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Probing nanopores: molecular dynamics insights
into the mechanisms of DNA and protein
translocation through solid-state and
biological nanopores

Yuanshuo Zhanga and Mingming Ding *ab

Nanopore sequencing technology has revolutionized single-molecule analysis through its unique

capability to detect and characterize individual biomolecules with unprecedented precision. This

perspective provides a comprehensive analysis of molecular dynamics (MD) simulations in nanopore

research, with particular emphasis on comparing molecular transport mechanisms between biological and

solid-state platforms. We first examine how MD simulations at atomic resolution reveal distinct

characteristics: biological nanopores exhibit sophisticated molecular recognition through specific amino

acid interactions, while solid-state nanopores demonstrate advantages in structural stability and geometric

control. Through detailed analysis of simulation methodologies and their applications, we show how

computational approaches have advanced our understanding of critical phenomena such as ion selectivity,

conformational dynamics, and surface effects in both nanopore types. Despite computational challenges

including limited simulation timescales and force field accuracy constraints, recent advances in high-

performance computing and artificial intelligence integration have significantly improved simulation

capabilities. By synthesizing perspectives from physics, chemistry, biology, and computational science, this

perspective provides both theoretical insights and practical guidelines for developing next-generation

nanopore platforms. The integration of computational and experimental approaches discussed here offers

promising directions for advancing nanopore technology in applications ranging from DNA/RNA

sequencing and protein post-translational modification analysis to disease diagnosis and drug screening.

1 Introduction

Nanopore technology has emerged as a revolutionary single-
molecule analytical platform, offering unprecedented capabilities
in biomolecular detection and characterization. The fundamental
principle involves the electrophoretic translocation of charged
molecules through nanoscale pores under an applied voltage,
where the passage of molecules generates characteristic ionic
current blockades that serve as molecular signatures (Fig. 1(a)).1–

3 The foundation of this field was established by the pioneering
work of Kasianowicz et al., who first demonstrated the electro-
phoretic translocation of single-stranded RNA/DNA through
a-hemolysin (a-HL) nanopores and proposed the principle of
polymer length measurement using current blockade duration.4

Early investigations by Meller et al. systematically characterized
DNA translocation properties and voltage-dependent transport

dynamics,5–7 while Akeson et al. demonstrated the microsecond-
level discrimination capability of RNA homopolymers.8 Over the
past three decades, this technology has evolved remarkably, as
comprehensively reviewed by Deamer et al.9 This label-free detec-
tion method has demonstrated remarkable versatility in various
applications, from nucleic acid sequencing to protein analysis. Its
exceptional sensitivity enables detection of subtle structural varia-
tions at the single-molecule level, discriminating between different
nucleotides (Fig. 1(b)) and amino acids (Fig. 1(c)).10–14

Biological nanopores, derived from transmembrane protein
channels, constitute a fundamental category in nanopore technol-
ogy, with their molecular transport properties refined through
millions of years of evolutionary optimization. These sophisticated
protein-based channels, exemplified by a-HL from Staphylococcus
aureus,4,17 Mycobacterium smegmatis porin A (MspA),18,19 and curli
specific gene G (CsgG),20,21 exhibit precisely orchestrated molecu-
lar architectures that facilitate selective transport across cellular
membranes (Fig. 1(d)). Their intricate structural organization,
characterized by strategically positioned amino acid residues and
specifically engineered binding sites, enables exceptional molecu-
lar recognition capabilities at the atomic scale. This inherent
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molecular specificity has proven particularly advantageous in DNA
sequencing applications, where biological nanopores demonstrate
remarkable precision in discriminating between individual nucleo-
tides through distinct ionic current signatures.4,22,23 However,
biological nanopores face several critical experimental challenges
that limit their broader application.24,25 First, these protein-based
channels exhibit limited stability under non-physiological condi-
tions, often resulting in protein denaturation. Second, structural
modifications aimed at optimizing pore functionality frequently
compromise protein stability, as evidenced by mutations in the
a-HL constriction region.26 Third, the scalability of biological
nanopore production remains problematic due to low yields of
functional channels and challenges in membrane integration.
Additionally, conformational fluctuations during measurements
and batch-to-batch variations pose significant obstacles to achiev-
ing reproducible and standardized sensing platforms.

Solid-state nanopores, fabricated in synthetic materials such
as SiO2, Si3N4, or two-dimensional materials (Fig. 1(e)), have
emerged as a promising alternative platform that addresses
several inherent limitations of biological nanopores.27,28 These
synthetic architectures exhibit superior chemical and mechanical
stability, enabling sustained operation under extreme conditions

including high temperatures (4100 1C), broad pH ranges (2–12),
and diverse organic solvents.22,29 Their fabrication process, pri-
marily based on electron beam lithography and controlled dielec-
tric breakdown, enables precise engineering of pore geometry
(1–100 nm in diameter) and surface properties, facilitating
customization for specific applications.30 Recent advances in
two-dimensional materials, particularly graphene and MoS2, have
revolutionized the field by enabling the creation of atomically thin
nanopores with enhanced sensitivity for molecular detection.31–35

However, solid-state nanopores face several critical experimental
challenges that require careful consideration. The primary limita-
tion lies in their inability to achieve the molecular specificity
exhibited by biological counterparts, resulting in rapid and
poorly controlled molecular translocation events (typically 10–
100 times faster than biological nanopores) that compromise
signal resolution.36,37 Surface charge heterogeneity and mechan-
ical deformation during fabrication often lead to asymmetric
ion transport and variable sensing performance. Additionally,
these synthetic platforms encounter challenges in reproducible
nanopore formation, with electron beam-induced damage and
uncontrolled pore expansion during operation affecting long-term
stability.38 The integration of surface modifications to enhance

Fig. 1 Schematic illustration of nanopore sequencing technology and its applications. (a) Basic principle of nanopore sensing showing the translocation
of charged molecules through a nanopore under applied voltage, generating characteristic ionic current blockades that serve as molecular signatures.
Created in BioRender. Y. Zhang (2024), https://BioRender.com/j42j080. (b) DNA homopolymer discrimination capabilities. Representative ionic current
traces showing DNA homopolymer translocation through COF-1.1 nanopores at 300 mV bias voltage, where the black line indicates the threshold for
translocation events.15 Copyright 2022 American Chemical Society. (c) Amino acid discrimination capabilities. Representative ionic current traces
showing distinct blockade patterns for different amino acids, demonstrating characteristic molecular signatures for each analyte.14 Copyright 2020 Royal
Society of Chemistry. (d) Structural comparison of three widely used biological nanopores. Top: Side view of a-HL, MspA, and CsgG. Bottom: Top view
showing the distinct pore geometries and constriction sites (marked with red arrows) with their respective diameters. Created in BioRender. Y. Zhang
(2024), https://BioRender.com/j42j080. (e) Representative solid-state nanopore materials. Atomic structures of various 2D materials used for nanopore
fabrication, including graphene, h-BN, MoS2, WS2, and MXenes, showing their distinct atomic compositions and pore configurations.16 Copyright 2021
American Chemical Society.
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molecular specificity frequently results in reduced pore diameter
and irregular surface chemistry.39

Molecular dynamics (MD) simulation, a sophisticated com-
putational methodology that enables the modeling and predic-
tion of complex molecular systems at atomic resolution and
femtosecond timescales, has emerged as an indispensable tool
in addressing the experimental challenges encountered in
nanopore technology. By numerically solving Newton’s equa-
tions of motion for interacting particles, MD simulations
provide detailed trajectories of atomic movements and mole-
cular interactions, offering unprecedented insights into nano-
scale phenomena. In response to the experimental challenges
in both biological and solid-state nanopore systems, these
computational approaches provide atomic-resolution insights
otherwise inaccessible through experimental methods alone.
For biological nanopores, MD simulations enable the systema-
tic investigation of protein stability under various environmen-
tal conditions,40,41 allowing researchers to predict structural
changes and optimize operating parameters without extensive
experimental trials. These simulations can also guide the
rational design of protein mutations by evaluating their impact
on pore stability and function before experimental implemen-
tation, significantly reducing the time and resources required
for optimization.42,43 In the context of solid-state nanopores,
MD simulations offer precise control over pore geometry and
surface properties in solid-state nanopore, facilitating the opti-
mization of design parameters to achieve desired molecular
specificity and controlled translocation dynamics.44–46 The
computational approach provides detailed mechanistic under-
standing of rapid translocation events (at femtosecond resolu-
tion) and surface charge effects, enabling the development
of strategies to regulate molecular transport. Furthermore,
MD simulations allow for direct visualization and quantitative
analysis of ion transport mechanisms, protein-pore inter-
actions, and conformational dynamics during molecular trans-
location, providing crucial insights for improving both biologi-
cal and solid-state nanopore designs. The integration of these
computational insights with experimental approaches has led
to significant advances in addressing the fundamental chal-
lenges of nanopore technology, particularly in optimizing
molecular recognition, controlling translocation dynamics,
and enhancing signal resolution.

This perspective provides a comprehensive analysis of MD
simulations in biological and solid-state nanopore systems,
following a systematic progression through interconnected sec-
tions. Beginning with MD simulation fundamentals, we detail the
theoretical frameworks and computational methodologies essen-
tial for modern molecular simulations. Through extensive analy-
sis of MD applications, we examine the distinct characteristics
and operational mechanisms of both nanopore types, with parti-
cular emphasis on their molecular transport properties. Through-
out these sections, we highlight how MD simulations have
advanced our understanding of critical phenomena such as ion
selectivity, conformational dynamics, and surface effects, while
demonstrating how computational predictions guide experi-
mental optimization of nanopore design and operation. Recent

technological advances, including deep learning approaches for
automated signal analysis and hybrid simulation methods com-
bining quantum and classical mechanics, are expanding the
capabilities of computational modeling in nanopore research.
By examining the complementary advantages and limitations of
these two nanopore categories through integrated computational-
experimental approaches, we offer insights into their optimization
and future development, particularly addressing key challenges
such as limited simulation timescales, force field accuracy, and
the need for improved molecular recognition in solid-state plat-
forms. This computational perspective proves crucial for advan-
cing nanopore technology, especially in enhancing molecular
specificity, controlling translocation dynamics, and improving
sequencing accuracy.

2 Molecular dynamics fundamentals

The investigation of molecular transport mechanisms in bio-
logical and solid-state nanopores requires computational
methods capable of capturing both atomic-level interactions
and system-wide dynamics. Among various computational
approaches, MD simulation has emerged as a particularly power-
ful tool for comparing and analyzing these two distinct nanopore
categories. The complete workflow of MD simulations, from
initial structure preparation through force field parameterization
to trajectory analysis and data processing, follows a systematic
process (Fig. 2(a)).

Different simulation methodologies offer distinct advantages
in nanopore research, varying in their temporal and spatial scales
(Fig. 2(b)). Ab initio molecular dynamics (AIMD), combining
quantum mechanical principles with MD simulations, excels in
predicting electronic properties and charge distributions during
nanopore interactions.51–55 Classical all-atom molecular dynamics
(CMD), based on Newton’s equations of motion, relies on carefully
parameterized force fields, which incorporate various molecular
interactions including bonded terms (bond length, angle, Urey–
Bradley, dihedral, and improper terms) and non-bonded terms
(van der Waals and electrostatic forces), as illustrated in Fig. 2(c).
This approach enables the study of larger systems over extended
timescales.56,57 The quantum mechanics/molecular mechanics
(QM/MM) hybrid approach bridges the gap between quantum
and classical descriptions, particularly useful for studying
chemical reactions in nanopore systems, while coarse-grained
(CG) approaches facilitate the simulation of even larger-scale
phenomena.58–61

Beyond these methods, Monte Carlo (MC) and Langevin
dynamics (LD) simulations offer complementary approaches
to nanopore research. MC methods, which explore configura-
tional space through random sampling, are particularly
valuable for studying thermodynamic equilibrium properties
in nanopore technology. For example, Chen et al. demonstrated
through MC simulations that a rotating electric field could
effectively control polynucleotide translocation kinetics,
showing that at low frequencies, the translocation time
becomes inversely proportional to the field frequency, which
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could potentially improve nanopore sequencing resolution.62

However, MC methods lack temporal evolution information
and are primarily suited for static thermodynamic quantities.

LD incorporates random noise forces and viscous damping
terms to approximate solvent effects through mean-field treat-
ment, enabling accelerated simulations. In nanopore transloca-
tion studies, LD is particularly useful for investigating large-
molecule diffusion processes in coarse-grained models (reaching
tens of microseconds timescales). For instance, Luo et al.
employed LD simulations to investigate sequence-dependent
DNA translocation dynamics, revealing that translocation time
exponentially decreases with the volume fraction of bases having
weaker pore interactions, while also demonstrating that the wait-
ing time patterns of individual bases could potentially enable
efficient sequence detection.63 However, LD’s implicit solvent
treatment overlooks important effects such as ionic hydration
shell screening and local charge distribution perturbations at
interfaces, limiting its applicability in modeling electroosmotic
flow or specific molecular recognition processes.

Compared to MC and LD, CMD offers unique advantages
through its all-atom resolution and explicit integration of

Newton’s equations of motion, enabling simultaneous capture
of ion migration, water hydrogen bond restructuring,
and biomolecular conformational changes with femtosecond
temporal resolution. While traditional MD faces timescale
limitations, enhanced sampling techniques effectively extract
critical saddle points and potential well structures from free
energy landscapes. These advantages in dual spatial-temporal
resolution are particularly crucial for modeling interfacial
hydration and electrostatic field gradients, which directly estab-
lish structure–function relationships between nanopore mate-
rial properties and translocation signals.

Among these approaches, CMD has become the predomi-
nant method for comparative studies of biological and solid-
state nanopores, owing to its ability to efficiently simulate
systems containing hundreds of thousands of atoms while
maintaining atomic resolution. This approach has proven
particularly valuable in elucidating the distinct characteristics
of molecular transport in different nanopore systems, from
protein conformational changes in biological nanopores
to surface–molecule interactions in solid-state platforms. The
widespread adoption of CMD is further supported by robust

Fig. 2 Fundamental principles and methodologies of MD simulations. (a) Complete workflow of MD simulations illustrating the systematic process from
initial structure preparation through force field parameterization to trajectory analysis and data processing. Created in BioRender. Y. Zhang (2024),
https://BioRender.com/j42j080. (b) Comparison of different molecular simulation approaches across temporal and spatial scales: (i) AIMD47 Copyright
2023 Royal Society of Chemistry, (ii) QM/MM48 Copyright 2018 American Chemical Society, (iii) all-atom MD49 Copyright 2015 American Chemical
Society, and (iv) CG MD50 Copyright 2016 American Chemical Society, highlighting their respective applications and limitations. (c) Schematic
representation of force field components showing bonded interactions (bond length, angle, Urey–Bradley, dihedral, and improper terms) and non-
bonded interactions (van der Waals and electrostatic forces). Created in BioRender. Y. Zhang (2024), https://BioRender.com/j42j080.
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software packages such as GROMACS,64 NAMD,65 GROMOS,66

CHARMM,67 and AMBER,68 which provide comprehensive tools
for simulating both types of nanopore systems.

In the following sections, we focus on CMD simulations and
their applications in nanopore research, presenting a detailed
overview of simulation methodologies and comparing the
specific settings required for biological and solid-state nano-
pore systems. This analysis will highlight how CMD simula-
tions contribute to understanding the fundamental differences
in molecular transport mechanisms between these two nano-
pore categories.

2.1 Force field theory

CMD simulations are fundamentally grounded in Newtonian
mechanics, employing numerical integration of Newton’s
equations of motion to elucidate the temporal evolution of
molecular systems. In MD simulations, the interactions
between molecules are described by potential energy functions,
which, along with their associated parameter sets, constitute
what is known as a force field. These force fields determine the
nature and strength of interactions between particles in the
system, with their parameters typically derived from both
empirical data and ab initio calculations.

CMD force fields comprise three main components that are
essential for accurately simulating nanopore systems. The total
potential energy function can be expressed as:

U = Ubonds + Unon-bonds + Uspecial (1)

where Ubonds represents intramolecular bonded interactions,
including bond stretching, angle bending, and dihedral tor-
sion. Unon-bonds accounts for non-bonded interactions between
molecules, such as electrostatic and van der Waals forces,
which are particularly crucial for modeling biomolecule–nano-
pore interactions. Uspecial encompasses special constraint terms
that allow for more accurate and tailored simulations of
specific nanopore systems or conditions (Fig. 2(c)).

In nanopore sequencing technology, several CMD force
fields have been widely employed, each with distinct advan-
tages for different aspects of nanopore simulation. CHARMM
has demonstrated particular strength in simulating protein-
based biological nanopores and their interactions with trans-
locating molecules.69–71 AMBER excels in modeling nucleic acid
translocation through nanopores, making it valuable for DNA/
RNA sequencing applications.72–74 GROMOS, with its united-
atom approach, offers computational efficiency particularly
beneficial for large-scale simulations of solid-state nanopore
systems.75,76 OPLS shows advantages in parameterizing small
molecules, which is useful for studying molecular modifica-
tions of nanopore surfaces.77,78

This diverse array of force fields provides researchers with
powerful tools for investigating the distinct characteristics of
biological and solid-state nanopores. The choice of force field
significantly influences the accuracy and efficiency of nanopore
simulations, particularly in capturing the unique aspects of
molecular transport mechanisms in different nanopore sys-
tems. Understanding these differences is crucial for selecting

the most appropriate force field for specific nanopore applica-
tions, whether studying protein channel dynamics in biological
nanopores or surface interactions in solid-state systems.

Among these force fields, CHARMM,71 initially developed
within the framework of the CHARMM software package,79 has
emerged as a particularly versatile tool for nanopore simulations.
Its comprehensive parameterization encompasses proteins,
nucleic acids, lipids, and small organic molecules, making
it especially suitable for studying complex nanopore systems.
The force field’s ability to accurately represent both structural
and dynamic properties has proven invaluable in simulating
biomolecule translocation through different types of nanopores.
In biological nanopore simulations, CHARMM has demonstrated
exceptional performance in modeling the conformational
dynamics of protein channels such as a-HL, where it accurately
captures the essential protein–substrate interactions during DNA
translocation and the critical role of specific amino acid residues
in molecular recognition.80–82 For instance, CHARMM simula-
tions have revealed how charged residues in the constriction
region of a-HL interact with DNA phosphate groups, influencing
translocation dynamics and contributing to sequence discrimina-
tion. In solid-state nanopore applications, CHARMM effectively
models surface–molecule interactions and the behavior of func-
tionalized pore surfaces, particularly in systems with modified
graphene nanopores.83,84 These simulations have provided valu-
able insights into how surface charge distribution and chemical
modifications affect biomolecule transport and orientation
during translocation, enabling the optimization of pore surface
properties for enhanced molecular detection.

2.2 Simulation methods

The implementation of MD simulations in biological and solid-
state nanopore systems follows distinct pathways that reflect
their unique structural and functional properties. For biological
nanopores, the simulation process begins with the preparation
of protein structures, typically obtained from the Protein
Data Bank (PDB).85 These protein structures are then carefully
embedded into lipid membranes and solvated with water mole-
cules and ions. The protein–membrane complex requires meti-
culous equilibration to ensure structural stability and proper
protein–lipid interactions. In contrast, solid-state nanopore
simulations commence with the construction of synthetic mate-
rials such as Si3N4 or graphene, followed by precise pore
geometry optimization and surface modification when required.

Despite their differences, both systems share a common
framework of essential simulation steps. The process begins with
system construction and energy minimization to eliminate unfa-
vorable atomic contacts. This is followed by system equilibration
under constant particle number, pressure, and temperature (NPT)
conditions to achieve a stable configuration. Once equilibrated,
production runs are conducted under applied electric fields to
study molecular transport phenomena. The final step involves
comprehensive trajectory analysis to extract meaningful physical
quantities. Notably, biological nanopore simulations typically
demand longer equilibration periods, often exceeding 10 nano-
seconds, to stabilize the complex protein–membrane interface.
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While solid-state systems might achieve stability more rapidly,
they require careful attention to surface charge distributions and
boundary conditions.

The characterization of nanopore performance relies on
several key physical quantities that can be computed from
simulation trajectories. Ionic current, a fundamental measure
of nanopore conductance, can be calculated either by directly
counting ion movements across the pore.86–88 The direct counting
method considers the displacement of individual ions along the
pore axis over time:

IðtÞ ¼ 1

DtL

XN

i¼1
qi zi tþ Dtð Þ � ziðtÞ½ � (2)

where qi represents the charge of ion i, zi(t) denotes its position
along the z-axis at time t, Dt is the time interval between
successive measurements, and L is the length of the system in
the z-direction. Water flux through nanopores, another crucial
parameter, is quantified by monitoring water molecule crossings
through defined planes within the pore:46,89

Jw ¼
Nw

ADt
(3)

where Nw represents the number of water molecules crossing a
defined plane, A is the pore cross-sectional area, and Dt is the
observation time. Free energy calculations, particularly through
umbrella sampling techniques, provide valuable insights into the
energetics of molecular translocation. These calculations reveal
the potential of mean force (PMF) profiles that characterize the
energy landscape experienced by translocating molecules:90,91

G(z) = �kBT lnhP(z)i (4)

where kB is the Boltzmann constant, T is temperature, and P(z)
represents the probability distribution along the reaction coor-
dinate z. Additionally, pore conductance analysis, derived from
current–voltage relationships:92,93

G ¼ DI
DV

(5)

offers important information about the nanopore’s transport
properties, where DI represents the change in ionic current for
a given voltage difference DV. These analytical methods reveal
distinct characteristics between biological and solid-state nano-
pores. Nanopores exhibit varying degrees of ion selectivity,
which can be quantified by the selectivity ratio:94,95

S ¼ Ication

Ianion
(6)

where Ication and Ianion represent the respective ionic currents
carried by cations and anions. The molecular transport through
nanopores can be quantitatively characterized by the transloca-
tion time (t), which is a critical parameter for both biological
and solid-state nanopores:96,97

t = texit � tentrance (7)

where tentrance represents the last moment when the molecule’s
center of mass passes through the nanopore entrance, and texit

denotes the first moment when it reaches the nanopore exit
at the opposite surface of the membrane. While both types of
nanopores exhibit molecular translocation, their characteristics
differ significantly. Biological nanopores typically show more
controlled transport due to specific protein–substrate interac-
tions and evolved molecular recognition mechanisms, resulting
in more consistent translocation times. In contrast, solid-state
nanopores often demonstrate higher ionic currents and water
flux, but their molecular transport tends to show greater
variability, as evidenced by broader PMF distributions and
more variable conductance patterns. These differences reflect
the fundamental distinctions in their transport mechanisms
and molecular recognition capabilities.

The selection of specific analysis methods is often guided
by the unique features of each nanopore type. Studies of bio-
logical nanopores frequently emphasize protein conformational
dynamics and specific binding interactions, necessitating detailed
free energy calculations and residence time analysis. For solid-
state nanopores, research often focuses on surface charge effects
and rapid transport phenomena, requiring careful analysis of
ionic current fluctuations and water flux patterns. The combi-
nation of these analytical approaches with appropriate visualiza-
tion techniques provides comprehensive insights into the distinct
transport mechanisms characteristic of different nanopore sys-
tems, ultimately guiding the optimization of nanopore design for
specific applications.

3 Molecular dynamics applications
3.1 Protein channel mechanisms

Biological nanopore technology has revolutionized single-
molecule analysis through the strategic utilization of protein
channels with distinct structural and functional characteristics
(Fig. 1(d)). The most widely studied biological nanopores include
a-HL, MspA, and CsgG, each offering unique advantages for
specific applications. a-HL, the pioneering nanopore for DNA
sequencing,4,17 features a stable b-barrel structure with an inner
diameter of 1.4 nm and a well-defined constriction site that
enables precise nucleotide discrimination. While its robust struc-
ture and specific binding sites make it ideal for DNA analysis,
challenges in controlling translocation speed have led to the
exploration of alternative protein channels. MspA, characterized
by its distinctive funnel-shaped structure and narrower sensing
region (1.2 nm),18,98 has demonstrated superior spatial resolution
and significantly improved sequencing accuracy.99 The CsgG
nanopore has emerged as a versatile platform,20,21 showing
particular promise in RNA sequencing and addressing the chal-
lenging issue of homopolymer sequence recognition through its
innovative combination with CsgF N-terminal residues,100 which
has increased single-read accuracy from 25% to 70%.101 Beyond
nucleic acid analysis, these biological nanopores have been
adapted for an expanding range of applications, including protein
sequencing and peptide analysis.102 Despite challenges posed by
the diverse physicochemical properties of amino acids, innovative
approaches such as peptide–DNA conjugation with controlled
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translocation through MspA using DNA helicase have achieved
remarkable single amino acid resolution.103 The technology’s
versatility continues to expand, with recent applications in
microRNA detection and other small molecule analyses,81,104,105

demonstrating its broad potential in molecular sensing and
characterization.

MD simulations have emerged as an essential tool for
understanding and optimizing biological nanopore applications,
providing atomic-resolution insights that complement experi-
mental observations. In a-HL systems, simulations have revealed
quantitative details of DNA–protein interactions through PMF
calculations, identifying key residues like D127 and K131 that
create strong electrostatic interactions (�2.5 kcal mol�1 per
nucleotide) with DNA phosphate groups.106 These regions serve
as potential targets for pore optimization, where the protein–
DNA interactions involve complex combinations of electrostatic
and short-range interactions, with water molecules often
mediating these interactions. These computational findings
have guided experimental modifications of the constriction
region, leading to the development of mutant a-HL pores with
improved nucleotide discrimination capabilities.107,108

In MspA research, MD simulations have revealed the critical
role of the 1.2 nm constriction zone in molecular recognition.
Detailed analysis of size exclusion and pore binding effects

showed that single amino acid variations in peptides can
produce distinct ionic current signatures, enabling variant
detection with remarkably low error rates (o10�6).11 MD
simulations have provided atomic-level insights into these
interactions, revealing specific contacts between DNA phos-
phate groups and bases with arginine residues in the constric-
tion region (Fig. 3(a)).109 These insights led to the development
of variable voltage protocols, where the driving voltage was
varied between 100 and 200 mV. This approach improved
single-passage base-calling accuracy from 62.7 � 0.5% to
79.3 � 0.3%.98

The synergy between computational predictions and experi-
mental validation has proven particularly valuable in nanopore
engineering. MD simulations have revealed that pore geometry
and amino acid properties at the constriction site play crucial
roles in ionic and molecular transport.112 For instance, MspA’s
conical shape has demonstrated advantages over a-HL’s cylind-
rical structure in detecting small analytes, showing system-
atically larger event amplitudes (up to 10 pA compared to
1–3 pA).113 Furthermore, simulation studies of protein translo-
cation through a-HL have identified robust translocation inter-
mediates associated with the rearrangement of secondary
structural elements,114 while computational analysis of homo-
peptide transport has shown that pore clogging is significantly

Fig. 3 Comparative analysis of biological and solid-state nanopores. (a) MD simulations revealing distinct DNA–protein interactions in biological
nanopores. Top: Single phosphate group interaction with arginine residue. Bottom: Cytosine base interaction with arginine residue, demonstrating the
specific molecular recognition mechanisms in biological nanopores.109 Copyright 2012 American Chemical Society. (b) DNA–surface interactions in
solid-state nanopores. Top: Single-stranded DNA adhesion to Si3N4 surface. Bottom: Spontaneous base-pair splitting of double-stranded DNA within the
pore, illustrating the non-specific interactions characteristic of solid-state nanopores.110 Copyright 2004 The Biophysical Society. Published by Elsevier
Inc. (c) Comparison of ionic current noise levels between biological (green) and solid-state (red) nanopores under identical experimental conditions
(100 mV, 1 M KCl, pH 7), demonstrating the superior noise characteristics of biological nanopores.111 Copyright 2020 American Chemical Society.
(d) Representative ionic current traces from different nanopore systems. Comparison of DNA translocation events through biological nanopores (MspA,
a-HL, ReFraC) and solid-state nanopores (MoS2, SiN4), showing distinct current signatures and temporal characteristics.111 Copyright 2020 American
Chemical Society. (e) Electrostatic potential analysis of MspA nanopore. Left: Cross-sectional view showing ion distribution and DNA conformation.
Right: Comparison of electrostatic potential profiles between full-length and reduced MspA systems.109 Copyright 2012 American Chemical Society.
(f) Electric field analysis in graphene nanopore systems. Left: ssDNA translocation through a graphene nanopore. Right: Z-axis electric field intensity
profiles under varying graphene layer and surface charge densities configurations.84 Copyright 2024 American Chemical Society.

Soft Matter Perspective

Pu
bl

is
he

d 
on

 1
1 

m
ar

s 
20

25
. D

ow
nl

oa
de

d 
on

 0
5.

06
.2

02
5 

06
.1

7.
27

. 
View Article Online

https://doi.org/10.1039/d4sm01534g


2392 |  Soft Matter, 2025, 21, 2385–2399 This journal is © The Royal Society of Chemistry 2025

influenced by amino acid volume, hydrophobicity, and net
charge.115 These computational insights have guided experi-
mental strategies, such as the substitution of key amino acids at
pore constrictions to modulate electrostatic potential and ionic
current,112 and the optimization of measurement pH (from 6.8
to 8.0) to extend single ion binding events by 46-fold.113 Such
simulation-guided approaches have proven valuable for develop-
ing high-performance nanopores.112

Recent advances in MD simulations have also facilitated the
design of novel biological nanopores for specific applications.
Computational studies have revealed that CsgG nanopores exhib-
it distinct transport properties, characterized by a sudden drop
in electrostatic potentials at their constriction site, in contrast
to the gradual changes observed in a-HL.112 These insights
have guided experimental modifications, such as the integra-
tion of CsgG with the N-terminal region of CsgF to create a dual-
constriction pore. This innovative design, with constrictions
separated by 2.5 nm, has improved single-read accuracy by 25–
70% for homopolymer sequences up to 9 nucleotides long.21

Furthermore, the strategic substitution of key amino acids at pore
constrictions, particularly with charged residues, has proven
effective in modulating pore electrostatic potential and ionic
current,112 demonstrating how computational insights can guide
nanopore engineering for enhanced sensing capabilities.

3.2 Synthetic pore transport

Solid-state nanopores, fabricated in synthetic materials such as
Si3N4, graphene, h-BN, MoS2, and WS2, have emerged as powerful
tools for single-molecule analysis.3,116 These engineered nano-
pores offer unique advantages through their tunable pore geome-
try, surface chemistry, and mechanical stability. The development
of advanced fabrication techniques, particularly transmission
electron microscopy (TEM) and controlled dielectric breakdown
(CDB), has enabled precise control over pore dimensions and
improved production efficiency.117,118 This technological advance-
ment has facilitated diverse applications in biomolecular analysis,
from nucleic acid sequencing to protein characterization.119

Recent innovations in detection modalities, including field-effect
transistor-based sensing, quantum tunneling, and plasmonic
methods, have significantly expanded the analytical capabilities
of solid-state nanopores.3 The technology has demonstrated parti-
cular promise in detecting various biomolecules, including
carbohydrates,120 though challenges remain in achieving specific
molecular recognition in complex biological samples.121

MD simulations have proven instrumental in addressing
experimental challenges and optimizing solid-state nanopore
design, providing atomic-resolution insights into molecular
transport mechanisms. For Si3N4 nanopores, all-atom simula-
tions have revealed critical details about DNA translocation
dynamics, particularly the role of ion–nucleotide interactions
in sequence discrimination. Detailed simulations have shown
that both single-stranded and double-stranded DNA can interact
strongly with the Si3N4 surface, where nucleotide bases can
adhere to the pore wall and Watson–Crick base pairs may split
spontaneously during translocation (Fig. 3(b)).110 These studies
demonstrated that local ion concentrations near the pore surface

(typically 2–3 times higher than bulk) create distinct electrostatic
environments that significantly influence DNA transport.122

These insights have guided the optimization of pore surface
chemistry, leading to enhanced DNA capture rates and improved
signal-to-noise ratios in experimental measurements.

In graphene-based systems, MD simulations have revolutio-
nized nanopore design through the development of novel
multilayer architectures. Studies of asymmetric double-layer
structures revealed how strategically positioned nanopores create
distinct energy barriers for precise molecular transport control.
The simulations revealed that molecules translocate from the
smaller to larger pore, the dwell time increases threefold com-
pared to the reverse direction, demonstrating enhanced control
over translocation dynamics.123 Atomistic simulations of DNA
translocation through graphene nanopores reveal that hydropho-
bic interactions suppress nucleotide fluctuations during trans-
port. The resulting ion current signals show nucleotide-specific
features, though molecular orientation significantly affects detec-
tion accuracy, suggesting the need for optimized surface
engineering.83 Furthermore, investigations of graphene surface-
step defects revealed directional molecular transport, where DNA
molecules exhibited preferential movement along defect edges
and downward across steps compared to upward motion,
enabling controlled biomolecule delivery to nanopores.124

Particularly noteworthy are the simulation-guided advances
in protein analysis using MoS2 nanopores. Microsecond-scale
non-equilibrium MD simulations of a-synuclein peptide trans-
location revealed distinct current blockade patterns (I ranging
from 0.08–0.90 nA) corresponding to specific amino acid
sequences.125 These computational insights led to experi-
mental optimizations, such as the development of DNA scaffold
carriers for controlled protein translocation,126 improving
detection efficiency by up to 60% and reducing translocation
speed variations by a factor of 4.

Recent computational studies have focused on surface
modification strategies for enhanced molecular specificity.
Simulations of functionalized nanopores demonstrated that var-
iations in surface charge density can create localized electric field
gradients (46 mV nm�1), increasing capture rates by an order of
magnitude while maintaining selectivity.127 The integration of
MD simulations with machine learning approaches has further
enhanced signal interpretation, enabling automated classification
of molecular events with accuracy exceeding 95%.128,129 These
computational advances have also facilitated the design of novel
sensing modalities, such as plasmonic nanopores, where engi-
neered electromagnetic fields enable enhanced optical detection
and precise temperature control.130

The synergy between MD simulations and experimental
validation has led to significant improvements in nanopore
design. For instance, MD simulations have revealed how
atomic-level structural changes affect nanopore conductivity
and expansion rates, guiding the development of chemical
modification strategies to enhance pore stability.131 Similarly,
computational studies of bio-inspired solid-state nanopores
with thin constrictions have demonstrated improved spatial
resolution comparable to 2D material nanopores while reducing
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noise levels, providing valuable insights for DNA sequencing
applications.132

3.3 Transport mechanism comparison

MD simulations reveal fundamental distinctions between biologi-
cal and solid-state nanopores in their structural characteristics,
molecular recognition mechanisms, and transport properties. Bio-
logical nanopores, evolved through natural selection and refined
through protein engineering, demonstrate sophisticated molecular
recognition through specific amino acid interactions.81,133 MD
simulations have revealed that protein structure creates well-
defined binding sites with precise electrostatic and hydrophobic
interactions, enabling exquisite control over molecular transport
(Fig. 2(a)).12 The dynamic nature of protein channels, captured
through microsecond-scale simulations, shows coordinated con-
formational changes that facilitate molecular recognition, with
characteristic timescales ranging from nanoseconds (side-chain
movements) to microseconds (backbone fluctuations).134

In contrast, solid-state nanopores, fabricated from materials
ranging from Si3N4 to emerging 2D materials, exhibit distinct
transport mechanisms dominated by geometric confinement
and surface interactions.135,136 MD simulations demonstrate
that their rigid structure creates well-defined electric field
distributions,46 with molecular transport primarily governed by
electrophoretic forces rather than specific binding interactions.137

The atomic-scale thickness of 2D materials (0.3–1.0 nm) enables
unique transport phenomena, with simulations revealing discrete
hydration layer structures and ion distributions that significantly
influence molecular translocation.

Stability analysis through MD simulations highlights the
complementary advantages of these systems. Biological nanopores
maintain remarkable functional stability under physiological con-
ditions, with simulations showing stable protein conformations
and consistent ion conductance over microsecond timescales.138

This stability is reflected in their superior noise characteristics
compared to solid-state counterparts under identical experimental
conditions (Fig. 3(c)).111 Their engineered variants demonstrate
enhanced stability through strategic mutations, though environ-
mental sensitivity remains a limitation.139 Solid-state nanopores,
simulated across broader condition ranges, maintain structural
integrity with negligible deformation (o0.1 nm) under various
pH and temperature conditions.135 The distinct properties of
biological and solid-state nanopores are particularly evident in
their DNA translocation characteristics, where different nanopore
systems exhibit unique current signatures and temporal patterns
(Fig. 3(d)).111

The molecular recognition mechanisms and controllability
aspects, elucidated through detailed simulations, reveal distinct
approaches in different nanopore systems. Biological nanopores
utilize specific amino acid arrangements to create energy barriers
and binding sites, enabling precise control over molecular
transport,12 while exhibiting sophisticated gating mechanisms
controlled by protein conformational changes that modulate pore
conductance.134 This is particularly evident in MspA nanopores,
where electrostatic potential analysis reveals distinct voltage drops
and ion distributions that facilitate molecular recognition

(Fig. 3(e)).109 In contrast, solid-state systems achieve selectivity
through engineered surface chemistry and geometric constraints,
with recent innovations in surface charge density modulation
extending DNA base residence times by up to 30-fold in the sensing
region.46 These synthetic systems offer direct geometric and surface
chemistry control, exemplified by carbon nanotube porins (CNTPs)
where external voltage precisely regulates ion flux through well-
defined electric field distributions.140 The unique characteristics of
2D material nanopores, such as graphene, are particularly evident
in their distinct electrostatic potential distributions (Fig. 3(f)),
which contribute to their enhanced sensing capabilities.16

These MD-derived insights guide the optimization of both
platforms for specific applications. Biological nanopores excel in
applications requiring precise molecular discrimination through
evolved recognition mechanisms, while solid-state nanopores
dominate in scenarios demanding robust operation and geo-
metric control. The integration of simulation-derived understand-
ing continues to advance both platforms, suggesting potential
hybrid approaches that combine their complementary strengths.

3.4 Current challenges

Despite significant advances in MD simulations of nanopore
systems, several fundamental challenges persist in accurately
modeling molecular transport processes. These challenges
span multiple scales, from atomic-level interactions to
system-wide phenomena, affecting both biological and solid-
state nanopore simulations. A primary limitation lies in the
computational demands of high-precision simulations. Cur-
rent studies must balance between system size and simulation
duration, particularly challenging when modeling complete
translocation events. For instance, comprehensive modeling
of nanopore–peptide interactions requires sophisticated con-
ductivity models (s0) that account for molecular position,
orientation, and conformational changes.141 These simulations
typically remain constrained to nanosecond to microsecond
timescales, often insufficient for capturing complete biomole-
cule translocation events, which can span milliseconds in
experimental settings.

The accuracy of molecular recognition presents another
significant challenge, particularly in distinguishing structurally
similar molecules. In biological nanopores, the subtle differences
in current blockade signatures between amino acids in a-HL
systems,142 making reliable protein sequencing predictions extre-
mely challenging. This limitation becomes more pronounced
when dealing with post-translational modifications or similar
amino acid residues, where current signatures may overlap signifi-
cantly. The complexity increases further when considering the
dynamic nature of protein–pore interactions, where conforma-
tional fluctuations can mask or alter characteristic signals.121,143

Similarly, solid-state nanopores face substantial challenges in
molecular discrimination, primarily due to rapid translocation
speeds. The lack of specific binding sites in solid-state systems,
often results in stochastic transport behaviors that complicate
sequence identification.16 These limitations necessitate the devel-
opment of enhanced sampling techniques and more accurate
force fields to capture the nuanced dynamics of molecular
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transport, particularly in regions where traditional force fields may
not accurately represent quantum mechanical effects.

Signal processing and analysis pose additional challenges
across both nanopore types, with particular emphasis on noise
reduction and signal enhancement. The detection of transient
current pulses, requires sophisticated high-gain, low-noise
amplifiers to distinguish weak signals from background
noise.144 Traditional threshold-based algorithms often lack
objectivity in feature extraction, leading to potential biases in
data interpretation, particularly when dealing with overlapping
signals or multiple molecule translocations.145 These challenges
are especially acute in solid-state systems, where higher noise
levels (typically 2–3 times greater than biological nanopores) and
faster translocation speeds (often exceeding 1 base per ns)
significantly complicate signal analysis. The situation becomes
even more challenging when considering effects such as DNA–
surface interactions, ion current rectification, and varying hydra-
tion patterns, all of which can modulate the measured signals in
complex and often unpredictable ways.

To address these limitations, several innovative approaches
have emerged in recent years. The integration of GPU acceleration
has achieved order-of-magnitude improvements in simulation
speed,146,147 while the development of implicit solvent models
has significantly expanded accessible simulation scales.148,149

Enhanced sampling techniques have improved the exploration
of conformational space,150,151 enabling more comprehensive
investigation of molecular transport mechanisms. Particularly
promising is the integration of machine learning approaches with
traditional MD simulations. Deep learning models have enhanced
signal processing and classification capabilities,152 while CNNs
and RNNs have improved feature extraction from complex time-
series data.145 These AI-driven approaches have enabled real-time
analysis of translocation events,153,154 significantly advancing our
ability to interpret nanopore signals.

4 Conclusions and future perspectives

This perspective examines the critical role of MD simulations in
advancing nanopore sequencing technology, highlighting their
contributions to understanding molecular transport mecha-
nisms and optimizing nanopore design. Biological nanopores,
with their sophisticated molecular recognition mechanisms
and high selectivity, have demonstrated remarkable success
in DNA sequencing applications. The integration of MD simu-
lations has been instrumental in elucidating the atomic-level
interactions that govern their exceptional specificity, despite
challenges in computational cost and parameter complexity
(Fig. 4(a)). Looking forward, engineered biological nanopores
show particular promise for direct detection of protein post-
translational modifications and enhanced sequence discrimi-
nation. The development of specialized force fields, optimized
for protein–substrate interactions and incorporating quantum
mechanical corrections, may further improve the accuracy of
biological nanopore simulations.

Solid-state nanopores, particularly those fabricated from
emerging two-dimensional materials like graphene and MoS2,

offer complementary advantages in terms of chemical stability,
mechanical robustness, and scalability. While currently lagging
in molecular recognition accuracy compared to their biological
counterparts, their potential for large-scale production and
commercialization makes them attractive for various applica-
tions. These systems benefit from simpler parameter settings
and lower computational costs in MD simulations, though they
face challenges in achieving molecular specificity (Fig. 4(a)).
MD simulations have proven crucial in optimizing their design
and understanding transport mechanisms, though challenges
remain in achieving single-base resolution for electronic DNA
sequencing.

The future advancement of nanopore technology will likely
be driven by several key developments in computational meth-
odology. The refinement of force fields, balancing computa-
tional efficiency with accuracy, remains crucial for reliable
predictions of molecular transport phenomena. Enhanced
sampling techniques and more efficient algorithms will be
essential for extending simulation timescales beyond the cur-
rent nanosecond to microsecond limitations. The integration of
artificial intelligence methods with MD simulations represents
a particularly promising direction, as demonstrated by recent
developments in deep learning frameworks for nanopore signal
analysis (Fig. 4(b)), potentially enabling direct analysis of
complex biological samples and automated interpretation of
sequencing data. These computational advances have already
begun to bridge the gap between biological and solid-state
nanopore systems, suggesting new possibilities for hybrid
approaches.

The convergence of high-performance computing architec-
tures and interdisciplinary methodologies is positioning nano-
pore technology research at the frontier of revolutionary
breakthroughs. The next generation of hybrid computing plat-
forms, integrating CPU, GPU, and quantum computing units,
coupled with enhanced sampling algorithms, shows promise in
overcoming the spatiotemporal limitations of CMD simula-
tions. This advancement is expected to enable precise simula-
tion of complex biomolecular translocation processes at
millisecond timescales within the next decade.

We envision four key pathways toward this goal. First, AI-
driven multiscale modeling frameworks will integrate machine
learning force fields, such as Deep Potential, with specialized
nanopore material databases to train dedicated neural net-
works. This integration will specifically address the precision
bottlenecks in heterogeneous interface charge distribution and
molecular recognition site prediction. Second, the evolution of
quantum-classical hybrid computing paradigms will open new
dimensions in free energy landscape calculations, enabling
more accurate predictions of molecular transport mechanisms.
Third, inter-institutional collaborative feedback systems, incor-
porating spiking neural networks (SNN) for real-time signal
processing, will establish closed-loop optimization networks
connecting electric field parameters, molecular trajectories,
and pore current signals. Fourth, high-throughput screening
strategies combining generative adversarial networks (GANs)
with MD will advance intelligent interface design for single-
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molecule recognition, exemplified by programmable optimiza-
tion of MXene pore edge functionalization.

While current challenges persist in hardware performance
limitations and multimodal data integration complexity, the
cross-pollination of artificial intelligence, quantum computing,
and microfluidic technologies promises unprecedented
insights into single-molecule transport physics. These advances
will establish theoretical foundations for the rational design
of personalized diagnostic nanopore devices and efficient
membrane separation materials.

Indeed, hybrid systems combining the advantages of both
biological and solid-state nanopores have emerged as an excit-
ing frontier in nanopore research. These innovative platforms
aim to leverage the precise molecular recognition of biological
pores while maintaining the robustness and scalability of solid-
state platforms. Bio-inspired design strategies have successfully
incorporated key biological features, such as precise constric-
tion sites and vestibule regions, into solid-state architectures
(Fig. 4(c)). Furthermore, the integration of synthetic nanopores
with biological membranes has shown promising results, as

Fig. 4 Future perspectives in nanopore technology development. (a) Comparative advantages (red) and limitations (black) of biological and solid-state
nanopores in MD simulations. Left: Biological nanopores featuring high molecular specificity and precise recognition sites while being constrained by
limited size, structure flexibility, high computational cost, and complex parameter settings. Right: Solid-state nanopores offering controllable size, high
structural stability, low computational cost, and easy parameter settings while suffering from poor molecular specificity and limited chemical
modification. Created in BioRender. Y. Zhang (2024), https://BioRender.com/j42j080. (b) Integration of artificial intelligence in nanopore sensing.
Workflow of deep learning implementation showing event extraction, model training using SteviNet architecture, and practical applications in molecular
classification, illustrating the potential of AI-enhanced nanopore analysis.155 Copyright 2024 American Chemical Society. (c) Bio-inspired nanopore
designs. Left: Structure of biological nanopore showing characteristic constriction site and vestibule regions. Right: Bio-inspired solid-state nanopore
incorporating key biological features through a trilayer architecture with controlled constriction and vestibule dimensions.132 Copyright 2024 American
Chemical Society. (d) Hybrid nanopore-membrane system design. Integration of extended pillararene macrocycle (EPM) nanopore within a biological
POPC lipid bilayer, demonstrating the successful combination of synthetic channels with biological membranes. The system shows the EPM channel’s
key structural features including constriction region (green) and peptide side chains (purple), surrounded by water molecules and ions (K+ in yellow, Cl� in
cyan) in a 1 M KCl electrolyte environment. Inset displays the structural details of the EPM channel from top and side perspectives.156 Copyright 2021
American Chemical Society.
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demonstrated by the successful embedding of extended pillar-
arene macrocycle (EPM) nanopores within lipid bilayers
(Fig. 4(d)). The optimization of such hybrid systems requires
sophisticated multiscale simulation approaches, integrating
atomic-level details with larger-scale phenomena. This integra-
tion of different length and time scales represents a crucial step
toward more comprehensive and accurate modeling of complex
nanopore systems.

To support these ambitious developments, the continued
advancement of specialized computing hardware and simula-
tion methodologies remains essential. As computational cap-
abilities expand, we anticipate significant improvements in our
ability to model and optimize nanopore-based technologies across
multiple scales. These advances are expected to catalyze applica-
tions beyond traditional sequencing, extending to environmental
monitoring, biomedical research, and personalized medicine. The
growing synergy between experimental and computational
approaches, particularly in the development of hybrid systems,
will be crucial in realizing the full potential of nanopore technol-
ogy and addressing current challenges in molecular analysis.

Looking to the future, we identify two critical research
directions that merit intensive investigation through the syner-
gistic integration of theoretical and experimental approaches.
The first direction focuses on hybrid nanopore system design,
where MD simulations can systematically optimize bio-solid
interfaces, particularly emphasizing the exploration of novel two-
dimensional materials (such as MXenes and MOFs) in conjunc-
tion with biological nanopores. Through iterative interplay
between computational modeling and experimental validation,
this approach aims to achieve sub-angstrom resolution in mole-
cular detection by understanding atomic–scale interactions at
interfaces and optimizing chemical functionalization for
enhanced selectivity. The second direction involves developing
advanced signal processing methodologies through deep learn-
ing approaches, where modern architectures such as transfor-
mers and graph neural networks can establish universal
molecular feature prediction models. These sophisticated
models, trained and validated using diverse experimental
sequencing data, aim to achieve recognition accuracies exceed-
ing 95% through effective combination of multiple data streams
and real-time feedback between measurements and predictions.
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R. Garcı́a-Fandiño, Int. J. Mol. Sci., 2022, 23, 3158.

78 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, J. Am.
Chem. Soc., 1996, 118, 11225–11236.

79 A.-P. Hynninen and M. F. Crowley, J. Comput. Chem., 2014,
35, 406–413.

80 S. Wang, Z. Zhao, F. Haque and P. Guo, Curr. Opin.
Biotechnol, 2018, 51, 80–89.

81 C. Cao and Y. Long, Acc. Chem. Res., 2018, 51, 331–341.
82 C. Lynch, S. Rao and M. Sansom, Chem. Rev., 2020, 120,

10298–10335.
83 D. B. Wells, M. Belkin, J. Comer and A. Aksimentiev, Nano

Lett., 2012, 12, 4117–4123.
84 Y. Zhang, M. Ding, M. Li and T. Shi, J. Phys. Chem. Lett.,

2025, 16, 357–364.
85 S. K. Burley, H. M. Berman, G. J. Kleywegt, J. L. Markley,

H. Nakamura and S. Velankar, Methods Mol. Biol., 2017,
1607, 627–641.

86 P. S. Crozier, D. Henderson, R. L. Rowley and D. D. Busath,
Biophys. J., 2001, 81, 3077–3089.

87 A. Aksimentiev, J. B. Heng, G. Timp and K. Schulten,
Biophys. J., 2004, 87, 2086–2097.

88 A. Aksimentiev and K. Schulten, Biophys. J., 2005, 88,
3745–3761.

89 J. Shen, J. Chen Li, F. Liu, L. Zhang, L. Liang, H. Wang and
J. Wu, J. Membr. Sci., 2020, 595, 117611.

90 Y. Deng and B. Roux, J. Phys. Chem. B, 2009, 113,
2234–2246.

91 G. Hu, A. Ma and J. Wang, J. Chem. Inf. Model., 2017, 57,
918–928.

92 J. P. Thiruraman, K. Fujisawa, G. Danda, P. M. Das,
T. Zhang, A. Bolotsky, N. Peréa-López, A. Nicolaı̈,
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