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Fast Nosé–Hoover thermostat: molecular
dynamics in quasi-thermodynamic equilibrium†

Dominik Sidler and Sereina Riniker *

An extension of the Nosé–Hoover thermostat equation for molecular dynamics (MD) simulation is introduced,

which perturbs fast degrees of freedom out of canonical equilibrium, while preserving the average

temperature of the system. Based on the generalised Liouville equation, it is shown that the newly

introduced fast Nosé–Hoover (FNH) equations give rise to a dynamical system with a well-defined

non-equilibrium probability distribution. Corresponding thermostat parameters are identified, which in

principle allow to sample arbitrarily close to canonical equilibrium. Results show that the dynamic

system properties (e.g. self-diffusion, shear viscosity, dielectric permittivity and rotational relaxation

times) are only moderately perturbed for typical FNH setups. However, the non-equilibrium FNH

equations modify the occurrence of rare events substantially and thus offer a novel approach for

enhanced sampling in MD. In particular, it is shown that the FNH thermostat increased significantly the

frequency of the folding and unfolding process of short b-peptides. The efficiency of the phase-space

exploration solely depends on the additionally imposed quasi-equilibrium conditions, i.e. it does not rely

on any modification of the potential-energy surface.

1 Introduction

Molecular dynamics (MD) simulations are typically performed
under canonical (NVT) or isothermal–isobaric (NPT) conditions
in order to compare simulated and experimental properties and
to study temperature-dependent processes explicitly.1 For this
purpose, many different thermostat methods have been developed
over the past decades to simulate canonical equilibrium2–6 or
closely related conditions.7,8 A thorough overview of different
thermostat approaches can for example be found in ref. 1 and 9.

Significant research effort has been aimed in the past years
to develop thermostats that do not only generate a canonical
ensemble but also damp numerical artefacts. This offers new
ways to accelerate simulations. In particular, performance-wise
it is tempting to partition a dynamical systems into multiple
subproblems with different time scales in order to treat them
using different time steps. However, such multi time-step
integration (MTS) setups can lead to significant numerical
artefacts.10–12 A possible remedy for this issue is the use of
specially designed thermostats, which stabilise large time-step
integration. Typically, they reduce energy drifts and they disrupt
high frequency modes from resonating with lower frequencies.13

The most common choice is to couple (damp) each atom to a

white noise Langevin bath,13–15 or by imposing isokinetic constraints
on each degree of freedom.16–18 However, the gain in performance
obtained by using large time steps may be substantially reduced due
to the disruption of the slow modes, thus greatly hindering diffusive
and orientational motion.13,19 As recently shown, this undesired
side-effect can be mitigated with coloured-noise thermostats,19–21

which couple fast modes strongly and slow modes weakly to
the bath.

In this study, a contrary thermostat approach is developed,
which has similarities to an idea originally proposed by Barth
et al.22 Instead of using MTS integration, they obtained a
substantial sampling enhancement by modifying the Nosé–
Hoover (NH) equation3,4,23 to generate a non-canonical equilibrium
distribution with increased tail probabilities.22 In principle, this
setup allows to accelerate the phase-space exploration without
increasing the integration time steps or modifying the potential-
energy surfaces. Hence, it would avoid the occurrence of unde-
sired MTS resonance artefacts by construction. However, a priori
it remains unclear if such a non-canonical equilibrium approach
would not lead to significantly different dynamic properties, even
for small perturbations compared to the canonical equilibrium.

Here, a novel perturbation of the fast degrees of freedom is
introduced for the canonical NH equations. The resulting equations
of motion are termed fast Nosé–Hoover (FNH) equations. In the
Theory section, it is shown that the FNH equations give rise to a
well-defined non-equilibrium probability distribution, which can be
tuned arbitrarily close to the canonical equilibrium. In the Method
section, simulation details and analysis tools are described,
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which were used to validate the theoretical derivations. The
Results and discussion section is split into two parts. First,
relevant thermostat parameters and dynamic properties are
discussed for a homogeneous water system using classical MD
simulations. Second, the efficiency of the phase space exploration
for non-equilibrium perturbations is investigated with respect to
the occurrence of rare events. For this purpose, the folding/
unfolding equilibrium of two b-peptides in methanol is analysed.
The folding process of these b-peptides has been extensively
studied in the past,24–32 since it occurs on a relatively fast time
scale. In the Conclusion section, relevant scientific findings are
summarised and future research directions are discussed.

2 Theory
2.1 Nosé–Hoover equations of motion

Let a physical system be described by a classical Hamiltonian
H = Ekin(p) + V(q) on a 2N-dimensional phase space G = (p,q).
This implies that the dynamic system is conservative, i.e. the
total energy is conserved, but not the temperature. Experimental
measurements are, however, often performed under constant
temperature (and constant pressure) conditions. In order
to emulate these additional constraints, Nosé3 and Hoover4

developed the following non-Hamiltonian equations of motions,

_qi ¼
pi

mi
; (1)

_pi ¼ �
@VðqÞ
@qi

� xpi; (2)

_x ¼ 1

Q1

XN
i¼1

pi
2

mi
�NdfkBT0

" #
; (3)

which are defined on an extended phase space GNH
0 = (p,q,qx,x).

The thermostat mass is labelled by Q1 and particle masses of
phase-space coordinates (pi,qi) are termed mi. x is the Nosé–
Hoover (NH) control variable and qx is defined according to
eqn (6). T0 corresponds to the desired reference temperature of
the system and Ndf to the number of degrees of freedom. The
Boltzmann constant is indicated by kB.

The key property of the NH eqn (1)–(3) is related to their
ability to sample from a canonical equilibrium distribution,

PðGÞNH / e
� H
kBT0 ; (4)

provided that some requirements of H on G are fulfilled. For
example, there should be no additional conserved quantities in
the system apart from a generalised energy,3,4,23,33

HNH :¼ Hðp; qÞ þQ1
x2

2
þNdfkBT0qx; (5)

with

qx ¼
ð
xdt: (6)

Typically this can be ensured by the removal of the centre of
mass (COM) motion in order to avoid any impact of Newton’s

third law
P
i

~Fi ¼ 0 on the distribution P(G)NH in the absence

of other external forces. Additionally, the system should be
‘‘simple’’ enough such that the different time scales present in
the system are well-behaved with regard to the chosen thermostat
parameters. In practise, this often requires different NH thermo-
stats for solvents and solutes.1

2.2 Fast Nosé–Hoover equations of motion

In the following, we introduce an extension of the NH eqn (1)–(3),
which imposes an additional constraint on the fast degrees of
freedom. Let the dynamical system be described by the following
deterministic, non-Hamiltonian equations of motions,

_qi ¼
pi

mi
; (7)

_pi ¼ �
@VðqÞ
@qi

� xpi � zpiHT pið Þ; (8)

_x ¼ 1

Q1

XN
i¼1

pi
2

mi
�NdfkBT0

" #
; (9)

_z ¼ 1

Q2

1

3

PN
i¼1

pi
4

mi
3

PN
i¼1

pi
2

mi
2

� akBT0

2
6664

3
7775; (10)

defined on the extended phase space G0 = ( p,q,qx,qz,x,z).
The mathematical form of the fast Nosé–Hoover (FNH)

eqn (7)–(10) resembles earlier work from Barth et al.22 as well
as from Bulgac and Kusnezov,34–36 who introduced a generalised
form of the NH thermostat equations. T0 corresponds to the
desired reference temperature of the system, controlled by the
ordinary NH variable x in eqn (8) and (9).3,4,23 In addition,
the auxiliary thermostat variable z is introduced, which perturbs
fast motions according to eqn (10). For this purpose, a Heaviside
step function is defined as,

HT pið Þ :¼
1 if

pi
2

mi
� kBT ¼

pc
2

mi

0 otherwise;

8><
>: ; (11)

where T Z 0 corresponds to the temperature beyond which pi is

additionally controlled by z, i.e. for pi � pc :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTmi

p
.

Note that the definition of an instantaneous temperature

TðtÞ :¼ 2Ekin

NdfkB
in eqn (9) follows from the equipartition theorem

in the canonical equilibrium. Likewise, the auxiliary constraint
set in eqn (10) can be related to the second order equipartition
theorem, i.e. by integration by parts (I.P.) one can show that,

XN
i¼1

pi
4

mi
3

* +
¼I:P: 3kBT0

XN
i¼1

pi
2

mi
3

* +
: (12)

Consequently, the FNH equations defined by eqn (7)–(10) do
not only allow to control the desired average temperature T of a
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system H on G, but also the ‘‘variance’’-like expression of the
velocities according to eqn (10) i.e. based on (12). The parameter
a defines the degree of perturbation acting on the fast motions
according to eqn (8) (a more thorough discussion is given
below). By increasing the probabilities in the tails of the velocity
distributions using z, rare events (e.g. crossing of high-energy
barriers) should become more probable within short simulation
time,22 while statistically averaged properties should not be
affected substantially for small perturbations. Q1, Q2 correspond
to the usual thermostat masses, which determine how fast the

thermostat variables ( _x; _z) respond to a change in the system.

Note that the proposed definition for _z given in eqn (10) has the

advantage that _z ¼ O pi
2

� �
, as it is the case for _x. Hence, typical

numerical integration time-steps of MD simulations (e.g. 2 fs)
should still be applicable with the FNH equations. This may
not be the case anymore for smaller system sizes when the
auxiliary thermostatting control variable is related directly to
the instantaneous variance of the momenta, e.g. by imposing

Var Ekin� Ekinh ið Þ¼
PN
i

Ekin;i

� �2
* +

¼!
PN
i

Ekin;i

� �2

¼ NdfkBT0

2

� �2

,

which would result in _z ¼ O pi
4

� �
.

A priori there is no reason to assume that the proposed FNH
eqn (7)–(10) sample a probability distribution close to canonical
equilibrium. Therefore, in order to study the behaviour of the
extended system dynamics on G0, one has to rely on the
generalised non-Hamiltonian Liouville equation,

0 ¼ @P
@t
þ @

@G0
� ð _G0PÞ

)
(13)

dP

dt
¼ � @

@G0
� _G0

� �
P; (14)

which describes the time evolution of the probability density
P(G0,t) of the dynamic system G0. Note that if an equilibrium
solution P0 exists, it could be constructed by interpreting
P0 ¼ f

ffiffiffi
g
p

as a product of a distribution function f with non-
trivial metric g associated to the curved phase space G0.33,37,38

The equilibrium P0 then follows immediately from all conservation
laws of the extended system.33,37,38 However, for the following
derivation of P(G0,t) for the FNH equations, we follow an alternative
pathway described by Nosé in ref. 23.

Let the generalised FNH energy be defined as,

HFNH :¼ Hðp; qÞ þQ1
x2

2
þNdfkBT0qx þ

ðXN
i¼1

z
pi
2

mi
HT;k pið Þ

	 

dt

(15)

¼ HNH þ
ðXN

i¼1
z

pi
2

mi
HT;k pið Þ

	 

dt; (16)

where the continuous logistic function HT;k pið Þ ¼
1= 1þ exp �k pi � pcÞ=pcð �½ Þ þ 1= 1þ exp �k �pi � pcÞ=pcð �½ Þðð is
used as an approximation of the Heaviside step function

with limk-NHT,k(pi) = HT(pi). It is straightforward to show
that HFNH is conserved as,

dHFNH

dt
¼
XN
i¼1

_pi
@HNH

@pi
þ _qi

@HNH

@qi

� �
þ _x

@HNH

@x
þ x

@HNH

@qx

þ
XN
i¼1

z
pi
2

mi
HT;k pið Þ

� �

¼
XN
i¼1

�@V
@qi
� xpi � zpiHT;k pið Þ

� �
pi

mi
þ pi

mi

@V

@qi

	 


þ 1

Q1

XN
i¼1

pi
2

mi
�NdfkBT0

( )
Q1x

þNdfkBT0xþ
XN
i¼1

z
pi
2

mi
HT;k pið Þ ¼ 0:

(17)

From this conservation law, a solution for the generalised
Liouville eqn (14) of the non-Hamiltonian system dynamics
described by the FNH eqn (7)–(10) is obtained using,

@

@G0
� _G0 ¼

XN
i¼1

@

@pi
_pi þ

@

@qi
_qi

� �
þ @

@x
_xþ @

@qx
_qx þ

@

@z
_zþ @

@qz
_qz

(18)

¼
XN
i¼1

@

@pi
�xpi � zpiHT;k pið Þ
� �

(19)

¼ �Ndfx� z
XN
i¼1

HT;k pið Þ þ pij jdT;k pið Þ
� �" #

; (20)

where a reduced Ndf is considered in the last step due to
additionally imposed constraints (e.g. rigid molecular bonds)

and dT;k pið Þ :¼ d

dpi
HT;k pið Þ ¼HT;k pið Þ 1�HT;k pið Þ

� � k
pc

. It can

be shown that the resulting non-equilibrium probability den-
sity obeying eqn (14) can be written as,

PðG0; tÞ :¼

Ce
� 1
kBT0

Hðp;qÞþQ1
x2
2
þ
Ð
z
PN
i¼1

pi
2

mi
HT ;k pið Þ�kBT0 HT;k pið Þþ pij jdT;k pið Þ½ �

	 

dt

� �

(21)

¼ðk!1ÞCe
� 1
kBT0

Hðp;qÞþQ1
x2
2
þ
Ð
z
PN
i¼1

pi
2

mi
HT ;k pið Þ�kBT0 HT pið Þþ pij jdT pið Þ½ �

	 

dt

� �

(22)

¼ Ce
� 1
kBT0

Hðp;qÞþQ1
x2
2
þ
Ð
z
Pn
i¼1

f pið Þdt

� �
; (23)

where in the last step,

f pið Þ :¼ pi
2

mi
HT ;k pið Þ � kBT0 HT;k pið Þ þ pij jdT pið Þ

� �
; (24)

was introduced for the ease of notation.
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From eqn (23), it follows that the non-equilibrium FNH
probabilities are modified with respect to the canonical NH
probabilities in eqn (4) based on the following mapping,

pi
2

2mi
7!

pi
2

2mi
þ
ð
zf pið Þdt if

pi
2

mi
� kBT

pi
2

2mi
otherwise

8>>><
>>>:

: (25)

Note that the non-equilibrium perturbations are discontinuous
in the chosen setup with (k - N), which is expected to disrupt
the smooth motion compared to the canonical equilibrium. In
addition, if T 4 T0 the following property holds,

f pið Þ ¼
�1 if

pi
2

mi
¼ kBT

4 0 otherwise

8><
>: : (26)

Based on aforementioned theoretical considerations it is
possible to discuss several practical aspects of the proposed
FNH equations:

(1) A canonical equilibrium probability distribution for G can
only be obtained if

Ð
zf pið Þdt ¼ 08i; t. For arbitrary initial condi-

tions, this is only possible for limQ2-Nz = 0 or limT-Nf(pi) = 0 due
to eqn (26), which means the normal NH eqn (1)–(3) are recovered.

(2) Condition (1) automatically implies that 9=a0 with a
canonical equilibrium solution of the Liouville equation. This
result is in agreement with the properties obtained in ref. 39 for
multi-temperature dynamics. Therefore, the proposed FNH
equations can at best approximate a (canonical) equilibrium
distribution for finite T, Q2.

(3) For practical purposes, one needs to ensure that the tail
perturbations of the FNH equations remain small with respect to the
canonical equilibrium, i.e. P(G,t)FNH EP(G)NH. The requirement of
such a quasi equilibrium distribution leads to the following condi-
tions for the thermostat parameters and the simulated systems:

(a) T c T0 restricts perturbations to the tails of the kinetic-
energy distribution.

(b) N c 1 ensures that (pi with
pi
2

mi
� kBT; 8t, which can be

efficiently controlled by z at every time-step.
(c) To limit the non-equilibrium perturbations to a small value,

one can define a ‘‘quasi’’ canonical equilibrium at aexact
0 as follows,

_z aexact0

� �D E
¼! 0; (27)

which is non-trivial to solve. In practice, aexact
0 can be estimated

based on eqn (10),

aexact0 � 1

3kBT0

PN
i¼1

pi
4

mi
3

PN
i¼1

pi
2

mi
2

* +

NH

� Q2h _zi
3kBT0

¼ a0;

(28)

by setting Q2 c Q1 and a = 0. This approximation relies on
condition (1), for which the FNH equations approximate a canonical

equilibrium distribution. Any coupling effects between x and z,
which may occur for finite Q2, are neglected. Typically these effects
should be small for systems with a high number of degrees of
freedom. Thus, the accuracy of the estimated a0 depends on Ndf as
well as on the particular system studied. For well-behaved systems, a
small perturbation da of a0 is expected to drive the system gently out
of quasi-canonical equilibrium.

(4) In order to obtain a rough estimate for reasonable
choices of the thermostat mass Qi, one can investigate the
dynamics of the extended system variables x, z for linearised

FNH equations assuming
@VðqÞ
@qi

¼ 0 and a = 1. For simplicity,

we additionally assume that the dynamics of x and z are
completely decoupled by setting :p(x)

i := �xpi and :p(z)
i := �zpi.

For a rough estimate, this is a reasonable assumption if one
considers that z only controls the tails, whereas x mainly
controls the mean of P. These assumptions lead to the following
two decoupled ordinary differential equations (see Appendix A),

€x � � 2NdfkBT0

Q1
x (29)

€z � � 2akBT0

Q2
z; (30)

with an implied thermostat times scale, which can be defined as,

t1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q1

2NdfkBT0

r
(31)

t2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

2kBT0

r
: (32)

In classical MD, typically t1 E 0.1 ps is chosen with NH. For the
FNH extension, we recommend t1 o t2 E 1 ps as a default, in
order to reduce instabilities in case condition (3b) is violated.

(5) To anticipate the preservation of hydrodynamic properties
by the FNH equations, one can apply a similar argument for
Ndf - N as given in ref. 40. In order to ensure efficient
equilibration, above-mentioned implied thermostat time scales
t1 and t2 should remain fixed independently of Ndf. Using
eqn (29), it follows Q1 - N if Ndf - N, which automatically

implies _x! 0 according to eqn (9). Therefore, one can show that

in canonical equilibrium x2

 �

¼ kBT0

Q1
! 0 for NH equations,

which in turn leads to x - 0.40 Consequently, the NH equations
reduce to Newtonian equations if the system size is increased.
Therefore, hydrodynamic properties are preserved for large systems.

In contrast, since t2 is independent of Ndf for a FNH thermostat, _z is
not necessarily 0, 8t. For this reason, the FNH equations do not
strictly converge to Newtonian equations of motion for Ndf - N,
which means that hydrodynamic properties remain affected also for
larger system sizes. The underlying reason for Q2 not depending on

Ndf is related to the fractional definition of _z /

PN
i

pi
4

mi
3

PN
i

pi
2

mi
2

given in

eqn (10), which ensures numerical stability for typical integration
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time steps and intermediate Ndf values based on the O(pi
2)-scaling.

However, hydrodynamic properties of the FNH thermostat remain
mostly preserved in practice for typical simulation setups, as will be
shown in the Results & discussion section.

(6) Note that the computational complexity of the FNH
equations remains unaffected by the additional control variable
and constraint in eqn (8) and (10). The number of operations
for the force calculation in eqn (10) is, however, slightly
increased for every degree of freedom due to the additional
control term. Practically more relevant is the evaluation of a

global expression for _x and _z, which involves global communication
across processors. Similar to NH, this is a disadvantage with respect
to an efficient parallel implementation.40 However, the additional
control term z, which acts on the forces, should not affect the speed
of the computation significantly compared to a normal NH thermo-
stat. As mentioned earlier, the auxiliary constraint is also designed
such that the integration time step does not have to be adjusted,
which ensures an efficient numerical integration.

(7) Note that it should be straightforward to replace the NH
thermostat within the FNH equations by a NH chain
thermostat5 in order to the control the dynamics of x.

3 Methods
3.1 Simulation details

Two different types of systems were used for the investigation of
the FNH properties: homogeneous systems (liquids) and short
b-peptides. First, a cubic box of 1000 SPC water molecules41 was
simulated using different thermostat parameters. In addition,
auxiliary systems consisting of a cubic box with 1000 chloro-
form molecules42 and two boxes with 1000 and 5000 argon
atoms were used to investigate the impact of different system
properties onto the estimated quasi-equilibrium parameter a0.

Second, two b-peptides (Fig. 1) solvated in methanol were
studied (1096 and 1123 molecules, respectively).31,32 Their
topology and initial coordinates were taken from ref. 32. For
peptide 1, a left-handed 314 helical fold was used as starting
structure, and for peptide 2 a right-handed 2.710/12 helical
fold.32 The b-peptides offer an ideal test system as they fold

on a time scale of nanoseconds in methanol, which is easily
accessible with classical MD.24 However, the folding events are
rare with respect to other implied time scales of the dynamical
system (e.g. rotational relaxation times t or thermostat times
t1 and t2). Therefore, the effect of the perturbed FNH tail
distributions onto rare events can be investigated using these
b-peptides.

For all simulations, a modified version of the GROMOS
software package43,44 was used in combination with the GROMOS
54A7b force field.45,46 Periodic boundary conditions were imposed
for all systems and all simulations were performed under NVT
conditions. The water and chloroform systems were simulated at
300 K, the argon system at 80 K, and the b-peptides at 340 K. As a
canonical reference system, the NH thermostat was used with a
relaxation time of 0.1 ps.3,4 Newton’s equations of motion were
integrated using the leapfrog scheme47 with a time step of 2 fs
using a single cutoff at 1.4 nm with a pairlist update every 10 fs.12

The centre of mass (COM) motion was stopped every 1 ps.
Bond lengths were constrained using the SHAKE algorithm.48

Long-range electrostatic interactions were described using a
homogeneous RF approach,49 with a charge-group based cutoff
R = 1.4 nm.50 For all simulations involving SPC, a dielectric
permittivity of 78.4 (experimental value of water51) was used.

For methanol eCH3OH
rf ¼ 19:8 (calculated value from ref. 52) and

for chloroform eCHCl3
rf ¼ 5:0 (experimental value from ref. 53)

were chosen. For argon no long-range electrostatics have to be
considered. The water systems were simulated for 50 ns, the
auxiliary systems for 1.5 ns, and the b-peptides for 350 ns.
Coordinates, velocities and energies were written out every 1 ps,
unless stated otherwise. The quasi canonical equilibrium para-
meter a0 was obtained from eqn (28) by setting t2 = 1000 ms and
by taking the ensemble average from 1 ns trajectories after
0.5 ns equilibration. In all FNH simulations, T = 7T0 was used,
which was considered a reasonable value to restrict the non-
canonical perturbations of P to the tails.

3.2 Analysis

Different statistical quantities were extracted from the simulation
trajectories and averaged using the GROMOS++ analysis tools.54

Self-diffusion coefficients D were obtained according to the
Einstein relation55,56 using the diffus program. For this purpose,
12 short simulations of 1.5 ns length (after 2 ns equilibration)
were performed with different initial setups. The uncertainty
of the self-diffusion was quantified by calculating the standard
deviation of the 12 different values. Similarly, shear viscosities Zshear

were extracted from the off-diagonal elements of the pressure
tensor using a modified version of the visco program.56,57 For
this purpose, the slope of a linear least-square fit of the squared
pressure tensor integrals was evaluated between 0 and 10 ps. The
data for the pressure tensor integrals was gathered from 1 ns of
simulation with a time resolution of 2 fs. The uncertainty of the
shear viscosity was quantified based on the standard deviation of
the fitted slope. The rotational relaxation time t was calculated
from fitting an exponential decaying function Ce�t/t to the first-
order autocorrelation functions, which were calculated for vectors

Fig. 1 Amino acid sequence of two b-peptides: (a) peptide 1: H2
+-b3-

HVal-b3-HAla-b3-HLeu-(S,S)-b3-HAla(aMe)-b3-HVal-b3-HAla-b3-HLeu-OH;
(b) peptide 2: H2

+-b2-HVal-b3-HAla-b2-HLeu-b3-HVal-b2-HAla-b3-HLeu-OH.
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pointing along different directions (e.g. H–H-bond) of the molecular
reference frame. The autocorrelation function was obtained using
the rot rel program. For this analysis, the coordinates were written
out every 2 fs over 10 ps of simulation time, after an equilibration
time of 25 ns. The dielectric permittivity e was calculated from 50 ns
trajectories (discarding the first 1 ns as equilibration) by solving a
Kirkwood–Fröhlich-type equation,58 implemented in the epsilon

program. Note that this approach involves the dielectric permittivity
of the reaction field as an input parameter. In order to quantify the
uncertainty of the dielectric permittivity estimate, the standard
deviation was calculated from 10 simulations with identical starting
coordinates but different initial velocities. In order to measure the
folding and unfolding of the b-peptides, the atom-positional root-
mean-square deviation (RMSD) of the backbone atoms between
residues 2–6 (peptide 1) and residues 2–5 (peptide 2) were calculated
using the rmsd program.

4 Results & discussion
4.1 Homogeneous systems

In a first step, the quasi-equilibrium parameter a0 was determined
according to eqn (28) for all simulated systems. As can be seen in
Table 1, a0 = 1 for the argon simulation. This is an expected result
in the absence of any constraints (apart from the COM removal)
due to the generalised equipartition theorem given in eqn (12).
However, in the presence of constraints (i.e. bonds with fixed
length) the estimated a0 parameters depend on the system studied
and cannot be anticipated without preparatory simulations.

This becomes apparent if one compares aCHCl3
0 ¼ 0:450 and

aH2O
0 ¼ 0:658, which were both obtained for systems containing

1000 molecules with an equally number of degrees of freedom

NH2O
df ¼ N

CHCl3
df ¼ 6000 (both solvent models are fully constrained,

i.e. without internal degrees of freedom).
The effect of the quasi equilibrium arising from z onto the

probability distribution P with respect to different perturbations
da of a0 was investigated in detail for the water box (Fig. 2 and
Table 2). For this system, a0 = 0.658 was estimated using eqn (28).

All setups have in common that the average system temperature
corresponds to the desired system temperature (T E T0). However,
depending on the chosen FNH perturbation, the standard deviation
of the system’s temperature is decreased for ao a0 or increased for
a 4 a0. This is an expected behaviour since the fluctuations in
kinetic energy DEkin (i.e. temperature) can be used to probe the
canonicity of a thermostat.59 For finite systems of size N without
constraints (e.g. without rigid bonds) in canonical equilibrium,

Table 1 Comparison of estimated a0 with corresponding standard deviations Da0 for different systems. For the homogeneous systems, a0 values were
estimated from 1 ns simulation trajectories after equilibration for 0.5 ns. For the b-peptides, 1 ns equilibration and 2 ns production run were performed. In
all cases, the following parameters were set during the estimation run: tQ1

= 0.1 ps, tQ2
= 1 ms (!) and a = 0. Note that the removal of the COM is

considered in the calculation of Ndf

System Argon Argon Water Chloroform Peptide 1 Peptide 2

Natoms 1000 5000 3000 5000 3352 3425
Ndf 2997 14 997 5997 5997 6702 6848
a0 � Da0 0.998 � 0.050 0.999 � 0.036 0.658 � 0.044 0.450 � 0.031 0.637 � 0.034 0.637 � 0.036

Fig. 2 Impact of different a-parameters on the time-averaged temperature
T and dynamic system properties of water (self-diffusion D, shear viscosity
Zshear, rotational relaxation time t and dielectric permittivity e). The data with
a = a0 is shown in red. Canonical equilibrium values from NH simulation are
indicated as a horizontal black line. If displayed, dotted black lines corre-
spond to error bars of the NH reference. For all simulations, the following
thermostat parameters were chosen: tQ1

= 0.1 ps, tQ2
= 1.0 ps, T = 2100 K,

T0 = 300 K.
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the deviation of the average kinetic energy can be written as

DEkin

Ekinh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekin

2h i � Ekinh i2
p

Ekinh i ¼
ffiffiffiffiffiffiffi
2

3N

r
.59 Any non-canonical equili-

brium distribution of the velocities will result in deviations
regarding the observed temperature fluctuations for finite systems.
Therefore, the non-equilibrium property of the FNH equation
leads to a-dependent temperature fluctuations as observed in
Fig. 2.

The analysis of the self-diffusion coefficient D shows a
relatively small sigmoid-like increase for a4 a0. Thus, significant
deviations from canonical equilibrium values were already
observed for very small perturbations da = �0.004, which are
well within the standard deviation Da0 = 0.044 of the estimated
a0. For example, a reduction of a = a0 � 0.004 leads to a slightly
slower diffusion and vice versa for an increased a (Fig. 2). How-
ever, overall, the self-diffusion remains relatively well preserved
over the entire a-parameter range. In particular, all values are well
within the range of computed values, which were obtained from
different simulation studies of SPC water.57,60–67

Interestingly, the second calculated transport property, i.e.
the shear viscosity Zshear seems to be almost unaffected by the
non-equilibrium perturbation of the fast motions, except for the
most extrem a-values. Similarly to the diffusivity, all obtained
shear viscosities agree well with computational values from
literature.57,60,61,67,68 The FNH thermostat seems to be capable
of calculating shear viscosity relatively accurately for reasonable
thermostatting parameter choices, despite its inability to pre-
serve momentum exactly for Ndf - N as it is the case for the
normal NH equations. For the accurate calculation of transport
properties, often NVE simulations that start from a well initialised
temperature and pressure level are performed in practice, which
preserve hydrodynamic properties.56,69 If the NVE simulations are
short enough, the temperature and pressure remains approxi-
mately constant. However, in the vicinity of a critical point (i.e.
close to a phase transition) long simulation runs are required
due to critical slowing down, causing a problem with such NVE
simulations.69,70 Therefore, often simulations with NH or dis-
sipative particle dynamics (DPD) thermostats are employed
instead.40,69,71 For NH, it is known that self-diffusion and shear
viscosity are adequately derived. With DPD, also accurate bulk
viscosities are accessible, despite the reduced capability of DPD
thermostats to control temperature.69 Note that transport prop-
erties can alternatively also be derived from non-equilibrium
MD simulations (see e.g. ref. 71). Based on these considerations
and the results displayed in Fig. 2, one can conclude that the
FNH equations preserve the known NH capabilities with respect
to the calculation of transport properties (diffusivity and shear
viscosity) for a close to a0, i.e. for small non-equilibrium
perturbations. Results for rotational correlation times and
dielectric permittivities are shown in Fig. 2 and Table 2. All values
are mostly preserved over the entire range of a-values. Especially the
dielectric permittivity shows nearly no dependence on a.

Overall, these results show that the dynamic properties of
the system studied remain close to the respective canonical
equilibrium values for FNH setups with small perturbation. The
deviations are on the same order of magnitude as observed forT
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a coloured-noise thermostat applied to suppress MTS integration
errors,13 and substantially lower than for other MTS-optimised
thermostats.13,19 In particular, the quasi-canonical equilibrium
solution a0 corresponds closely to the canonical NH solution for
every observed quantity as expected from theory. This observation
indicates that eqn (28) provides indeed a reasonable estimator for a0.

In order to quantify the effect of the perturbed probability
density function P further, the corresponding probability dis-
tribution functions of the molecular kinetic energies Pkin were
compared for the water box (Fig. 3a). A plot of the relative

probability differences DPFNH�NH
kin ¼ PFNH

kin � PNH
kin

PNH
kin

with respect

to canonical equilibrium is given in Fig. 3b. Both plots nicely
illustrate that the FNH equations indeed generate kinetic
energy distributions close to canonical equilibrium, but with
substantially perturbed tails of the distribution. This result was
theoretically predicted from P(G0,t) given in eqn (23), and for
small perturbations in eqn (25). Surprisingly, the highest
positive perturbation Da0 = 0.044 has a weaker impact on the tail
probabilities (dark red line) than smaller positive perturbations
a4 a0. The reason for that becomes evident if one investigates the
time evolution of the thermostat control variables x and z with
respect to a (Fig. 4). For a = a0 + 0.044 = 0.702, these do not
converge to a quasi-equilibrium with constant sign as it is the case
for smaller perturbations. Therefore, according to eqn (25), the
perturbations of the fast motions are not always negative for this
case. This results in a reduced increase of the time-averaged tail
probabilities (Fig. 3b) and larger temperature fluctuations (Fig. 2).

In addition, Fig. 4 reveals four more interesting properties of
the FNH equations. First, the FNH thermostat is very sensitive
regarding the choice of a, since substantial deviations of hzi
from its quasi canonical equilibrium value hz(aexact

0 )i = 0 can
already occur for very small deviations of a. In particular, the
simulations showed that aexact

0 A (0.658, 0.662) for the water

box. Second, the control variables x and z are substantially
more noisy for all FNH setups compared to x of the NH
thermostat (black line in Fig. 4), as one would expect from
the discontinuities introduced by the Heaviside function.
Third, imposing the additional constraint for the fast degrees
of freedom in the FNH eqn (10) is an asymmetric and nonlinear
problem. This becomes evident for symmetric perturbations
�Da0, which lead to a relatively stable solution for hz(a0 �
0.044)i E 32 ps�1, but cause oscillations for hz(a0 + 0.044)i A
(�5, 0) ps�1. Fourth, the FNH equations remain relatively close
to canonical equilibrium for the estimated a0 values (green
lines in Fig. 4), i.e. hx(a0)iE hxNHi but with slightly reduced tail
probabilities since z(a0) 4 08t.

Fig. 3 (a) Probability density of the molecular kinetic energy Pkin of water for different FNH thermostat parameters a at 300 K. The reference Nosé–
Hoover (NH) distribution is shown in black. The dotted vertical line denotes hEkini = 3kBT. (b) Corresponding relative differences of the tail probabilities

with respect to the canonical equilibrium values, by calculating DPFNH�NH
kin ¼ PFNH

kin � PNH
kin

PNH
kin

.

Fig. 4 Time evolution of the thermostat control variables x (solid lines)
and z (dotted lines) with respect to different fast Nosé–Hoover (FNH)
perturbations a for a test system of 1000 water molecules. The estimated
a0 = 0.658 (green lines). The Nosé–Hoover (NH) reference value for
canonical equilibrium is shown in black. Note that some doted lines are
outside the chosen scale for the y-axis (e.g. hzFNH(a = 0.614)i = 31.99).
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4.2 b-Peptides in methanol

Having analysed the effect of the FNH equations on dynamic
properties of homogeneous systems, we investigated the effect
of a perturbed tail distribution on the efficiency of phase-space
exploration in a next step. The focus was thereby on the
variation in the probability distribution of rare events. A good
example of such rare events are transitions between folded and
unfolded states of peptides, which occur relatively infrequently
during typical simulation times. For peptide 1 (Fig. 1), the time
evolution of the backbone atom-positional RMSD is shown in
Fig. 5a with corresponding probability distributions for the
canonical equilibrium and for estimated a0, a0 � Da0.

The increase of the tail probability of the velocity distributions was
found to have a substantial impact on the number of transitions
between the folded and unfolded states of peptide 1, which indicates

a faster exploration of the phase space. A similar observation
was made for peptide 2 (Fig. 5b). In addition, when suppressing
the fast motions using a = a0 � Da0, peptide 2 remained often
trapped in either the left-handed 314-helical fold (grey line)
or the initial right-handed 2.710/12 helical fold state (black
line). By increasing a, a more balanced distribution of the
RMSD values was obtained. These results are in line with
ref. 72, where faster folding was observed for the folding of a
16-residue helical peptide when non-canonical modifications
of the potential-energy surface according to Tsallis73,74 were
introduced. Time-averages of the thermostat control variables
are given in Table 3, with the related time series in Fig. S1 and S2
of the ESI.†

All findings are in agreement with the results of the water
system. In particular, for a positive perturbation a = a0 + Da0,

Fig. 5 Results of the simulations of b-peptides 1 and 2 in methanol at 340 K using the canonical Nosé–Hoover (NH) or the fast Nosé–Hoover (FNH)
thermostat with different perturbations. (a) Time series (left) and distribution (right) of the atom-positional backbone RMSD with respect to the
left-handed 314-helical fold of peptide 1. Residues 2–6 were used for the RMSD calculation. (b) Time evolution (left) and distribution (right) of the atom-
positional backbone RMSD with respect to a right-handed 2.710/12-helical fold (black line) and left-handed 314-helical fold (grey line) of peptide 2.
Residues 2–5 were used for the RMSD calculation.
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sgn(hzi) = �1 which indicates an increased probability of the
fast degrees of freedom, leading to faster transitions. However,
for the estimated quasi-equilibrium a0, the results are ambiguous.
For peptide 1, it appears that the tail probabilities are reduced
on the chosen simulation timescale, whereas the opposite was
observed for peptide 2, i.e. significantly more transitions
occurred than in canonical equilibrium. This highlights that
it is difficult to determine the quasi-equilibrium aexact

0 , which
solves eqn (27) exactly, and thus small deviations may already
have a significant impact on the dynamics of the system.

5 Conclusion

In this work, a modification of the Nosé–Hoover thermostat
equations was introduced, which allows to gently force the
system out of canonical equilibrium. Rigorous mathematical
properties of the FNH equations were derived, showing that the
dynamics of the non-equilibrium system remains close to the
canonical equilibrium for reasonable thermostat parameters
and a sufficiently high number of degrees of freedom in the
system. In more detail, a quasi-equilibrium parameter a was
identified, which determines whether tail probabilities are
increased or decreased with respect to canonical equilibrium,
while the time-averaged temperature is preserved. Simulations
showed that it is easily possible to determine an approximative
value a0, which is close to quasi-canonical equilibrium. How-
ever, it was found to be non-trivial to control the exact strength
of the perturbation, since the tail distributions are highly
sensitive to perturbations of a. The effect of the FNH equations
for relevant test systems showed that slightly increased tail
probabilities substantially effect the occurrence of rare events
(i.e. folding and unfolding of helical b-peptides). Interestingly,
averaged transport properties (e.g. self-diffusion and shear-
viscosity of water) were mostly preserved for the tested FNH
setups. This observation in combination with the well-defined
perturbation of the canonical equilibrium points to interesting
future applications of the FNH thermostat. In particular, the
well preserved shear viscosity potentially offers the opportunity
to reduce critical slowing down in the vicinity of critical points
by perturbations of the tail probabilities. Moreover, it should
also be possible to obtain canonical ensemble averages from
FNH simulations by using appropriate ensemble reweighting
techniques. Hence, equilibrium simulations could be accelerated
by using the non-equilibrium FNH thermostat. In the future, we
plan to investigate corresponding reweighting techniques and
applications on interesting chemical systems.
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Appendix: Thermostat masses Q1, Q2

By using the assumptions for the thermostat masses stated in
Section 2, one can decouple and simplify the FNH equations as
follows:

€x ¼ 1

Q1

XN
i

2pi _pi
mi
� 1

Q1

XN
i

2p
ðxÞ
i _p

ðxÞ
i

mi

¼ � 1

Q1

XN
i

x
2 p

ðxÞ
i

� �2
mi

0
B@

1
CA�h�i �2NdfkBT0

Q1
x

(33)

and

€z ¼ 1

3Q2

PN
i¼1

4p3i _pi

m3
iPN

i¼1
v2i

�

PN
i¼1

p4i
m3

i

PN
i¼1

2pi _pi
m2

i

� �
PN
i¼1

v2i

� �2

2
6664

3
7775

� 1

3Q2

PN
i¼1

4 p
ðzÞ
i

� �3
_p
ðzÞ
i

m3
iPN

i¼1
v
ðzÞ
i

� �2 �

PN
i¼1

p
ðzÞ
i

� �4
m3

i

PN
i¼1

2p
ðzÞ
i _p

ðzÞ
i

m2
i

 !

PN
i¼1

v
ðzÞ
i

� �2� �2

2
6666664

3
7777775

�
eqn ð10Þ

� 2akBT0

Q2
z;

(34)

which leads to the simple expressions given in eqn (29) and
(30).
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