An interaction potential including chloride anion polarization effects, constructed from first-principles calculations, is used to examine the structure and transport properties of a series of chloroaluminate melts. A particular emphasis was given to the study of the equimolar mixture of aluminium chloride with 1-ethyl-3-methylimidazolium chloride, which forms a room temperature ionic liquid EMI+–AlCl−4. The structure yielded by the classical simulations performed within the framework of the polarizable ion model is compared to the results obtained from entirely electronic structure-based simulations: An excellent agreement between the two flavors of molecular dynamics is observed. When changing the organic cation EMI+ by an inorganic cation with a smaller ionic radius (Li+, Na+, K+), the chloroaluminate speciation becomes more complex, with the formation of Al2Cl−7 in small amounts. The calculated transport properties (diffusion coefficients, electrical conductivity and viscosity) of EMI+–AlCl−4 are in good agreement with experimental data.
    
         
                     
                    
                        
                            
                                You have access to this article
                            
                            
                                
                                    
                                        
                                             Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?
                                            Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?