ORGANIC CHEMISTRY

RESEARCH ARTICLE

Cite this: Org. Chem. Front., 2017, 4, 271

Palladium-catalyzed asymmetric allylic amination: enantioselective synthesis of chiral α -methylene substituted β -aminophosphonates[†]

Xubin Wang,^a Xiaoming Wang,^a Zhaobin Han,^a Zheng Wang^{*a} and Kuiling Ding^{*a,b,c}

Received 7th October 2016, Accepted 25th November 2016 DOI: 10.1039/c6qo00597g rsc.li/frontiers-organic Spiroketal backbone based diphosphine ligands (SKP) were disclosed to be highly efficient and enantioselective (94 \rightarrow 99% ee) in the palladium catalyzed asymmetric allylic amination of 2-diethylphosphonate-substituted allylic acetates, affording a series of chiral β -aminophosphonates bearing an α -methylene functionality in high yields with excellent regioselectivities.

Amino phosphonic acids¹ are phosphorus analogues of the corresponding amino acids, in which the planar and less bulky carboxylic acid group is replaced by a tetrahedral phosphonic acid functionality. In this context, β -amino phosphonic acids and their derivatives, as the isosteres of β -amino acids, have been revealed to possess a diverse range of medicinal properties including anti-bacterial,² enzyme inhibitors,³ antibiotics,⁴ anti-HIV,⁵ and anti-inflammatory⁶ activities (Fig. 1). Given their growing importance in pharmaceutical applications, it is not surprising to see that the synthesis of β -amino phosphonic acid derivatives has attracted considerable interest of the synthetic community.⁷ Whereas a number

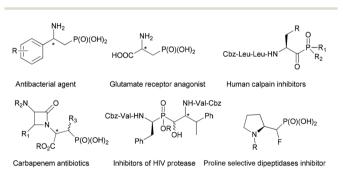


Fig. 1 Selected examples of bioactive $\beta\text{-aminophosphonic}$ acid derivatives.

of useful methods have been developed in general, there remains a dearth of efficient and versatile methodologies for the asymmetric synthesis of optically active β-amino phosphonic acid derivatives.8 Since the initial reports on the catalytic asymmetric synthesis of β -amino phosphonates *via* the amino hydroxylation of unsaturated phosphonates in the late 1990s,⁹ several types of catalytic systems have been documented to date, including the catalytic asymmetric hydrogenation of β-amidovinylphosphonates,¹⁰ asymmetric Mannich reactions,¹¹ and the desymmetrization of aziridines by phosphites.¹² Alternatively, optically enriched β-amino phosphonates have also been obtained indirectly via catalytic asymmetric nitroaldol¹³ or phospha-Michael additions¹⁴ followed by reduction of the resulting β -nitroethylphosphonates. Despite these notable advances, catalytic stereoselective protocols that can provide an efficient direct access to chiral β-aminophosphonic acid derivatives are still scarce. Herein, we report a highly enantioselective catalytic asymmetric amination of 2-(diethylphosphonyl)substituted allylic acetates, to afford a range of a-methylene- β -aminophosphonates in excellent optical purities.

Recently, our group has reported the development of spiroketal-based chiral diphosphine ligands (SKP),¹⁵ a new class of diphosphines with sterically well-defined spiro backbones.¹⁶ The SKP ligands were found to be highly efficient in the Pd catalyzed asymmetric allylic amination¹⁷ of racemic ethyl 2-(acetoxy(phenyl)methyl)acrylates, a type of Morita–Baylis– Hillman (MBH) adduct,¹⁸ to give the corresponding β -arylamino acid esters with high regio- and enantioselectivities.¹⁹ Kinetic and mechanistic studies indicated that the unusual long distance of the two P atoms in the SKP ligand allows for its unique role in the reaction, *i.e.* the ligand adopts an organo- and organometallic bifunctional mode in the cooperative catalysis.²⁰ Encouraged by these results, we sought to extend the catalytic system to the asymmetric allylic amination of 2-(diethylphosphonyl)-substituted allylic acetates. The

View Article Online

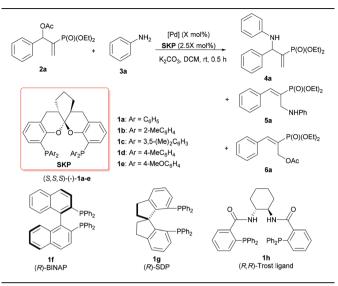
View Journal | View Issue

^aState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. E-mail: kding@mail.sioc.ac.cn; Fax: +(21)-6416-6128

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cCollaborative Innovation Center of Chemical Science and Engineering,

Tianjin 300071, China


[†]Electronic supplementary information (ESI) available. CCDC 1012761. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c6q000597g

expected amination products would be enantioenriched β -aminophosphoric acid derivatives which can be viewed as the bioisosteres of α -methylene- β -amino acids that have very recently been found to be a key unnatural amino acid unit in a new class of endomorphin-1 analogues with potent anti-nociceptive activity.²¹ Furthermore, the olefin functionality present in the amination products may constitute a useful handle for further synthetic manipulation, thus giving ready access to a wider array of β -amino phosphoric acid derivatives.

The study was initiated by a survey of the reaction conditions, including variations in palladium sources and SKP ligands, catalyst loadings, solvents, and bases, for the amination of 2-(diethylphosphonyl)-substituted allylic acetate (2a) with aniline (3a) as the nucleophile. The reactions were generally conducted at room temperature for 0.5 h, using the complex generated in situ from a SKP ligand [(S,S,S)-1a-e] and a palladium precursor as the catalyst. The effects of solvents and bases on the reaction of 2a and 3a were examined in the presence of the $[Pd(\eta^3-C_3H_5)Cl]_2$ (1.0 mol%)/(S,S,S)-1a (2.5 mol%) catalyst, indicating that both parameters have a significant impact on the reactivity as well as the chemo-, regio-, and enantioselectivities (for details, see Table S1 in the ESI[†]). In these cases, the reaction was found to be best performed in dichloromethane in the presence of two equivalents of anhydrous K₂CO₃ as the base, to afford the chiral allylic amination product 4a in 95% yield with excellent chemo-, regio-, and enantioselectivities (4a/5a/6a = >98/<2/0, >99% ee, entry 1 in Table 1). Under these optimized reaction conditions, the effects of catalyst compositions and loadings on the reaction of 2a and 3a were further evaluated, using SKP ligands (S,S,S)-1a-e with subtle variations in their aryl substituents at the P atoms and a couple of Pd precursors. The results are summarized in Table 1. With $[Pd(\eta^3-C_3H_5)Cl]_2$ (1.0 mol%) as the palladium precursor, a sharp difference in catalytic behavior was observed among the SKP ligands (S,S,S)-1a-e (entries 1-5). For example, high activity and excellent regio-/ enantioselectivities were obtained using ligand 1a, 1c, or 1e with phenyl, 3,5-xylyl or 4-methoxyphenyl substituents, respectively, affording the targeted product 4a in high yields (92-95%) with 98-99% ee values (entries 1, 3, and 5). In contrast, ligand 1b possessing 2-tolyl moieties on the P atoms obviously deteriorates the reactivity and regioselectivity, leading to only very poor conversion (5%) and a modest branched/linear regioselectivity (4a/5a = 2/3) under otherwise identical conditions (entry 2). Intriguingly, 4-tolyl-bearing ligand 1d, with structural features analogous to both 1a and 1e, afforded much inferior chemoselectivity albeit with a 98% ee for 4a (entry 4), presumably as a result of incomplete amination of the isomerization product 6a within 0.5 h. Intriguingly, the reaction results with some privileged chiral ligands, 16 e.g., (R)-BINAP, (R)-SDP or (R,R)-Trost ligand, were less satisfactory under the otherwise identical conditions, affording incomplete conversions and moderate chemo-, regioand enantioselectivities (entries 6-8). These facts clearly indicated that SKP ligands demonstrate unique performance in the catalysis of this type of asymmetric transformation. With

 Table 1
 Catalytic asymmetric allylic amination of 2a with aniline 3a

 catalyzed by various palladium complexes of bisphosphine ligands^a

Entry	$[\mathrm{Pd}]^b (X \operatorname{mol}\%)$	Ligand ^b	Conv. ^c (%)	4a/5a/6a ^c	Yield ^d (%)	ee ^e (%)
1	$[Pd(C_{3}H_{5})Cl]_{2}(1)$	1a	>99	>98/<2/0	95	>99
2	$\left[Pd(C_3H_5)Cl \right]_2 (1)$	1b	5	2/3/0	_	_
3	$[Pd(C_3H_5)Cl]_2(1)$	1c	>99	93/2/5	92	>99
4	$[Pd(C_3H_5)Cl]_2(1)$	1d	>99	68/2/30	63	98
5	$[Pd(C_3H_5)Cl]_2(1)$	1e	>99	>98/<2/0	94	98
6	$[Pd(C_3H_5)Cl]_2(1)$	1f	34	31/69/0	9	43
7	$[Pd(C_3H_5)Cl]_2(1)$	1g	16	70/30/0	10	4
8	$[Pd(C_3H_5)Cl]_2(1)$	1ĥ	57	56/34/10	28	10
9	$Pd_2(dba)_3(1)$	1a	>99	>98/<2/0	95	98
10^{f}	$Pd(OAc)_2(2)$	1a	36	36/0/64	12	88
11^f	$Pd(CH_3CN)_2Cl_2(2)$	1a	>99	44/6/50	43	95
12^g	$[Pd(C_3H_5)Cl]_2(0.5)$	1a	>99	>98/<2/0	95	98
13^g	$[Pd(C_3H_5)Cl]_2(0.1)$	1a	87	89/0/11	82	97
14^g	$Pd_2(dba)_3(0.2)$	1a	>99	>98/<2/0	95	98
15^g	$Pd_2(dba)_3(0.1)$	1a	>99	>98/<2/0	94	98
16^g	$Pd_2(dba)_3(0.05)$	1a	64	94/0/6	57	98

^{*a*} Unless otherwise noted, the reaction was performed with **2a** (0.2 mmol) and **3a** (0.4 mmol), K_2CO_3 (0.4 mmol) in CH_2Cl_2 (2 mL) at rt for 0.5 h. ^{*b*} The molar percent of the Pd salt relative to that of **2a**. In each case, the loading of the SKP ligand was 1.25 equiv. relative to that of Pd. ^{*c*} Determined by ¹H NMR spectroscopy. ^{*d*} Yield of the isolated **4a**. ^{*e*} The ee value of **4a** was determined by chiral HPLC. ^{*f*} The loading of **1a** was 2.5 mol% relative to that of **2a**. ^{*g*} The reactions were run for 3 h.

1a as the ligand, the use of different palladium precursors also resulted in distinct catalytic activities and selectivities (entries 1 and 9–11). While the use of $Pd_2(dba)_3$ delivers excellent results nearly identical to those of $[Pd(\eta^3-C_3H_5)Cl]_2$ (entries 9 vs. 1), $Pd(OAc)_2$ or $Pd(CH_3CN)_2Cl_2$ turns out to be much less efficient, realizing only partial conversion of **2a** (entry 7) and lower yields of **4a** (entries 10 and 11), or a substantial amount of the unreacted isomerization product **6a** (entry 11). Further trials to lower the catalyst loadings were thus performed using either $[Pd(\eta^3-C_3H_5)Cl]_2$ or $Pd_2(dba)_3$ along with ligand **1a** as the catalyst, and the reaction times were prolonged to 3 h (entries 12–16). Under these conditions, the loading of $[Pd(\eta^3-C_3H_5)Cl]_2$ was lowered to 0.5 mol% without loss of either yield of selectivities (entry 12), whereas further decreasing the

Table 2 Catalytic asymmetric allylic amination of MBH adducts 2a-h with various amines 3a-j catalyzed by Pd/(*S*,*S*,*S*)- $1a^a$

F 2a: H	" ң ң п-СН ₃	 R'NH₂ 3a-j R' 3a: Ph 3b: ρ-CH₃ 3c: ρ-FC₆ 	Pd ₂ (dba) ₃ (X mol%), 1a (2.5X mol%) K ₂ CO ₃ , DCM, rt, 3 h Ce ₀ H ₄	4a: H, Ph 4b: H, p-CH ₃ Cr	D)(OEt) ₂ + R R, R'	4j: H, Bn 4k: m-CH ₃ , Ph 4l: p-CH ₃ , Ph
2d r	P-OCH ₃ ⊢F n-Br P-NO ₂ ⊢CH ₃	3d: p-BrCe 3e: m-CHe 3f: p-OCH 3g: p-CHe	H.	4c: H, p-BrC ₆ H ₄ 4d: H, p-BrC ₆ H 4e: H, m-CH ₃ C 4f: H, R' = p-O 4g: H, o-CH ₃ C ₆ 4h: H, p-CIC ₆ H 4h: H, 3,4,5'(O	6H4	4 <i>p</i> -OCH ₃ , Ph 4 <i>p</i> -F, Ph 4 0: <i>m</i> -Br, Ph 4 0: <i>m</i> -Br, Ph 4q : <i>p</i> -NO ₂ , Ph 4q : <i>o</i> -CH ₃ , Ph
Entry	4		X	$4/5^b$	Yield ^c	(%) ee^{d} (%)
1	NH NH 4a	P(O)(OEt) ₂	0.1	>98/<2	94	98
2	NH CON	P(O)(OEt) ₂	0.1	95/5	91	95
3	F NH	P(O)(OEt) ₂	0.1	>98/2	94	96
4		P(O)(OEt)2	0.1	91/9	87	98
5	NI L 4e	H P(O)(OEt) ₂	0.1	95/5	83	94
6	MeO	NH P(O)(OE 4f	0.1	93/7	88	96
7	NH V 4g	.P(O)(OEt) ₂	0.1	96/4	70	98
8	Ci C	h	0.1	96/4	84	98
9	MeO MeO	`NH ↓ P(0)(0EI 4i	0.1	>98/2	89	98
10	NH 4j	Bn P(O)(OEt			84	98
11	NH V 4k	P(O)(OEt) ₂	0.5	93/7	75	94

Entry	4	X	$4/5^b$	Yield ^c (%)	$\mathrm{e}\mathrm{e}^{d}\left(\% ight)$
12	NH P(0)(OEl) ₂	0.5	96/4	92	97
13		0.5	94/6	80	94
14	4m	0.5	92/8	70	96
15		0.5	97/3	84	98
16		0.5	98/2	75	>99
17		1	61/39	40	94
	P(O)(OEl)2				

^{*a*} Unless otherwise noted, the reactions were typically performed at rt with 2 (2.0 mmol) and 3 (4.0 mmol), K_2CO_3 (4.0 mmol) in CH₂Cl₂ (20 mL) for 3 h, in the presence of a specified amount of catalysts Pd₂(dba)₃ and (*S*,*S*,*S*)-1a. ^{*b*} Determined by ¹H NMR spectroscopy. ^{*c*} Yield of the isolated 4a–q. ^{*d*} The ee values of 4a–q were determined by chiral HPLC. The absolute configurations for 4a–q were all determined to be *R* (see text).

loading to 0.1 mol% resulted in partial conversion and declined yield (entry 13). In this context, $Pd_2(dba)_3$ seems to be superior as the palladium precursor, and its loading can be lowered all the way to 0.1 mol% with essentially no changes in yields or ee values of **4a** (entries 14 and 15 *vs*. 9). Further lowering of the $Pd_2(dba)_3$ loading to 0.05 mol%, however, led to a significant decrease in the reactivity albeit still with a 98% ee value for **4a** (entry 16).

Subsequently, we proceeded to examine the substrate scope of the catalysis by variation in both the 2-diethylphosphonatesubstituted allylic acetates (**2a-h**) and nucleophilic amines (**3a-j**). The reactions were run under the optimized conditions with a low loading of Pd₂(dba)₃ (0.1–0.5 mol%) and (*S*,*S*,*S*)-**1a**, and the results are summarized in Table 2. Gratifyingly, excellent enantioselectivities (94 \rightarrow 99% ee) were observed in the resultant β -aminophosphonates **4a-q** (entries 1–17). Both electron-donating and electron-withdrawing groups on the phenyl rings, located whether on the aromatic amine or on the allylic acetate, are well tolerated. The regioselectivities for the amination products (**4**/5) are also generally high, ranging from

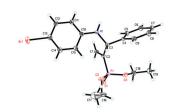


Fig. 2 X-ray single crystal structure of (R)-4d.

90/10 to >98/2 (entries 1-16). The reaction involving substrate 2h was an exception (entry 17), however, giving a much higher content of the linear amination product (4q/5q = 61/39) and a moderate yield (40%) of 4q even at a relatively high loading of the catalyst (1.0 mol%), probably as a result of unfavorable interaction with the Pd catalyst caused by the sterically congested o-tolyl group in 2h. It is also noteworthy that the stereoelectronic properties of the aromatic amines have no obvious influence on the catalysis, as reactions of 2a with a range of anilines (3a-i) gave the corresponding products 4a-i in comparable good yields, high regioselectivities and excellent enantioselectivities (entries 1-9). The amination of 2a also proceeded smoothly with benzylamine 3j, an aliphatic nucleophile, to furnish β -aminophosphonate 4j in 84% yield with a 90:10 branched/linear ratio and 98% ee (entry 10). Finally, the absolute configuration of 4d was unambiguously established to be R by the X-ray crystal diffraction analysis (Fig. 2), while those for other products were deduced to be all R by comparison of their Cotton effects with that of (R)-(-)-4d as shown in the CD spectra (Fig. S2, ESI[†]).

Conclusions

In conclusion, we have developed an efficient asymmetric synthesis of enantioenriched β -aminophosphonates bearing an α -methylene functionality. Using the complex generated *in situ* from the SKP ligand and a palladium precursor as the catalyst, asymmetric allylic amination of 2-diethylphosphonate-substituted allylic acetates proceeded smoothly under mild conditions with various amines as the nucleophiles, affording a series of β -aminophosphoric acid derivatives in good to excellent yields, high regioselectivities, and uniformly excellent enantioselectivities (94 \rightarrow 99% ee). It is noteworthy that the olefin functionality present in the chiral β -aminophosphonate products may provide a useful handle for further synthetic manipulation, and thus may stimulate future explorations to use them as intermediates to access a wider array of β -amino phosphoric acid derivatives.

Experimental

General procedures for SKP/Pd catalyzed asymmetric amination of 2-(diethylphosphonyl)-substituted allylic acetates

Into a Schlenk tube equipped with a magnetic stirring bar were added $Pd_2(dba)_3$ (1.8 mg, 0.005 mmol), (*S*,*S*,*S*)-1a (9.6 mg,

0.0125 mmol) and dichloromethane (5 mL) under a stream of argon. The solution was stirred for 5 min, followed by addition of 2 (0.5 mmol), K_2CO_3 (138 mg, 1.0 mmol) and 3 (1.0 mmol). The mixture was stirred for 3 h at room temperature, and then the solid residue was removed by filtration through a pad of Celite. The branched to linear ratio (4/5) of the amination products was determined by ¹H NMR analysis of an aliquot of the filtrate. The solvent was removed *in vacuo*, and the residue was purified by flash chromatography on silica gel with petroleum ether/EA (1/2) as the eluent to afford optically enriched α -methylene β -amino phosphonate ester 4.

The method can be applied in the Gram-scale preparation of β -aminophosphonates **4a** under a reduced catalyst loading. By following the above mentioned procedure, the reaction of **2a** (4.0 mmol, 1.24 g) with **3a** (740 mg, 8.0 mmol) proceeded smoothly at rt for 8 h in dichloromethane (38 mL) in the presence of Pd₂(dba)₃ (7.3 mg, 0.008 mmol), (*S*,*S*,*S*)-**1a** (13.2 mg, 0.02 mmol), and K₂CO₃ (1.1 g, 8.0 mmol), to give branched amination product **4a** (1.17 g, 85% yield) with 98% ee.

Acknowledgements

We are grateful for financial support from the Ministry of Science of Technology of China (2016YFA0202900), NSFC (21232009, 20421091), CAS (QYZDY-SSW-SLH012), and the Science and Technology Commission of Shanghai Municipality.

Notes and references

- For reviews see: (a) V. P. Kukha and H. R. Hudson, Aminophosphonic and Amino-phosphinic Acids. Chemistry and Biological Activity, Wiley, Chichester, UK, 2000; (b) A. Muccha, P. Kafarski and L. Berlicki, J. Med. Chem., 2011, 54, 5955; (c) M. Ordóñez, H. Rojas-Cabrera and C. Cativiela, Tetrahedron, 2009, 65, 17.
- 2 (a) J. G. Allen, F. R. Arthenton, M. J. Hall, C. H. Hassall,
 S. W. Holmes, R. W. Lambert, L. J. Nisbet and
 P. S. Ringrose, *Nature*, 1978, 272, 56; (b) L. Maier and
 P. J. Diel, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1995, 107, 245; (c) L. Maier and P. J. Diel, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1996, 109, 341.
- 3 (a) R. T. Wester, R. J. Chambers, M. D. Green and W. R. Murphy, *Bioorg. Med. Chem. Lett.*, 1994, 4, 2005;
 (b) D. V. Patel, K. Reilly-Gauvin, D. E. Ryono, C. A. Free, W. L. Rogers, S. A. Smith, J. M. Deforrest, R. S. Oehl and E. W. Petrillo, *J. Med. Chem.*, 1995, 38, 4557; (c) J. Zygmunt, R. Gancarz, B. Lejczak, P. Wieczorek and P. Kafarski, *Bioorg. Med. Chem. Lett.*, 1996, 6, 2989; (d) M. Tao, R. Bihovsky, G. J. Wells and J. P. Mallamo, *J. Med. Chem.*, 1998, 41, 3912; (e) P. van der Veken, K. Senten, I. Kertèsz, A. Haemers and K. Augustyns, *Tetrahedron Lett.*, 2003, 44, 969.

- 4 (a) J. T. Whitteck, W. Ni, B. M. Griffin, A. C. Eliot, P. M. Thomas, N. L. Kelleher, W. W. Metcalf and W. A. van der Donk, *Angew. Chem., Int. Ed.*, 2007, 46, 9089; (b) G. H. Hakimelahi and A. A. Jarrahpour, *Helv. Chim. Acta*, 1989, 72, 1501.
- 5 B. Stowasser, K. H. Budt, L. J. Qi, A. Peyman and D. Ruppert, *Tetrahedron Lett.*, 1992, 33, 6625.
- 6 A. A. A. Al Quntar, R. Gallily, G. Katzavian and M. Srebnik, *Eur. J. Pharmacol.*, 2007, **556**, 9.
- 7 For elegant reviews, see: (a) F. Palacios, C. Alonso and J. M. de los Santos, Chem. Rev., 2005, 105, 899; (b) F. Orsini, G. Sello and M. Sisti, Curr. Med. Chem., 2010, 17, 264. For selected examples, see: (c) C. Yuan, S. Li, C. Li, S. Chen, W. Huang, G. Wang, C. Pan and Y. Zhang, Pure Appl. Chem., 1996, 68, 907; (d) E. V. Grishkun and O. I. Kolodyzhnyi, Russ. J. Gen. Chem., 2009, 79, 2705; (e) H. Park, C.-W. Cho and M. J. Krische, J. Org. Chem., 2006, 71, 7892; (f) B. Das, C. R. Reddy, S. Nagendra and M. Lingaiah, Tetrahedron Lett., 2011, 52, 3496; (g) C. Carzon, M. Attolini and M. Maffei, Synthesis, 2011, 3109; (h) C. Alonso, M. González, M. Fuertes, G. Rubiales and J. M. Ezpeleta, J. Org. Chem., 2013, 78, 3858; (i) C. Garzon, M. Attolini and M. Maffei, Eur. J. Org. Chem., 2013, 3653; (j) C. Garzon, M. Attolini and M. Maffei, Tetrahedron Lett., 2010, 51, 3772.
- 8 For an excellent review, see: J. Ma, *Chem. Soc. Rev.*, 2006, 35, 630.
- 9 (a) G. Cravotto, G. B. Giovenzana, R. Pagliarin, G. Palmisano and M. Sisti, *Tetrahedron: Asymmetry*, 1998, 9, 745; (b) A. A. Thomas and K. B. Sharpless, *J. Org. Chem.*, 1999, **64**, 8379.
- 10 (a) R. Kadyrov, J. Holz, B. Schäffner, O. Zayas, J. Almena and A. Börner, *Tetrahedron: Asymmetry*, 2008, **19**, 1189;
 (b) J. Zhang, Y. Li, Z. Wang and K. Ding, *Angew. Chem., Int. Ed.*, 2011, **50**, 11743; (c) M. Á. Chávez, S. Vargas, A. Suárez, E. Álvarez and A. Pizzano, *Adv. Synth. Catal.*, 2011, **353**, 2775; (d) J.-H. Xie and Q.-L. Zhou, *Acta Chim. Sin.*, 2012, **70**, 1427.
- 11 (a) J. C. Wilt, M. Pink and J. N. Johnston, *Chem. Commun.*, 2008, 4177; (b) H. Zhang, X. Wen, L. Gan and Y. Peng, *Org. Lett.*, 2012, 14, 2126; (c) A. Kjærsgaard and K. A. Jørgensen, *Org. Biomol. Chem.*, 2005, 3, 804.
- 12 M. Hayashi, N. Shiomi, Y. Funahashi and S. Nakamura, J. Am. Chem. Soc., 2012, **134**, 19366.
- 13 T. Mandal, S. Samanta and C.-G. Zhao, *Org. Lett.*, 2007, 9, 943.
- 14 (a) M. Terada, T. Ikehara and H. Ube, J. Am. Chem. Soc., 2007, 129, 14112; (b) J. Wang, L. D. Heikkinen, H. Li, L. Zu, W. Jiang, H. Xie and W. Wang, Adv. Synth. Catal., 2007, 349, 1052.
- (a) X. Wang, Z. Han, Z. Wang and K. Ding, Angew. Chem., Int. Ed., 2012, 51, 936; (b) X. B. Wang, P. Guo, X. Wang, Z. Wang and K. Ding, Adv. Synth. Catal., 2013, 355, 2900.
- 16 For a review, see: (*a*) *Privileged Chiral Ligands and Catalysts*, ed. Q.-L. Zhou, Wiley-VCH, Weinheim, 2011. Spiro back-

bones have been recognized as one of the privileged structures for the construction of chiral ligands, for reviews, see: (b) J.-H. Xie and Q.-L. Zhou, Acta Chim. Sin., 2014, 72, 778; (c) G. B. Bajracharya, M. A. Arai, P. S. Koranne, T. Suzuki, S. Takizawa and H. Sasai, Bull. Chem. Soc. Jpn., 2009, 82, 285; (d) K. Ding, Z. Han and Z. Wang, Chem. - Asian I., 2009, 4, 32. For early examples, see: (e) A. S. C. Chan, W.-H. Hu, C.-C. Pai and C.-P. Lau, J. Am. Chem. Soc., 1997, 119, 9570; (f) M. A. Arai, M. Kuraishi, T. Arai and H. Sasai, J. Am. Chem. Soc., 2001, 123, 2907; (g) Y. Fu, J.-H. Xie, A.-G. Hu, H. Zhou, L.-X. Wang and Q.-L. Zhou, Chem. Commun., 2002, 480. For our recent examples, see: (h) Z. Han, Z. Wang, X. Zhang and K. Ding, Angew. Chem., Int. Ed., 2009, 48, 5345; (i) J. Li, G. Chen, Z. Wang, R. Zhang, X. M. Zhang and K. Ding, Chem. Sci., 2011, 2, 1141; (j) X. Liu, Z. Han, Z. Wang and K. Ding, Angew. Chem., Int. Ed., 2014, 53, 1978; (k) Z. B. Han, Z. Wang and K. Ding, Adv. Synth. Catal., 2011, 353, 1584; (l) Y. Zhang, Z. Han, F. Li, K. Ding and A. Zhang, Chem. Commun., 2010, 46, 156; (m) J. Shang, Z. B. Han, Y. Li, Z. Wang and K. Ding, Chem. Commun., 2012, 48, 5172; (n) P. Zhang, Z. Han, Z. Wang and K. Ding, Angew. Chem., Int. Ed., 2013, 52, 11054; (o) P. Zhang, J. Liu, Z. Wang and K. Ding, Chin. J. Catal., 2015, 36, 100-105; (p) X. Liu, Z. Han, Z. Wang and K. Ding, Acta Chim. Sin., 2014, 72, 849; (q) X. Liu, Z. Han, Z. Wang and K. Ding, Sci. China Chem., 2014, 57, 1073; (r) X. Jia, Z. Wang, C. G. Xia and K. Ding, Catal. Sci. Technol., 2013, 3, 1901; (s) X. Jia, Z. Wang, C. G. Xia and K. Ding, Chem. - Eur. J., 2012, 18, 15288; (t) J. Li, W. Pan, Z. Wang, X. Zhang and K. Ding, Adv. Synth. Catal., 2012, 354, 1980.

- 17 For reviews, see: (a) B. M. Trost, Acc. Chem. Res., 1996, 29, 355; (b) B. M. Trost and D. L. Van Vranken, Chem. Rev., 1996, 96, 395; (c) B. M. Trost and M. L. Crawley, Chem. Rev., 2003, 103, 2921; (d) L.-X. Dai, T. Tu, S.-L. You, W.-P. Deng and X.-L. Hou, Acc. Chem. Res., 2003, 36, 659; (e) L. A. Agrofoglio, I. Gillaizeau and Y. Saito, Chem. Rev., 2003, 103, 1875; (f) B. M. Trost, M. R. Machacek and A. Aponick, Acc. Chem. Res., 2006, 39, 747; (g) G. Helmchen, A. Dahnz, P. Dübon, M. Schelwies and R. Weinhofen, Chem. Commun., 2007, 675; (h) Z. Lu and S. Ma, Angew. Chem., Int. Ed., 2008, 47, 258.
- 18 (a) M. Shi, F.-J. Wang and M.-X. Zhao, *The Chemistry of the MBH Reaction*, RSC Publishing, London, 2011; (b) Y. Wei and M. Shi, *Acc. Chem. Res.*, 2010, 43, 1005; (c) D. Basavaiah and G. Veeraraghavaiah, *Chem. Soc. Rev.*, 2012, 41, 68; (d) D. Basavaiah, B. S. Reddy and S. S. Badsara, *Chem. Rev.*, 2010, 110, 5447; (e) Z. Qiao, Z. Shafiq, L. Liu, Z.-B. Yu, Q.-Y. Zheng, D. Wang and Y.-J. Chen, *Angew. Chem., Int. Ed.*, 2010, 49, 7294; (f) Y. Wang, L. Liu, D. Wang and Y.-J. Chen, *Org. Biomol. Chem.*, 2012, 10, 6908; (g) F.-L. Hu and M. Shi, *Org. Chem. Front.*, 2014, 1, 587; (h) G. Ma and M. P. Sibi, *Org. Chem. Front.*, 2014, 1, 1152.
- 19 (a) X. Wang, F. Meng, Y. Wang, Z. Han, Y.-J. Chen, L. Liu,
 Z. Wang and K. Ding, Angew. Chem., Int. Ed., 2012, 51,

9276. For further applications of SKPs in asymmetric catalysis, see: (b) Z. Y. Cao, X. Wang, C. Tan, X.-L. Zhao, J. Zhou and K. Ding, J. Am. Chem. Soc., 2013, 135, 8197; (c) X. Wang, X. Wang, Z. Han, Z. Wang and K. Ding, Angew. Chem., Int. Ed., 2016, DOI: 10.1002/anie.201609332; (d) R. Cao, J. Zhang, H. Zhou, H. Yang and G. Jiang, Org. Biomol. Chem., 2016, 14, 2191; (e) J. Liu, Z. Han, X. Wang, Z. Wang and K. Ding, J. Am. Chem. Soc., 2015, 137, 15346; (f) Y. Miyazaki, N. Ohta, K. Semba and

Y. Nakao, *J. Am. Chem. Soc.*, 2014, **136**, 3732; (g) X.-F. Wei, Y. Shimizu and M. Kanai, *ACS Cent. Sci.*, 2016, **2**, 21.

- 20 X. Wang, P. Guo, Z. Han, X. Wang, Z. Wang and K. Ding, *J. Am. Chem. Soc.*, 2014, **136**, 405.
- 21 (a) Y. Wang, Y. Xing, X. Liu, H. Ji, M. Kai, Z. Chen, J. Yu, D. Zhao, H. Ren and R. Wang, *J. Med. Chem.*, 2012, 55, 6224; (b) X. Liu, Y. Wang, Y. Xing, J. Yu, H. Ji, M. Kai, Z. Wang, D. Wang, Y. Zhang, D. Zhao and R. Wang, *J. Med. Chem.*, 2013, 56, 3102.