R3 + s is the sum of mean hydrated radius of a
protein (R2), the salt (R3) and the water layer (s), while r3 is the
salt density. In general, the osmotic potential is most relevant,
when two proteins interact at short distances. This results in
the exclusion of ions from the protein–protein interspace and
an imbalance in the osmotic pressure that compensates the
difference in the salt concentration.

The traditional xDLVO model41 allowed to describe the B22

of proteins in aqueous solution as a function of pH, salt type,
salt concentration and temperature by fitting to experimental
B22 data. In order to compare it with the new model developed
here, we re-implemented this approach, but do not fit the
parameters. Instead, we use just one value of the Hamaker
constant, taken from the literature (see Table 1 in Appendix),
to represent dispersion interactions and we implemented
new potential term, i.e. for ion–protein dispersion interactions,
that improves the salt induced attractive PPIs in PMF. The
detailed description of the new model is given in the next
Section.

3 A coarse-grained xDLVO model
3.1 Coarse-grained model

We investigate here a model that tries to improve upon some
approximations in xDLVO. Clearly, most proteins are not
spherical and, therefore, their interactions are anisotropic. This
means that many configurations contribute to the conformational
ensemble. In order to account for these effects we introduce a
coarse-grained model of the proteins built from the respective
all-atom structures. We investigate here lysozyme (LYZ), subtilisin
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properase (Subs), bovine serum albumin (BSA) and human
immunoglobulin type I (IgG1) with the PDB codes 4nhi, 4f5s,
1ndu and 1mco. The selected PDB structures contain all residues
and have at least two protein units in the unit cell. Hydrogen
atoms were added according to the pH of interest (see Table S1,
ESI†) using PROPKA method55,56 implemented in PDB2PQR
web-server.57,58

All-atom structures of proteins were mapped to a coarse-
grained (CG) representations using a shape-based model with a
self-organizing neural network topology building algorithm,59

implemented in the VMD program (version 1.9.3).60 The neural
network was initialized by two variables, e and l, used for the
learning algorithm. The starting and the final values of e and l
were 0.3 and 0.05 and 20 and 0.01, respectively. One CG bead
represented approximately 500 atoms of a particular protein,
resulting in 5, 10, 20, 40 CG beads for LYZ, Subs, BSA and IgG1
(see Fig. 1a and 5), respectively. CG beads were placed at the
center of mass of atoms represented by each bead. Partial
charges of atoms in each bead, as calculated by PROPKA, were
used to calculate the charge of each CG bead (see Fig. S1, ESI†).
Several mapping schemes were tested (see Fig. S2, ESI†).
We find that there is little difference in B22 between 500-to-1
mapping compared to a calculation that used a 150-to-1
mapping, while the computational cost of B22 was reduced
from 57.76 minutes to 7.7 minutes for 150-to-1 and 500-to-1
model of BSA (for one relative orientation). For this reason we
opted for a 500-to-1 mapping for this investigation.

3.2 Potential of mean force in xDLVO-CG

The xDLVO model, described in Section 2.2, was adapted for
the shape-based CG model of proteins. Interaction potentials
(eqn (7)–(10)) between all beads of one protein and all beads of
another protein (schematically shown in Fig. 1a) were
implemented using pairwise terms between beads as opposed
to the protein as a whole. The implementation of these terms is
discussed in detail below.

In order to go beyond the fitting of the Hamaker constant to
protein specific B22 data in xDLVO, we aim here for a model,
where the Hamaker constant is independently measured or
computed and do not depend on pH and salt concentrations.
Even in a CG representation we need to account for the
‘‘missing’’ interactions and additional terms must be considered

to model the observed dependence on pH and salt concen-
tration. To account for this effect we investigate, whether an
additional ion–protein dispersion potential (Section 3.2.4),
mimicking the impact of ion type on the protein salting out,
as known from the Hofmeister series, can compensate for the
missing effects. For the dispersion interactions, we still use a
Hamaker-approach for most of the paper, but, at the end, we
discuss replacing this term altogether by a Lennard-Jones
potential. Therefore, the total PMF between two proteins, W22

(eqn (4)), was determined as the sum of electrostatic, dispersion
(Hamaker or Lennard-Jones), osmotic and ion–protein
interactions as in

W22ðrÞ ¼
WelðrÞ þWdispðrÞ þWosmðrÞ þWdisp

i�prðrÞ

WelðrÞ þWLJðrÞ þWosmðrÞ þWdisp
i�prðrÞ

8<
: (11)

These terms are discussed in detail below.
The PMF was calculated at salt concentrations from 0 to 1 M

(every 0.01 M) on the center-of-mass distances between the
proteins starting from the separation in the initial crystal
structure (R0) up to R0 + 30 nm using 0.1 nm step (see Fig S3,
ESI†). All calculations were performed at 298.15 K. The PMF
and the corresponding B22 coefficients were calculated by an in-
house developed code.

3.2.1 Electrostatic interactions. We calculated electrostatic
interactions between the proteins using the Debye–Hückel
equation:

WelðrÞ ¼
XN1

i¼1

XN2

j¼1

ZiZje
2 exp kðdij � rijÞ

� 	
4pe0err 1þ kdij

4

� �2
; rij 4 dij þ 2s (12)

where r is the center-of-mass (COM) distance between two
proteins, N1, N2 denote the total number of beads in each
protein, dij is the initial distance between bead i of the first
protein and bead j of the second protein (according to the
crystal structure), and rij is the current (variable) distance
between beads during pulling of proteins. The s is the thickness
of water layer on a protein surface (approximated to 0.1 nm),
while Zi and Zj represent the charge of CG beads of protein units.
Each bead has a different charge (see Fig. S1, ESI†) which results
in an anisotropic character of electrostatic PPIs.

The impact of the low dielectric core, which was shown to
give a rise to the short-range image-charge-based repulsion of
the charged polyelectrolyte chain, adsorbed on the spherical
substrates,61 was not included. The image repulsion for the
ion–protein electrostatics is low: Slight contributions are
noticeable only at low salt concentrations (see Fig. S4, ESI†)
without the influence on the B22 values. Image-charge-based
repulsion is negligible at moderate ionic strengths. This is
consistent with other studies in this field.62,63

3.2.2 Dispersion interactions. The dispersion potential,
Wdisp(r), describing attractive van der Waals forces between
proteins, was calculated using two approaches: using the
Hamaker eqn (13) and the Lennard-Jones potential (15).
The Hamaker equation, derived by the summation of van der

Fig. 1 Improvements of xDLVO approach implemented in xDLVO-CG:
shape-based coarse-grained model of proteins, shown for lysozyme (PDB
code 4nhi) represented by 5 CG beads per a protein unit (a) and continuum
model of ion–protein dispersion interactions (b). Rp and D denote protein
radius and maximum thickness of a shell, at which ion–protein interactions
are considered.
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Waals interactions over infinite volumes of two ideal spheres64

was implemented according to:

WdispðrÞ ¼ �
XN1

i¼1

XN2

j¼1

AH

12

1

N1N2

dij

rij2 � dij2
þ dij

2

rij2
þ 2 ln 1� dij

2

rij2

� �� �
;

rij 4 dij þ 2s

(13)

where AH is the Hamaker constant. It can be measured using
different techniques and is often estimated using relation:64

AH = p2lq1q2, (14)

where AH is described by the London-van der Waals constant, l,
and the atom densities of the interacting bodies q1 and q2.
London-van der Waals constant is derived from the
measurements of the polarizabilities and characteristic
absorption frequencies of the solute and is related to the
refractive indices.65 We have used the Hamaker constants that
were previously reported in literature (Table 1 in Appendix).

Since the Hamaker equation needs experimentally measured
values of AH, we attempted to generate a parameter-free
substitute by implementing the Lennard-Jones potential:

WLJ ¼
XN1

i¼1

XN2

j¼1
eij

sij
rij

� �12

� sij
rij

� �6
" #

(15)

To differentiate the two methods we use the label xDLVO-CG(LJ)
for the latter approach.

The Lennard-Jones parameters of each bead: ei and si, were
assigned according to Arkhipov et al.,66 as implemented in the
SBCG builder in VMD. According to this model, the interaction
strength of each bead was assigned based on the hydrophobic
solvent accessible surface area (SASA) for the protein domain
represented by a bead:

ei ¼ emax
SASAhydroph

i

SASAtotal
i

 !2

(16)

where emax is the interaction constant (often taken as
10 kcal mol�1), while SASAhydroph

i and SASAtotal
i are the hydro-

phobic and the total SASA of a bead i. For the B22 calculations in
the present paper, emax of 10 kcal mol�1 and 2 kcal mol�1 was
used for the small protein (LYZ) and other proteins (Subs, BSA,
IgG1), respectively.

The LJ radius for each bead, si, was obtained as a radius of
gyration of the groups of atoms represented by a CG bead,
increased by a constant value, Ds, of 0.1 nm, to mimic atoms at
the edges of the bead. LJ parameters between specific beads
pairs were obtained by standard combination rules:

eij ¼
ffiffiffiffiffiffiffi
eiej
p

; sij ¼ 0:5 si þ sj
� 	

(17)

Such an approach accounts mainly for hydrophobic interactions
since the strongest interaction is reached as emax between two
purely hydrophobic beads.

3.2.3 Osmotic potential. The additional attractive interaction
between proteins, caused by ion exclusion from the protein

interspace at short distances, was calculated according to equation:

WosmðrÞ ¼ �
XN1

i¼1

XN2

j¼1

1

N1N2

4pkB
3

TDij
3r3 1� 3rij

4Dij
þ rij

3

16Dij
3

� �
;

dij þ 2s � rij � 2Dij (18)

where R3 is a mean hydrated radius of salt (taken as a sum of the
hydrated anion and cation radii), r3 is the salt density and Dij is
defined by equation:

Dij = dij + R3 + s (19)

The values for hydrated anion and cation radii were taken from
Marcus et al.67 (see Table 2 in Appendix).

3.2.4 Ion–protein dispersion interactions. PPIs depend also
on the type of salt used, which will impact on the B22.16 The
propensity to salt-out proteins from solution by specific salt ions,
as known from the Hofmeister series, is connected to the
interactions between ions and the protein.68,69 These
interactions are not included in the majority of solubility
models (also not in (x)DLVO), however, Ninham and coworkers
have demonstrated the importance of ion-macroion dispersion
interactions in the PMF.70–72 Including this effect leads to more
accurate modeling73–76 of the salt influence, modifying the depen-
dence of B22 on the ionic strength even for the monovalent ions of
a similar size. Therefore, a new term to model the ion–protein
dispersion potential was added to the total PMF in xDLVO-CG.
Since cations and anions are much smaller than proteins, inter-
actions of individual ions with a protein can be approximated to
the interaction of a small point charge with an infinite plane:72,77

W
disp
i�pr ¼ �

Bi�pr
r3

(20)

where Bi–pr is the characteristic ion–protein dispersion coefficient,
which depends on ion and macroion polarizability.70 The total
ion–protein dispersion is determined by the sum of all individual
ion–protein interactions, while taking into account non-uniform
ion distribution around proteins. The charge distribution is
determined by the Boltzmann distribution, where ions of the
opposite charge are attracted towards the protein surface, while
ions of the same charge are repelled from the protein.

The number of ions in an infinitely thin spherical shell
around the protein is given by cbulk exp(�zf(r)/r)dV, where dV =
4pr2dr is the shell volume, z is the charge of an anion or a cation
and f(r) is the electrostatic potential felt by ion at distance r
from the protein center (approximated by eqn (8)). As a result,
the total magnitude of the ion–protein dispersion interaction in
xDLVO-CG is obtained by the integration of contributions of all
ions, placed in the spherical shell around the protein:

W
disp
i�pr ¼ � 4pBa

ðRPþD

RPþs

cb exp �zafðrÞ=ðkBTÞð Þ
r

dr

� 4pBc

ðRPþd

RPþs

cb exp �zcfðrÞ=ðkBTÞð Þ
r

dr

(21)

where Rp is the protein radius, s is the water layer around a
protein, D is a maximum thickness of a shell at which ion–
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protein interactions are considered (see Fig. 1b) and Ba, Bc are
anion– and cation–protein dispersion coefficients, respectively.
We considered D of 10 nm and used ion–protein dispersion
coefficients as reported previously70,72 (Table 2).

3.3 Protein–protein sampling scheme

When proteins are represented as non-spherical molecules, the
orientational dependence of B22 is accounted by the general-
ization of eqn (4):46,50

B22 ¼
1

2

NA

M2

ð
O1

ð
O1

ð1
0

1� e
�W22 r;O1 ;dO2ð Þ

kBT

� �
4pr2drdO1dO2 (22)

where O1 and O2 represent angular orientation between two
protein molecules with respect to each other. Therefore,
eqn (22) includes PMF as a function of all possible protein–
protein orientations, i.e. angular variables, collectively repre-
sented by O1, O2 and their COM distances, r. It was reported
that B22 is impacted by relatively small number of attractive
relative configurations.6,27,46,48,78

We employ two sampling schemes: the data labelled just
with the name of the PDB code refers to a sampling of the PPI,
where the protein is pulled along a linear trajectory outwards
along the line connecting the respective center-of-mass of the
proteins starting with the crystal structure up to a distance of
R0 + 30 nm. The other data was generated as follows: To sample
the protein pair interactions for the relevant relative
arrangements we used a statistical sampling scheme over the
configuration space. This approach results in a fast evaluation of
the protein–protein configurations with on-the-fly calculation of
the corresponding contributions to the PMF. For this, the initial
crystal structure of the protein (see Section 3.1) was used, such
that the first protein was kept at a fixed position (x1, y1, z1), while
the second protein (with the center at (x2, y2, z2)) was uniformly
moved around the first one on the fixed distance r0. The radial
sampling of the second protein was performed by varying (y, f, r)
coordinates in the spherical coordinate system with the center at
(x1, y1, z1). Ten values of y, f angles were taken uniformly from
y = [0,2p] and v = [�1,1] - f = �arccos(v) intervals, which
resulted in 83 unique starting configurations (including the
protein position in the crystal). In addition, the second protein

was subsequently rotated by five different angles
p
3
;
2p
3
; p;

4p
3
;
5p
3

� �
around (x � x2), (y � y2) or (z � z2) axis, respectively. These
resulted in 16 differently rotated structures, therefore, in the
total amount of different starting protein configurations of
83�16( = 1328). From these starting configurations, again the
protein is pulled along a linear trajectory outwards, up to a
distance of R0 + 30 nm, along the line connecting the respective
center-of-mass. All configurations were checked for the possible
sterical overlap that could have been generated after the radial
movements and rotations. Two proteins were considered over-
lapping, if the distance between any bead pairs (belonging to
different proteins) was smaller than the sum of radii of gyration of
the corresponding beads. Overlapping structures were excluded
from further calculations. The total PMF was obtained via

averaging of all the angular orientations defined by the starting
structures, resulting in the PMF as a function of the COM:
W22(r,O1,O2) - W22(r). The second osmotic coefficient as a function
of ionic strength was calculated by numerical integration of the
averaged PMF at different salt conditions according to eqn (4).

4 Results and discussion
4.1 pH dependence of B22 for lysozyme

Four proteins of different size, shape and physicochemical
properties were used for the osmotic second virial coefficient
calculations with the new xDLVO-CG model. The choice of the
proteins investigated was mainly based on the availability of
experimental measurements of the B22 coefficients. An in-depth
analysis of the literature revealed significant variation in the B22

values for the same protein and in similar solution conditions,
often the data was obtained using different measurement
techniques. To provide a generalized picture of the available
data and correlations between the computed B22 in the present
study, we included data originating from the several reports, as
indicated. Moreover, we compared xDLVO-CG results with
other theoretical models for B22 calculations, i.e. with a
spherical xDLVO model that replicated the model reported in
ref. 41, as discussed in Section 2.2. Secondly, we compared to
FMAPB2 (FFT-based Modeling of Atomistic Protein–protein
interactions),38 an all-atom model for the protein and implicit
solvent model. FMAPB2 incorporates much higher structural
resolution in comparison to the spherical or CG models. FMAPB2
calculations were performed using publicly available web-server
(http://pipe.rcc.fsu.edu/fmapb2). In the xDLVO-CG calculations we
did not fit the Hamaker constant, but used values discussed in the
sections for each protein and listed in Table 1 in Appendix.

Lysozyme (LYZ) is a small globular protein (Fig. 1a) that
consists of 129 residues and exists as a monomer in solution for
a wide range of conditions. Its main physiological function is
hydrolysis of the glycosidic bonds in peptidoglycans that can be
found in bacteria. LYZ was the first enzyme to be fully
sequenced79 and it is the second protein for which the crystal
structure was solved.80 Due to its size and simplicity of processing,
LYZ is the most studied protein also in terms of its solubility via
the osmotic second virial coefficients.10,14,22,81–83 As all proteins,
LYZ is of zwitterionic nature and its PPIs, and therefore the
solubility, are highly dependent on the pH of the solution. The
main change induced by pH is the charge of the protein, resulting
in a positive B22 for highly charged proteins and a negative B22

when the charge is screened enabling further attractive PPIs.
To understand the aggregation propensity of LYZ as a function
of pH, we perform calculations at five different pH values: pH 3,
pH 4.5, pH 5, pH 7 and pH 8, for which exhaustive experimental
data is available.

The B22 coefficients of LYZ at pH 4.5 and pH 7 are shown in
Fig. 2. Values at low ionic strengths are positive and decrease
towards negative with an increase of the salt concentration.
Due to relatively slight decrease of the positive charge of a
protein, i.e. from +11 to +9 at pH 4.5 and pH 7, as obtained
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using PROPKA protonation method (see Table S1, ESI†), the
general trend for the B22 change with increasing ionic strength
is similar in both cases. The data obtained correlates well with the
measured B22, no fitting to experiment is required. For xDLVO-CG,
we used one AH value for all pH and salt concentrations (Table 1
in Appendix), and the calculated B22 reproduces experimental
observations. We have used the same AH value for xDLVO and wee
see that it also works well without any additional fitting. We find
that calculations using one starting protein–protein configuration
from the crystal (PDB code: 4nhi, data marked with dashed blue
curve) result in nearly identical results to those obtained via the
sampling protocol (marked with solid black curve). This likely
results from the globular and symmetrical shape of LYZ with a low
level of charge anisotropy. From the same reason, the xDLVO
model considered here works also well for LYZ (data marked with
orange dashed curve in Fig. 2). There is a slight overestimation of
B22 for concentrations lower than 200 mM, thereafter it decreases
as in experiment and xDLVO-CG. This overestimation was
improved in xDLVO theory reported by Herhut et al.,41 which
fitted the Hamaker constant depending on pH value and salt
concentration.

B22 values, calculated with xDLVO-CG, correlate with
FMAPB2 results (data marked with red dashed curve in
Fig. 2), especially at low ionic strengths. Larger deviations are
observed starting from 500 mM NaCl concentrations, where
FMAPB2 data flattens out. It is hard to judge, which model
performs better since experimental results vary widely. The
computational cost of B22 calculations at one pH value
using xDLVO-CG and FMAPB2 is ca. 1.85 h (on 1 desktop
CPU i5-7500, 3.40 GHz) for hundred salt concentrations
(in the range of 0.0–1.0 M) and 4 h on the FMAPB2 server
(single node with 16 Intel Xeon E5-2650 cores) for one salt
concentration, respectively.

xDLVO-CG has good semi-quantitative agreement with
experimental data also at other pH values (see Fig. 3). We
observe larger deviations from either experimental data from
size exclusion chromatography (SIC) or static light scattering
(SLS), to both xDLVO and xDLVO-CG at 300 mM NaCl at pH 3
(histogram on the left in Fig. 3). The same observation was
reported by Kalyuzhnyi et al.,84 who accounted all interacting
species: proteins, ions and water molecules, explicitly in the
model. They also reported overestimation of calculated B22 at
pH larger than 7, which agrees with our observations for
lysozyme at pH 8, where probably ion-specific effects are more
pronounced than we can presently account for in the model.

To understand the impact of different colloidal PPIs mod-
ulating the observed changes of the B22, interaction potentials
contributing in the total PMF (Section 3.2) at specific salt
conditions can be analyzed (see Fig. 10 and 11 in Appendix).
From this data, we see the strong impact of the electrostatic
repulsion interactions at low ionic strength and their decrease
with stronger charge screening induced by an increase of the
salt ions. For LYZ at pH 4.5 and 10 mM NaCl, the electrostatic
potential (ca. 4.4 � 10�20 J) is approximately 5 times stronger
than the dispersion potential (ca. �9 � 10�21 J). This is the
reason why the total PMF (see Fig. 4) at 10 mM NaCl is

dominated by repulsive interactions, resulting in positive B22

(Fig. 2).
The situation changes with the increase of the salt concen-

tration, which results in more pronounced attractive dispersion
interactions (PMF depicted in green and blue in Fig. 4),
inducing negative values of B22 and protein aggregation. The
impact of osmotic and ion–protein interactions is smaller,
however, it increases at higher ionic strengths (Fig. 10 and 11
in Appendix), where protein salting out occurs. Inclusion of
ion–protein dispersion interactions in xDLVO-CG improves the
calculated B22 values (see Section 4.3).

4.2 Application to non-spherical proteins

LYZ is a globular protein, which results in relatively good
description of its solubility even by pure DLVO theory. The
predictive power of DLVO and xDLVO is limited for solubility
predictions for non-spherical proteins, where parameters must be
fitted to experiment. We tested our model for subtilisin properase
(Subs), bovine serum albumin (BSA) and human immunoglobulin
type 1 (IgG1). The coarse-grained representation of the proteins
is depicted in Fig. 5, where protein monomers in dimer models
used for the PPIs sampling are colored in blue and red,
respectively.

4.2.1 Subtilisin. With 269 residues and protein radius of
ca. 2.3 nm, Subs is the smallest out of the three proteins

Fig. 2 Osmotic second virial coefficients for LYZ at pH 4.5 (upper panel)
and at pH 7 (lower panel) as a function of NaCl concentration calculated
using xDLVO-CG, xDLVO (protein as a sphere) and FMAPB2 (all-atom
representation). Data marked with dashed blue curve denotes xDLVO-CG
using protein–protein sampling starting from the crystal structure.
Experimental data is marked with colored circles.
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investigated. It is a digesting enzyme used as an engineered
properase variant (more resistant to denaturation) in commercial
applications. Since availability of experimental data for second
virial coefficients of Subs is limited and measurements were
performed only at pH 5.5,12 we calculated B22 as a function of
ionic strength using 0–1 M NaCl and NaSCN (see Fig. 6 and 8).
To predict the behaviour for higher pH, we performed
calculations for Subs at pH 7, where the positive charge of the
protein decreases (from +6e to +4e, see Table S1, ESI†), resulting
in stronger aggregation (see Fig. S5, ESI†).

In the B22 data for Subs at pH 5.5 (upper panel in Fig. 6), we
see significant differences between calculations made with
xDLVO and FMAPB2 in comparison to xDLVO-CG. The B22

crossing point, indicating a change between solubilized
proteins and induction of aggregation, is shifted to the lower
ionic strengths in xDLVO and shows stronger increase of
attractive PPIs towards aggregation. This is caused by the
representation of the charge by a sphere in xDLVO, while the
protein has a significant anisotropy that is better represented by

xDLVO-CG (see Fig. S1, ESI†). B22 from xDLVO, with the experi-
mental Hamaker constant of 5.1kBT, matches the experimental
B22 at 500 mM NaCl (�1.83� 10�4 and�1.78� 10�4 mol mL g�2,
respectively), but this is the only data point that matches. Another
xDLVO methodology to calculate B22 was used by Pan et al.12 They
used the MacroDox program to calculate the charge of Subs and
fitted the Hamaker constant to achieve nearly quantitative agree-
ment between the experimental measurements and their xDLVO.
The protein charge they obtained is higher by 2.7–3.5e (i.e. is
+8.7 to +9.42e) than we obtained using PROPKA (+6e). Since there
is no information about the Subs charge from experimental
measurements, we cannot validate the protonation schemes used
in either approach. Moreover, fits of the Hamaker constant for
each protein charge and radius12 complicates the decomposition
of PPIs originating from protein–protein dispersion interactions
and other interactions (see Section 4.3).

B22 calculated using FMAPB2, with an all atom protein
representation, are shifted far to the negative B22 range, this
model deviates far from the B22 range from experiment. This was
observed only in the case of Subs. Double data check via repeated
FMAPB2 calculations did not result in improved results.

4.2.2 Bovine serum albumin. Due to the multifunctional
ligand binding capacity of serum albumins (drugs, nutrients,
metals, etc.), they are of interest in the wide range of clinical,
pharmaceutical, and biochemical applications. Serum albumins
consist a group of relatively large proteins (ca. 65 kDa) with
highly irregular shape. BSA used in our studies (PDB code: 4f5s)
has 583 amino acid residues and consists of 20 CG beads, as
depicted in Fig. 5b. We performed B22 calculations of BSA at pH
6.2 and 7.4 (see Fig. 6 and 7) and compared with the experi-
mental values reported in ref. 23,24,85 and 86. The total charge
of BSA calculated using PROPKA55,56 deviates from the experi-
mentally determined charges (Table S1, ESI†), especially at pH
6.2. For this reason we used here the H++ protonation,87 which
results in a somewhat better total charge. Both protonation
schemes underestimate the BSA charge, resulting in larger
discrepancies between the calculated B22 in comparison to the
experimental data reported. We note that the experimental data
is also quite inconsistent (see lower panel in Fig. 6). In general,

Fig. 4 Changes of potential of mean force (PMF) of LYZ at pH 7 with
increasing NaCl concentration. Strong repulsion between proteins, origi-
nated from electrostatic interactions, decreases with an increase of ionic
strength. When charge screening is achieved, dispersion interactions are
more pronounced.

Fig. 3 pH dependence of B22 for LYZ calculated using xDLVO-CG with coarse-grained representation of the protein using two sampling methods
(Section 3.3: 4nhi denoting calculations for proteins from the crystal and xDLVO-CG with full PPI sampling), in comparison to xDLVO with protein
approximated as a sphere.
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xDLVO-CG reproduces the main trend of the B22 experimental
data by Ma et al.24 in lower ionic strength both at pH 6.2

(panel in the left in Fig. 7) and pH 7.4 (bottom panel in Fig. 6)
and by Ersch et al.23 in higher ionic strength. Moreover, we see
the correct B22 trends using protein–protein sampling, especially
when the attractive PPIs between proteins increase (negative B22

values in Fig. 6). B22 calculated using FMAPB2 are positively
shifted, as was also observed in the case of LYZ. The B22 values
by FMAPB2 are in agreement with the results reported by
Qin et al.38

xDLVO, fails to reproduce the B22 coefficients at salt con-
centrations higher than 100 mM NaCl (data marked in orange
in Fig. 6), even if the total charge of the sphere in xDLVO
(�20.06e, see Table S1, ESI†) better reproduces the experimentally
reported value (�20.30e88). The xDLVO data depends strongly on
the protein radius used, R2, which is known for BSA to be in the
range of 3.5–4.1 nm89 as a function of pH and ionic strength. In
Fig. 6, xDLVO calculations of B22 for BSA with radius of 3.64 nm90

and 4.01 nm (from 4f5s) are shown. xDLVO calculations with
either radius cannot capture the experimental B22 trends.

4.2.3 Human immunoglobulin. Human immunoglobulins
belong to the subclass of monoclonal antibodies, responsible
for the immune system defense via recognition and binding to
specific antigens. Their stability in solutions is of an immense
practical importance. Therefore, several investigations and
DLVO theory improvements, aiming to model second virial
coefficients of monoclonal antibodies in different solution
conditions and protein concentrations, were reported.6,32–34,91

In most of the cases, models were based on the direct
parametrization from experiments and the use of different
levels of coarse-graining.32

Human immunoglobulin IgG1, used in the present studies,
consists of 644 residues and has a characteristic T-shaped
structure (see Fig. 5c). Its shape cannot be represented well
by a spherical approach in xDLVO without fitting to the

Fig. 5 Coarse grained representation of subtilisin, Subs (a), bovine serum albumin, BSA (b) and immunoglobulin type 1, IgG1 (c) used in xDLVO-CG to
calculate osmotic second virial coefficients. All atom structure of proteins is shown for clarity. Respective protein units used to calculate colloidal PPIs are
marked with blue and red.

Fig. 6 Osmotic second virial coefficients for Subs at pH 5.5 (upper panel)
and for BSA at pH 7.4 (lower panel) as a function of NaCl concentration
calculated using xDLVO-CG, xDLVO and FMAPB2. Data marked with
dashed blue curve denotes xDLVO-CG using sampling starting from the
crystal structure. Experimental data is marked with colored circles.
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experimental data. Coarse-graining IgG1 by 40 CG beads nicely
mimics the shape of this protein. We calculated B22 of IgG1 at
pH 5, 5.75 and 6.5 (Fig. 7) using the Hamaker constant of 3kBT,
which is in the range of a typical AH values in protein–water–
protein systems.92,93

The B22 data obtained are shown in Fig. 7. Both xDLVO-CG
and FMAPB2 give comparable results and similar trends for salt
concentrations higher than 25 mM, despite the fact that the
methodologies are very different. B22 values, calculated by
xDLVO-CG, agree well with the experimental data reported by
Roberts et al.,94 while B22 coefficients reported by Le Bruin
et al.95 are higher and show low degree of salt concentration
dependence. Calculated B22 indicate preferred attractive inter-
actions (lower B22) of IgG1 at higher pH values (see panel on the
right in Fig. 7). This is caused by the higher protein charge at
lower pH, promoting solubilization of monomers in solution.

B22 coefficients of IgG1, calculated using xDLVO without
fitting fail completely to reproduce the experimental data and
are totally out of the range of the values obtained by xDLVO-CG
and other methods (see Fig. S5, ESI†). This again demonstrates
that xDLVO methods, with protein represented as a sphere, are
highly dependent on experimental data and loose their ability
to accurately model PPIs and the corresponding osmotic second
virial coefficients for aspherical proteins without fitting
procedures.

Still, the calculated second virial coefficients for IgG1 and
BSA in xDLVO-CG deviate more from experiment than for LYZ
and Subs. This may result from the higher conformational
flexibility of these large proteins and larger deviations in the
total charge of the protein, calculated using PROPKA method,
in comparison to the experimentally reported data (see Table
S1, ESI†). H++ protonation improved the partial charges of BSA,
so we used it to parametrize the CG beads, but still these
deviations may introduce discrepancies in the electrostatic
potential, therefore, the calculated B22. However, it seems that
the overall trends and the behaviour at physiological ionic
strengths agree better with the available experimental data.
Further developments of xDLVO-CG and the inclusion of
the solvent accessibility corrections, e.g. as available in the
TKSA-MC server96 or GBSA,97 and other solvent effects, modulated
by the change of the ionic strength,98 are required to improve the

quality of predictions and enable better correlations with the
experimental observations.

4.3 Impact of ion–protein interactions

Conventional xDLVO models consider the influence of different
salts on the osmotic second virial coefficients by osmotic and
electrostatic potentials, which use hydrated salt radii and ionic
strength as an input for the calculations. However, radii of
hydrated monovalent salts do not differ significantly and the
absolute value of the osmotic term is overall small. Therefore
the osmotic effect alone cannot explain the observed salt-
dependence of B22.

These discrepancies are presently overcome by fitting the
Hamaker constant to the experimental data measured at each
desired pH and salt conditions, limiting the detailed under-
standing of PPIs and to recover the trends according to the
Hofmeister series.99,100 According to its original definition, the
Hamaker constant describes attractive London-var der Waals
interactions that should arise from the interactions between
charge-neutral proteins64,65 and should not depend on the
ionic strength. The impact of salt ions in promoting attractive
PPIs results from the ion–protein dispersion interaction,
which, in the most basic form, are insensitive towards the
protein type and depend on the properties of salt ions.75

We included these interactions in xDLVO-CG using the
model described in Section 3.2.4. In Fig. 8, the B22 coefficients
calculated for LYZ (at pH 4.5) and Subs (at pH 5.5), using
xDLVO-CG with (solid curves) and without (dotted curves) ion–
protein interactions, are depicted. It is clearly seen that the
attractive PPIs in LYZ, arising only from the ion type (different
hydrated radii accounted in the osmotic attraction potential),
are similar (see upper panel in Fig. 8) and cannot explain more
pronounced differences to the experimental B22 data. Adding
the ion–protein dispersion term in the PMF differentiates the
salting out efficiency of ions, induces stronger separation
between the data obtained using different salts and better
correlation to the experiments. The same effect is seen also
for Subs (bottom panel in Fig. 8), showing stronger tendency of
SCN� to promote aggregation of proteins, which agrees with
the trends reported by the Hofmeister series, where thiocyanate
anion is known as a strong salting out agent causing protein

Fig. 7 Comparison of B22 coefficients for BSA at pH 6.2 and IgG1 at pH 5, pH 5.75 and pH 6.5 calculated using xDLVO-CG, xDLVO and FMAPB2 with
respect to the reported experimental measurements.
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precipitation. This is connected to the ion–protein dispersion
coefficients, Bi–pr (eqn (20)), of SCN�, which is 2.8 times larger
than in the case of Cl�,70 resulting in stronger ion–protein
dispersion interactions.75 This interaction also relates to the
lower ion hydration propensity of SCN� 40 that affects PPIs
stronger, resulting in a decrease of the B22 coefficients and
more efficient salting out. Both ion hydration and ion–protein
dispersion coefficients are modulated by the ion polarizability.73

B22 coefficients of LYZ at pH 4.5 using NaCl and KCl (data in
blue and green in the upper panel in Fig. 8) are similar and
differ mostly at higher salt concentrations. The same observation
was reported by Kalyuzhnyi et al.,84 which relate it to the small
differences in the water binding by Na+ and K+ (dependent also
on the polarizability) and generally smaller salting out intro-
duced by cations. At the same time, I� ions show stronger salting
out efficiency of LYZ than Cl�, resulting in faster decrease of B22,
indicating that our model is consistent with the Hofmeister
series trend, i.e. Cl� o I� o SCN�.

4.4 Beyond Hamaker constant

There are several expressions that attempt to calculate dispersion
interactions between proteins on the basis of continuum models.
Most models use the Hamaker constant, AH, which according to
its original definition, depends on the chemical composition and
density of the protein. In most models, however, AH is used as an

adjustable parameter in (x)DLVO and is fitted to the experimental
data at different pH and salt conditions. The Hamaker constant
can be also calculated, e.g. using robust McLachlans formulation
of Lifshitzs van der Waals forces,101 where the excess polarizability
in dielectric medium is accounted, but this approach is less
widely implemented.

With the use of fitted AH, the obtained B22 coefficients are
in good agreement with the experiments, however, such
adjustments of AH include error compensations arising from
the electrostatic, osmotic and ion–protein dispersion terms, as
explained in Section 4.3. Moreover, experimental measurements
for different proteins at specific solution conditions are required
to parameterize the model.

In the present study, we validated xDLVO-CG using Hamaker
constants reported previously (Table 1 in Appendix) and we
have not changed their values at different salt and pH conditions
(two AH used only for Subs). We show good correlations between
the calculated and the experimental B22 using this approach.
However, we aim to introduce the protein solubility model using
standard potential energy functions without designed fitting to
the experimental data points. Therefore, we attempted to replace
Hamaker dispersion interactions in the total PMF by the
Lennard-Jones interactions (eqn (11) and (15)) parameterized
according to Arkhipov et al.,59 as described in Section 3.2.2.

Both dispersion potentials for LYZ at pH 7 and Subs at pH
5.5 are depicted in Fig. 9. We see that the strength of the
dispersion interactions, introduced by the Hamaker constant,
is decreasing faster than in the case of the Lennard-Jones
interactions. This results in stronger binding of the proteins
in the LJ potential model and a small shift of the calculated
second virial coefficients towards negative values (see panel on
the right in Fig. 9). Overall, the potential depth and the
corresponding COM distance of the most attractive interactions
between the proteins are similar in both cases, resulting in B22

coefficients in the range of the reported experimental data.
Analysis of the B22 changes as a function of the sampled
protein–protein structures indicates higher sensitivity of the
PMF with LJ (Fig. S6, ESI†), that arises from the fact that all
bead-bead dispersion interactions were parametrized based on
the chemical composition of the residues included in a CG
bead, and not by uniform values of the Hamaker constant.

Larger deviations between the B22 values calculated using
the Hamaker constant in xDLVO-CG and xDLVO-CG(LJ) are
observed for BSA and IgG1 (Fig. S7, ESI†). It appears that the
standard parameterization of the LJ potentials for these large
proteins is inadequate to capture PPIs that are measured
experimentally. The LJ potential is significantly wider (Fig. S8,
ESI†), resulting in overbinding of the proteins and more
negative B22, therefore, faster protein precipitation. Such
observations are also typical for the PMF calculated by all-
atom force fields.31,37,38 However, this is the first attempt, to
our knowledge, to replace the Hamaker dispersion interactions
in xDLVO models by the LJ potential. More rigorously, the
dispersion interactions and the Hamaker constant can be
calculated by the continuum Lifshitz theory102 using, for
example, McLachlans formulation. We hope that, with better

Fig. 8 Change of calculated B22 coefficients after the addition of ion–
protein dispersion interactions term in the potential of mean force of LYZ
at pH 4.5 (upper panel) and Subs at pH 5.5 (bottom panel). B22 calculated
using xDLVO-CG are shown with solid curves, while results from xDLVO-CG
without ion–protein are marked with dotted curves. Experimental B22

coefficients are marked with colored circles.
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parameterization and further improvements, the predictive
power of xDLVO-CG can be further increased.

5 Conclusions

We reported a novel xDLVO-CG model for the calculation of
the osmotic second virial coefficients, B22 for proteins, as a
function of pH, ionic strength and the protein type. xDLVO-CG
can be used to predict the stability of the protein solutions
and the salt induced dependencies. It complements the experi-
mental measurements of B22 and enables the understanding of
the origin of the protein solubility as a function of diverse
colloidal PPIs.

The developed model was derived from the extended DLVO
theory and includes a new term for ion–protein dispersion
interactions, which is shown to be relevant when the Hamaker
constant is not fitted for every environmental condition.
xDLVO-CG was implemented with a shape-based coarse-
grained representation to better account for anisotropic
protein–protein interactions. Combined, this approach reduces
and, in some examples, eliminates the need to fit the experimental
B22 data. Such an approach may accelerate the investigations of the
protein processing conditions, starting from pharmaceutical up to
food industry applications.

The unified CG protein mapping scheme in xDLVO-CG
introduces a generally applicable parametrization procedure,
which improves transferability of the model among proteins of
different shape and physicochemical characteristics. CG bead
mapping is free from experimental B22 parameters and builds
directly on the all atom structure of the protein. This allows the
use of the xDLVO-CG to various proteins without the need of
the special model adjustments. In order to account for the
anisotropic nature of the interactions, calculations of the
osmotic second virial coefficients require the integration of
the potential of mean force over many configurations in a

model that includes electrostatic, dispersion, osmotic and
ion–protein dispersion interactions.

The xDLVO-CG calculations for lysozyme, subtilisin, bovine
serum albumin and immunoglobulin type 1 at different
solution conditions, show that the model agrees with the
experimental measurements of the B22 coefficients of lysozyme
in the wide range of pH. The model is transferable to larger,
irregular and non-spherical proteins and results in semi-
quantitative correlations of the B22 for subtilisin, BSA and
IgG1. The observed differences for the latter may result from
difficulties to correctly compute the charge of the protein.
However, using experimental values for the protein charge,
results in a worse fit to the data. Overall, xDLVO-CG
demonstrates significant improvements of the B22 modeling
in comparison with the regular xDLVO models and it does not
require fitting to experimental B22 values.

We believe that with further implementations in the PMF
and the introduction of better dispersion terms, more accurate
models for electrostatic and solvent effects, xDLVO-CG has the
potential to better predict B22 coefficients of different proteins
without time-consuming experiments. The developed computa-
tional scheme can be adjusted also for the calculation of the
aqueous stability of other colloidal particles. Indeed, special CG
parameterization scheme should be proposed as the first.
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Appendix

The potential of mean force in xDLVO-CG, calculated according
to eqn (11) and depicted in Fig. 4, consists of interaction
potentials of different salt induced dependencies. The change
of the potentials steering colloidal protein interactions of LYZ
at pH 4.5 and pH 7.0 are shown in Fig. 10 and 11, respectively.

Fig. 9 Dispersion potential in PPIs of LYZ (upper panel) and Subs (lower panel) represented by the Hamaker constant (in blue), taken from experimental
measurements (see Table 1 in Appendix) and implemented according to eqn (13), and by the Lennard-Jones potential (in red) from the shape-based
coarse-grained model (xDLVO-CG(LJ)). The B22 coefficients for LYZ at pH 7 and Subs at pH 5.5 using both potentials, eqn (11), are shown correspondingly
on the right panel.
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Literature reported values of the parameters used to calcu-
late the dispersion, osmotic and ion–protein dispersion poten-
tials are listed in Tables 1 and 2.
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