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Charge carrier dynamics in semiconductor-
cocatalyst interfaces: influence on photocatalytic
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Electron transfer dynamics at semiconductor-cocatalyst interfaces are critical for efficient solar fuel generation,
including water splitting, pollutant degradation, CO, reduction, and N fixation. These interfaces facilitate
charge separation, suppress recombination, and enable photoexcited charge carriers to transfer to active sites
for photocatalytic reactions. The formation of Schottky or ohmic junctions, energy band alignment, and surface
properties significantly influence charge transfer efficiency. Advances in theoretical modeling, such as density
functional theory (DFT) and several experimental techniques like ultrafast spectroscopy and in situ X-ray
photoelectron spectroscopy, have offered profound insights into these processes. Understanding and
optimizing these dynamics is essential for developing high-performance photocatalytic systems to harness
solar energy and address global energy demands sustainably. This review offers a concise explanation of charge
transfer mechanisms at semiconductor-cocatalyst interfaces, explored through various experimental
methodologies and theoretical frameworks. Exploring the underlying mechanism will open new avenues for
advancing high-performance semiconductor photocatalytic technologies. The conclusion sheds light on the
challenges and promising opportunities for enhancing the understanding and investigation of interfacial
electron transfer dynamics in semiconductor-cocatalyst systems.

1. Introduction

Semiconductor photocatalysts are essential in addressing
high energy demand and other pressing challenges facing
society today, including energy sustainability, ecological
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pollution, atmospheric changes, and rising average global
temperatures.”” Semiconductor nanostructures possess the
remarkable ability to harness sunlight and convert it into a
renewable energy source through chemical reactions,

establishing them as a foundation of modern clean energy
and environmental technologies.’ Despite their potential,
semiconductor photocatalysts face challenges such as limited
absorption of

sunlight beyond the UV range, fast
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recombination of electron-hole (e -h") pairs, and stability
issues under prolonged use.®® Advancements in bandgap
engineering, surface modification, heterostructure formation,
doping, vacancies, and cocatalyst depositions are crucial for
enhancing the efficiency and practicality of the
semiconductors.”" Among them, cocatalysts play a critical
role in photocatalysis by enhancing efficiency through charge
carrier extraction and trapping, promoting charge separation
and transfer, minimizing e -h" pair recombination, and
offering active sites for catalytic reactions, including
hydrogen evolution, pollutant degradation, CO, reduction,
and N, fixation."*™* Conceptually, cocatalysts that trap
electrons are referred to as reduction cocatalysts, while those
that capture holes are known as oxidation cocatalysts. Most
metals (such as Pt, Pd, Ru, Au, Ag, etc.) and metal oxides/
sulfides typically capture electrons and have been identified
as reduction cocatalysts.”>>" In contrast, materials like RuO,,
CoOy, MnO,, FePO,, etc., tend to trap holes, making them
oxidation cocatalysts.**>” So far, most studies have
concentrated on noble metal-based cocatalysts due to their
ability to form Schottky or ohmic junctions at the interfaces,
facilitating efficient, unhindered charge transfer.”*' As an
example, Liu et al®>* developed a novel Ag@8Si,0;@TiO,-Au
plasmonic  semiconductor  photocatalyst, where Ag
nanoparticles functioned as plasmonic resonators. The Ag-
Au coupling amplified the local electric field at the TiO,-Au
interface, resulting in improved charge separation and
enhanced visible light absorption. In another study, Jeong
et al.*® synthesized Ag nanoparticles deposited on BivVO, for
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improved photocatalytic water splitting. This improvement
was credited to the enhanced charge generation and
separation driven by the linear surface plasmon resonance
effect. However, noble metal-free, cost-effective, and earth-
abundant cocatalysts have also been synthesized for
photocatalytic activity. Xiao et al.>* developed ultrathin CoO,
cocatalysts on tantalum oxynitride and found that the
predominant presence of Co>" ions created more attractive
sites and stronger interactions for photogenerated holes,
significantly boosting the photocatalytic water oxidation
efficiency.

In this review, recent progress in charge transfer at the
semiconductor-cocatalysts interfaces has been discussed. Various
types of cocatalysts, their synthesis methods, charge transfer
dynamics, and their applications in diverse photocatalytic
processes, including photodegradation of pollutants, water
splitting, conversion of CO,, and N, fixation, have been focused.
We also provided an overview of the interfacial charge transfer
mechanisms as elucidated by theoretical studies. Lastly, the
challenges and future opportunities for the practical
implementation of photocatalysts based on semiconductor-
cocatalyst systems have been emphasized.

2. Architecture of cocatalysts for
surface modification of
semiconductor

Cocatalysts can be integrated with semiconductors in various
forms (Fig. 1). Based on the roles of cocatalysts in
photocatalytic reactions, four distinct semiconductor-
cocatalyst structures have been classified.

2.1. Semiconductor-reduction cocatalyst structure

The efficiency of H, evolution or CO, reduction in most
semiconductors is often limited by fast recombination of e -
h* pairs and slow surface reaction kinetics. To efficiently
extract electrons to the surface of the photocatalyst,
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depositing a reduction cocatalyst is a promising strategy.*” It
serves as both an electron reservoir and a provider of active
sites for proton reduction, significantly enhancing the
efficiency of the proton reduction process.

The photocatalytic performance of bare g-C3;N, is
constrained by its limited visible light absorption range, high
photogenerated e -h" pairs recombination rate, low electrical
conductivity, and restricted number of active surface sites.
Hence, Zhao et al.*® synthesized PACuH, (x = hydrogen content
in the compound) nanocrystals deposited on ultrasonically
exfoliated C3;N, nanosheets. Initially, PdCu nanocrystals were
synthesized on g-C3;N, nanosheets by reducing K,PdCl and
CuCl, in an aqueous solution, followed by a solvothermal
treatment in DMF (N,N-dimethylformamide) to produce C;N,-
PdCuH, hybrids, as shown in Fig. 2a. The Pd and PdCu
nanocrystals exhibited truncated cubic structures and were
uniformly distributed across the surface of the g-C3;N,
nanosheets as shown in TEM images. However, the corners of
the PdyCu,H, nanocubes appeared rounded in C3;N,~PdoCu;H,
(Fig. 2b), whereas, in the C;N,-PdH, material, adjacent
nanocubes merged into irregular nanorods, suggesting
significant volume expansion following the hydriding process
via solvothermal reaction. Upon adding metal cocatalysts to
C;3N,, a notable reduction in photoluminescence intensity was
observed, indicating the suppression of e -h" recombination
(Fig. 2c). As reported, doping H atoms into the PdCu cocatalyst
lattice significantly enhanced the electron trapping capability of
PdCu. Furthermore, the H, atoms within the Pd lattice are
crucial in determining the rate-limiting step of the reduction
reactions. Additionally, Cu atoms serve as highly active sites for
the reduction processes within the Pd lattice. Therefore, the
synergy of these effects collectively enhanced the photocatalytic
reduction reaction of C;N, when PdCuH, was used as the
reduction cocatalyst (Fig. 2d). With the hydride treatment, the
average CH, production rate increased by 2.8, 4.0, and 2.6 times
for C3;N,-PdH,, C;N,-PdsCu;H,, and C;N,-Pd,Cu;H,,
respectively. Remarkably, C;N,-PdoCu;H, demonstrated the
best performance by achieving a selectivity of 100% and an
average CH, production rate of 0.018 mmol h™".

In another study, Zhu et al.*” loaded Pd nanocubes (NCs)
as cocatalysts onto TiO, nanosheets and hydriding Pd into
B-phase PdH, 43. This transformation notably enhanced the
efficiency of photocatalytic reduction. As observed from the
TEM image (Fig. 2e), PdH, 43 nanocrystals preserved their
cubic-shaped morphology, demonstrating that the cocatalysts
retained their shape effectively after the hydriding process.
The photocatalytic mechanism depicted in Fig. 2f indicates
that employing pure Pd as a cocatalyst hindered charge
transfer at the TiO,-Pd interface. Interestingly, hydridation
significantly improved charge separation and transfer at the
TiO,-PdH, 4; interface extended the lifespan of photoexcited
charge carriers, and decreased the H, evolution rate. Notably,
TiO,-PdH, 43 NCs produced 82.40 umol g’1 CH, in 4 h, ~11
times higher than the CH, yield from TiO,-Pd NCs. As a
result, hydriding the cubic Pd co-catalyst enhanced the CH,
production selectivity increasing it from 3.2% to 63.6%.
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Electron Microscopy (TEM) image of C3N4-PdgCusH,

(a) Schematic representation of the synthesis process for loading reduction cocatalyst onto C3N4-based photocatalysts. (b) Transmission
. Inset: high-Resolution Transmission Electron Microscopy (HRTEM) image of CzN4-PdgCujH,.

(c) Photoluminescence spectra (PL) of CzN4-based photocatalysts (excitation wavelength = 390 nm). (d) The diagrammatic representation shows
the photocatalytic process for converting CO, to CH4 with C3N4,-PdCuH, as the photocatalyst. Reproduced from ref. 36 with permission from
[Wiley-VCH], copyright [2018]. (e) TEM image of TiO,-PdHp 43 NCs. (f) Schematic illustration of photocatalytic reduction mechanism of TiO,-Pd
NCs and TiO,-PdHg 43 NCs. Reproduced from ref. 37 with permission from [Springer Nature], copyright [2017].

2.2. Semiconductor-oxidation cocatalyst structure

In recent years, photocatalytic and photoelectrochemical
(PEC) water splitting has gained attention as a potential
strategy for producing clean and renewable solar fuels,
offering an effective solution to environmental issues and
energy scarcity.”® The light-induced oxygen evolution reaction
(OER), characterized by a complex four-electron transfer
mechanism, O-H bond cleavage, and O-O bond formation is
limited by slow charge transfer, sluggish reaction Kkinetics,
and high energy demands. These factors present challenges
and opportunities for advancing efficient semiconductor
photocatalysts for water oxidation.** Photon absorption,
charge separation, positive charge transport, and surface
reactions are essential for designing materials with optimized
composition, structure, and morphology, which play key roles
in OER. Various methodologies have been applied to enhance
photocatalytic processes, among them OER co-catalyst
loading being a result-oriented technique to improve charge
separation and transport which facilitate photocatalytic water
oxidation.*® Especially, d-block metals and their oxides are
commonly paired with photocatalysts as cocatalysts to

suppress charge recombination and improve surface

576 | RSC Appl. Interfaces, 2025, 2, 573-598

reactivity. In this context, W. Li and his group demonstrated
using Co;0, and Pt as dual cocatalysts integrated with
perylene diimide (PDI) polymer for efficient photocatalytic
oxygen production.*' As shown in Fig. 3a the distribution of
Co, Pt, and Coz0, is observed through HRTEM. Under light
irradiation, the O, formation rate increased by 4.1 times
compared to pristine PDI, and by incorporating Pt as a
cocatalyst, the O, evolution increased to 24.4 mmol g™* h™
(Fig. 3b). To achieve a more comprehensive insight into
charge transfer, the contact potential difference (CPD) was
measured, revealing that the work function of PDI is lower
than that of Coz;0,, indicating that electrons are more easily
released from the surface. When PDI contacts Co;0,, electron
transfer from PDI to Coz;0, equilibrates their Fermi levels,
inducing upward band bending that drives photogenerated
holes to Co;0,4, whereas, at the PDI-Pt interface, Pt's lower
work function causes downward band bending, facilitating
electron transfer from PDI's conduction band to Pt. (Fig. 3c).
From the surface voltage, surface charge density, and
transient photocurrent density interfacial electric field was
calculated (Fig. 3d). The strength of the interfacial electric
field (Fig. 3e), reveals a 15.4 times enhancement for PDI/
Co30,, and a 23.9-fold increase for PDI/Coz;0,/Pt compared to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) HRTEM image of the PDI/Co304/Pt composite. (b) Comparison of photocatalytic O, evolution rates among PDI, PDI/CosO,4, PDI/Pt, and
PDI/Co304/Pt. (c) Diagram illustrating the band structure and charge-transfer pathway at the interface of a PDI/Co304/Pt heterostructure. (d)
Surface charge density determined using an electrochemical approach. (e) Intensity of the relative interfacial electric field. (f) fs-TA of PDI/Co3z04/
Pt. Reproduced from ref. 41 with permission from [American Chemical Society], copyright [2023]. (g) Preparation method for Cu,O/Fe,Os@Ni(OH),
(CFN). (h) Photocatalytic activity and charge kinetics evaluation. (i) Suggested charge transfer pathway of CFN. Reproduced from ref. 42 with
permission from [Springer Nature], copyright [2024]. (j) Diagram depicting the crystal structure of TaON/LVCoO, synthesized using the PMOD
technique. (k) The normalized Co K-edge XANES spectra of TaON/LVCoO, and the control samples reveal the predominance of Co?* species in
the bulk. (1) EIS Nyquist plots. (m) The suggested mechanism for the photocatalytic water oxidation process on CoO,-decorated TaON highlights
the enhanced hole transport and reaction on the Co®* species. Reproduced from ref. 43 with permission from [The Royal Society of Chemistry],

copyright [2021].

pristine PDI, emphasizing the notable benefits of dual
cocatalysts in creating internal electric fields, as they
facilitate the separation and transport of electrons and holes
across the interfaces.

Fig. 3f shows the femtosecond transient absorption (fs-TA)
data of PDI/Co;0,/Pt under a 420 nm laser flash. Positive
absorption bands at 360-380, 550-590, and 900-1200 nm
correspond to electron transitions in PDI, while negative
ground-state bleach signals at 450-780 nm indicate charge
recombination. Thus, the dual cocatalysts generate interfacial
electric fields, directing holes to Co;0, and electrons to Pt,
enhancing charge separation for water oxidation. In another
study, Zhao et al.** developed a ternary Cu,O/Fe,O;@Ni(OH),
(CFN) system by coating a Cu,O/Fe,O; (CF) Z-scheme
heterojunction with Ni(OH),, serving as a bifunctional, noble-
metal-free cocatalyst (Fig. 3g). It can be seen from (Fig. 3h) that
ternary catalyst CFN demonstrated an improved rate of O, yield
rate 190.3 umol g~* h™". The transient photocurrent response
reveals that the current density increase in CFN surpasses that
of Fe,0;, Cu,0, and CF, suggesting that charge recombination
is suppressed through the hybridization of Fe,O; and Cu,O,
and this effect is further enhanced by the Ni(OH), coating. A
Z-scheme charge transfer mechanism is proposed in CF and

© 2025 The Author(s). Published by the Royal Society of Chemistry

CFN. As shown in Fig. 3i, when Fe,O; comes into contact with
Cu,O, driven by their Fermi level difference, free electrons
transfer from Cu,O to Fe,03, leading to an internal electric field
creation at the Cu,O-Fe,O; interface, accompanied by upward
band bending in Cu,O and downward band bending in Fe,Os.
Y. Xiao et al.** demonstrated that CoO,, as a cocatalyst, can be
effectively embedded in tantalum oxynitride (TaON) for OER.
Fig. 3j illustrates the schematic configuration of TaON/LVC0O.
Co K-edge X-ray absorption near edge structure (XANES)
analysis was used to examine the bulk average oxidation states
of CoO, co-catalysts, and as shown in Fig. 3k, the Co K-edge
XANES spectrum of TaON/LVCoO, aligns with that of the
reference sample CoO, suggesting the predominant presence of
Co®" species in the co-catalyst bulk. Higher photocurrent
response and lower charge transfer resistance (Fig. 31) indicate
that low valent Co®* (TaON/LVCo0O,) is superior to high valent
Co”" (TaON/HVCo00,) and pristine TaON towards photocatalytic
performance. Depending on the above result a mechanism is
illustrated in Fig. 3m. The high proportion of Co** species in
the CoO, co-catalyst of TaON/LVCoO, acts as an effective hole
trap, generating strong attraction forces that significantly
enhance charge separation and transport during the
photocatalytic water oxidation process. Interestingly, TaON/

RSC Appl. Interfaces, 2025, 2, 573-598 | 577
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LVCoO, modified with 5 mg Co(acac), on TaON using PMOD
method for 30 min exhibited the highest O, evolution rate up to
6.10 + 0.17 mmol g* h™, which is nearly 4 times greater than
the value of pristine TaON (1.27 + 0.10 mmol g h™"). In
conclusion, modifying semiconductor photocatalysts with co-

catalysts  significantly =~ enhances their = photocatalytic
performance, particularly in oxidation reactions. The
introduction of co-catalysts facilitates efficient charge

separation, improving the overall catalytic efficiency by reducing
e -h" recombination. These co-catalysts, typically consisting of
noble or non-noble metals, form active sites that facilitate both
the adsorption and activation of reactants, improving charge
transport to the semiconductor surface. Additionally, co-
catalysts can alter the light absorption characteristics of the
photocatalyst, leading to improved photocatalytic activity under
visible light. By optimizing the combination of semiconductor
and co-catalyst, a photocatalytic system can achieve a balance
between increased efficiency, enhanced selectivity, and
sustainable energy use.

2.3. Reduction cocatalyst-semiconductor-oxidation cocatalyst
(R-S-O) structure

The R-S-O configuration is superior to the semiconductor-
reduction cocatalyst and semiconductor-oxidation cocatalyst
structure due to its unique ability to enhance charge separation,
improve reaction kinetics, and boost photocatalytic efficiency.**
Upon illumination, e -h" pairs are generated and separated,
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with electrons from the CB and holes from the VB transferred
to the reduction and oxidation cocatalyst, respectively, through
the interfaces. For example, He et al.** deposited Ag,S and NiS
dual cocatalysts on CdS nanorods that showed an efficient
minimized charge carrier recombination. Here, Ag,S and NiS
acted as reduction and oxidation cocatalysts, respectively.

The HRTEM image showed distinct lattice fringes of Ag,S,
NiS, and CdS as presented in Fig. 4a. The CdS nanorods
exhibited high crystallinity with exposed (001) facets, while
the (012) planes of Ag,S and the (101) planes of hexagonal
NiS were reported. Fig. 4b represented the Kelvin probe force
microscopy (KPFM) image of CdS nanorods coated
simultaneously with Ag,S and NiS dual cocatalysts under 420
nm illumination where A1, B1, and B2 represented the
position of Ag,S, NiS, and CdS nanorods, respectively
(Fig. 4c). The change in surface potential of the material was
evidenced by the colour change upon light irradiation. The
surface energy of p-type NiS showed an increasing trend after
light irradiation, indicating holes transfer from CdS to the
NiS cocatalyst. A decrease in surface potential upon
illumination for Ag,S implies CdS donating electrons to NiS.
The schematic illustration of charge transfer through the
interfaces is shown in Fig. 4d. The photoexcited electrons
were transferred to Ag,S through the Schottky junction and
holes to NiS through the p-n junction formed at the
cocatalyst and CdS nanorod interface. Therefore, the
electrons in Ag,S were involved in the reduction reaction,
while the holes in NiS facilitated the oxidation reaction,

0.
1.00 x 1.00 pm

““junction

Fig. 4 (a) HRTEM image of CdS/Ag,S/NiS. (b) KPFM image of CdS/Ag,S/NiS under light irradiation of 420 nm. (c) Surface potential profiles under
420 nm light irradiation. (d) Pictorial representation of electron and hole migration process in CdS/Ag,S/NiS under illumination. Reproduced from

ref. 44 with permission from [Elsevier], copyright [2021].
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establishing an R-S-O configuration. The H, evolution rates
of CdS/Ag,S and CdS/NiS attained 7.24 and 6.43 mmol g*
h™, respectively. Astonishingly, CdS/Ag,S/NiS demonstrated
the highest H, production rate of 48.28 mmol g ' h™", almost
45-fold higher than CdS. Additionally, the H, evolution rate
and calculated apparent quantum yield (AQY) of 49.5% of
CdS/Ag,S/NiS  surpassed those of other CdS-based
photocatalysts. In a similar work, Di et al.*> adopted a two-
step photodeposition technique for synthesized CoO, and
MoS, dual cocatalysts onto CdS nanorods. Fig. 5a displayed
the synthesis steps of the CdS-CoO,-MoS, nanocomposite.
Firstly, CoO, was deposited on CdS nanorods using Co(NO3),
as a precursor, followed by the deposition of MoS, onto CdS-
MoS, using (NH,),MoS, as the precursor. As shown in Fig. 5b,
the HRTEM image of the CdS-CoO,-MoS, nanocomposite
displays (100) and (101) lattice fringes of CdS nanorods and the
(002) fringe of MoS,. An amorphous particle on the CdS
nanorod surface is identified as CoO, (Fig. 5c). Due to the low
loading of MoS, and CoO,, only a few reduction and oxidation
sites on the CdS nanorods were occupied by the cocatalysts.
Upon illumination, photoexcited electrons were transferred
from CdS to MoS,, while holes migrated from CdS to CoO,
through the formation of a p-n junction, as shown in Fig. 5d.
As a result, MoS, and CoO, functioned as reduction and
oxidation cocatalysts, respectively, effectively enhancing the
hydrogen production efficiency of CdS nanorods. The CdS-
MoS,-CoO, composite delivered an impressive photocatalytic
H, production rate of 7.4 mmol g' h™, coupled with an

View Article Online

Review

apparent quantum efficiency (QE) of 7.6% at 420 nm. A unique
covalent connection of o-Fe,05/TpPa-1-COF/FeP-PC (FCF-3) was
synthesized by Xu and co-workers to promote an overall water
splitting reaction.”® a-Fe,0; and FeP-PC served as the oxidation
and reduction cocatalysts, respectively, effectively preventing the
agglomeration of TpPa-1-COF and enhancing the migration and
parting of light-induced charge -carriers. The as-prepared
spindle-like  a-Fe,0; and FeP-PC  were progressively
functionalized with organic groups using
3-aminopropyltriethoxysilane (APTES), yielding APTES-o-Fe,O;
and APTES-FeP-PC. Subsequently, the covalently linked FCF-3
photocatalyst was synthesized by incorporating APTES-o-Fe,O;
and APTES-FeP-PC into the reaction process of a disordered and
ordered yarn-like morphology TpPa-1-COF as shown in Fig. 6a.
The UV-vis DRS spectra demonstrated that a-Fe,O3/TpPa-1-COF,
TpPa-1-COF/FeP-PC, and FCF-3 exhibited a similar reflectance
pattern to TpPa-1-COF, with a single reflection edge. In contrast,
FCF-3 and the physically mixed a-Fe,O; + TpPa-1-COF + FeP-PC
displayed two reflection edges, suggesting the creation of a
novel hybrid material via an in situ chemical bonding process,
as shown in Fig. 6b.

The EIS Nyquist plots (Fig. 6c) displayed the lowest charge
transfer resistance of FCF-3, indicating that the covalent
bonding between FeP-PC and o-Fe,O; as cocatalysts effectively
enhanced charge transfer efficiency. Therefore, upon
illumination, electrons from the CB of a-Fe,O; transferred to
the valence band of TpPa-1-COF via the establishment of a
direct Z-scheme heterojunction at the interface of o-Fe,O;
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(a) Schematic diagram of CdS-CoO,-MoS, nanocomposite preparation. (b) and (c) HRTEM image of CdS-CoO,-MoS, nanocomposite. (d)

Proposed charge transfer mechanisms at CdS-CoO, and CdS-MoS; interfaces. Reproduced from ref. 45 with permission from [Elsevier], copyright

[2022].
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permission from [Elsevier], copyright [2022].

cocatalyst and TpPa-1-COF (Fig. 6d). Next, electrons from the
CB of TpPa-1-COF moved toward the CB of FeP-PC cocatalyst.
Thus, o-Fe,O; and FeP-PC acted as oxidation and reduction
cocatalysts, respectively, enhancing the H, and O, generation of
o-Fe,03/TpPa-1-COF/FeP-PC. Due to the reduced charge by
electron transfer from o-Fe,O; to TpPa-1-COF, the o-Fe,Oj/
TpPa-1-COF showed a little enhancement of H, and O, release
activities (16.87 and 8.37 umol g™ h™). Noted that the volcano-
type trend is observed between the overall water splitting rate of
o-Fe,03/TpPa-1-COF/FeP-PC and the loading of FeP-PC. After
additional deposition of FeP-PC, the optimal FCF-3 reached a
HER rate of 97.45 umol g”* h™" and a stoichiometric OER rate of
48.68 umol g h™,

2.4. Plasmonic metal/sensitizer-semiconductor—cocatalyst
structure

The broad-spectrum light absorption of plasmonic
nanoparticles using plasmon leads to generating a significant
number of e and h' for light-driven catalytic reactions.
Plasmon nanoparticles with minimal defects and high
structural crystallinity can prevent charge carrier recombination,
promoting photocatalytic  efficiency.””*®* The plasmonic
photocatalysts mainly work on the excitation and relaxation
principle of plasmons. Light absorption and scattering, local
electromagnetic field enhancement (LEFM), improved hot
carriers (HCs) injection, and enhanced thermal effect are the
main  pathways of plasmon-assisted  semiconductor
photocatalysis.*>® The catalytic process in plasmonic

580 | RSC Appl. Interfaces, 2025, 2, 573-598

nanoparticles is furnished by the surface interactions on
semiconductor photocatalysts and the direct transformation of
reactants adsorbed on their surface.'”' In this review, the
charge transfer (HET, HHT, PICTT) and plasmon-induced
resonant energy transfer (PIRET) process in plasmonic metal
nanostructures have been discussed as shown in Fig. 7.

2.4.1. Hot electron transfer (HET). Hot electron generation
involves energy transfer between subatomic particles on
ultrafast time and length scales, with excited surface plasmons
decaying through photon emission or e -h" pair generation via
Landau damping.”® The e ~h" pairs generated are termed “hot”
carriers due to their significantly higher energy compared to
those near the Fermi level, with surface plasmon decay-
producing e -h" pairs through inter- and intra-band transitions,
each contributing based on the transition energy and electronic
band structure.>® The excited hot electrons rapidly exchange
energy with other hot electrons or phonons, thermalizing within
100 fs to produce a Fermi-Dirac distribution at higher
temperatures.” Hot carriers in plasmonic metal nanostructures
can migrate to the nearby semiconductor via the Schottky
barrier at the metal-semiconductor interface (Fig. 7a).°>>°
Stronger LSPR generates more hot electrons per unit time and
volume, with plasmon-excited electrons (%) ranging from the
Fermi energy (Ey) to (Er + iw); higher-energy electrons are more
likely to overcome the interfacial barrier than those near the
Fermi level.”’

2.4.2. Hot hole transfer (HHT). LSPR-induced hot-carrier
transfer offers a promising approach for harnessing the
entire solar spectrum for light absorption.”® Hot hole transfer

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(HHT) occurs from metal to the VB of p-type semiconductors
(Fig. 7b). Aluminium has a uniform distribution, while in
silver, hot holes and electrons share similar energies. Copper
and gold generate high-energy holes and low-energy
electrons.”® High-energy holes in noble metal d-bands have a
large mass and low kinetic energy, leading to thermalization
before reaching the surface.®® Hot electrons are used as
reductants in various reactions, while hot holes are
recognized as oxidants for oxygen evolution, polymerization,
and organic oxidation.®"**

2.4.3. Plasmon-induced interfacial charge transfer
transition (PICTT). The stronger coupling and mixing of the
electronic energy levels between the plasmonic metals and
the semiconductor leads to the development of a new route
for plasmon decay at the metal/semiconductor interface
(Fig. 7c). The decay of plasmons excites an electron from the
metal to the coupled semiconductor, which generates an
electron in the CB of the semiconductor and holes in the
metal. It has been observed that the electron transfer via the
PICTT pathway enhances the e -h" separation to a higher
extent as compared to the traditional plasmon-driven hot
electron transfer pathway.*>%*

2.4.4. Plasmon-induced resonance energy transfer (PIRET).
The interaction between the dipole moments of the
plasmonic metal and the coupled semiconductor leads to the
energy transfer in the forward direction from the metal to
semiconductor which leads to the plasmonic activation of the
semiconductor (Fig. 7d). The overlap between the electronic
spectra of the plasmonic metal and the semiconductor leads
to the resonant transfer of plasmonic energy from the metal
to the semiconductor, before the collective dephasing of the
dipole moments, which leads to PIRET.°>®® The energy
transfer efficiency depends upon the distance between the
dipoles of the metal and the semiconductor. PIRET offers
several advantages, such as a lower e -h" recombination rate
and enhanced charge carrier separation, which boosts the
photocatalytic performance of plasmonic metal-decorated
semiconductors.®”%®

Single-atom catalysts (SACs) have emerged as highly
promising photocatalysts due to superior atomic utilization
efficiency and  exceptional catalytic  performance.®
Fundamentally, SACs achieve complete metal dispersion on

© 2025 The Author(s). Published by the Royal Society of Chemistry

the surface, ensuring maximum metal utilization. This
unique and ideal characteristic makes them highly effective
for developing efficient and cost-effective heterogeneous
catalysts, particularly for optimizing noble metals such as Pt,
Pd, Ru, etc.” Moreover, the vast flexibility in integrating
single-atom metal centers with various host materials, along
with the precise tuning of their local coordination
environment, offers significant potential for designing highly
efficient SACs.”" From these benefits, SACs have provided an
opportunity to develop efficient photocatalysis with higher
activity and selectivity.”> Furthermore, heterojunctions
formed between semiconductors and cocatalysts generate
built-in electric fields that facilitate charge separation. This
leads to the formation of type-II, Z-scheme, and S-scheme
heterojunctions, which regulate the directionality and
efficiency of electron transfer, effectively minimizing charge
recombination and enhancing redox reactions.

In 2019, Bera et al”® reported enhanced hydrogen
production under visible light of BiFeO; (BFO) perovskite by
sensitizing it with gold nanoparticles (Au NPs) using a simple
hydrothermal method, followed by radiolysis. TEM image
represented the homogeneous distribution pattern of Au NPs
on the surface of BFO-Ns after gamma radiation (Fig. 8a).

Fig. 8b shows the DRS spectra of BFO-Ns and Au/BFO-Ns.
Due to the strong electronic interaction of Au NPs with BFO-
Ns, the increment of existing peaks of BFO-Ns at 350 nm and
450 nm have been observed. Additionally, a typical
absorption peak at ~600 nm was attributed to the plasmonic
absorption of Au NPs. Fig. 8c revealed the band edge
positions of Au/BFO heterostructures and the likely
mechanism of photocatalytic H, generation when visible light
is illuminated on the Au/BFO heterostructures. This shows
that the incident photons and electrons participate in
resonance, which results in electronic oscillation. The energy
states of BFO move upward, which is greater than the CB of
the neighbouring semiconductor. On the other hand, the hot
electrons (excited electrons) of Au may transfer to the CB of
the BFO. The maximum photocatalytic H, generation (~2.1
mmol h™ g™) was achieved with Au/BFO-Ns as a
photocatalyst, using methanol as a sacrificial agent.

In another study, Liu et al.”* nano-encapsulated CuO, with
carbon supported on TiO, (TC@C) and observed the in-
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from the surface of the Au NPs to the CB of BiFeO3 in Au/BFO heterostructures. Reproduced from ref. 73 with permission from [Elsevier], copyright

[2019].

(d) Spatial plasmonic distribution of electric field as a function of the monochromic incident light, (e) Mechanistic study of the

photocatalytic H, evolution. Reproduced from ref. 74 with permission from [American Chemical Society], copyright [2023]. (f) Site-selective growth
of Cu,O on Au bipyramids, (g) TEM image of Cu,O nanoparticles decorated on Au bipyramids, (h) Moiré patterns of Au nanoplatelets decorated
with Cu,O nanostructures. Reproduced from ref. 75 with permission from [American Chemical Society], copyright [2022].

operando photoreduction of CuO, to generate Cu
nanoparticles under light irradiation. Fig. 8d shows the
plasmon spatial distribution of the electric fields as a
function of monochromatic light irradiation. The presence of
Cu nanoparticles leads to a 5.8 times enhancement in the
electric field intensity due to the LSPR effect of the Cu
nanoparticles, resulting in an improvement in photocatalytic
efficiency. Fig. 8e provides a mechanistic interpretation of
the photocatalytic reactions occurring over the TC@C
composites. The photocatalytic performance of TC@C
composites was enhanced due to hot electron transfer into
the CB of TiO,, which promotes the reduction of H' ions to
generate H,. In another investigation, Jia and co-workers
monitored the differential site-selective growth behaviour of
Cu,O on gold nanocrystals by controlling the surfactant
concentration.”> The different morphologies of the Au
nanocrystals direct the preferential growth of Cu,O
nanostructures on the edges and ends of the Au nanorods
and nanoplates which in turn influences their photocatalytic

582 | RSC Appl. Interfaces, 2025, 2, 573-598

performance (Fig. 8f). The TEM image (Fig. 8g) reveals that
the preferential growth of Cu,O at the two terminating
positions of gold nanorods leads to the development of
dumbbell-shaped nanocrystals. Fig. 8h depicts the Moire
patterns of the growth of Cu,O on the three edges of Au
nanoplates generated due to the superposition of the lattice
structures of Au and Cu,O. The preferential growth of Cu,O
on the three edges of gold nanocrystals has been observed
from the Moire pattern. The dumbbell-shaped nanostructures
of Cu,O loaded at the tips of the Au bipyramids result in
superior photocatalytic performance towards CO, reduction
due to the hot hole injection process.

3. Electron transfer at the interfaces
by various techniques

The electron transfer mechanism at the semiconductor-co-
catalyst interface plays a crucial role in determining the
efficiency of photocatalytic reactions. Understanding this

© 2025 The Author(s). Published by the Royal Society of Chemistry
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mechanism is essential for designing more efficient
photocatalysts. Theoretical approaches provide valuable
insights into the charge transfer dynamics and help guide
the development of better semiconductor-co-catalyst systems.

X. Zhang et al.”® demonstrated that the incorporation of
gold (Au) nanoparticles as co-catalysts, through modifications
to the electronic structure, can enhance the efficiency of
photocatalytic systems. Fig. 9a shows the synthetic strategy of
TiO,/MoS,-Au by the initial lactic acid-induced MoS,
deposition on the TiO, surface. For a depth understanding of
the cocatalyst mechanism different technique is used like ISI-
XPS  (Intensity-Dependent  Surface  Imaging  X-ray
Photoelectron Spectroscopy) spectra and fs-TA spectra. The
principle of TA spectroscopy in photocatalytic applications
involves measuring changes in the absorption spectrum of a
material after it is photoexcited. When the photocatalyst is
exposed to light, it generates photoexcited charge carriers
(electrons and holes). The TA spectra track the dynamics of
these carriers by observing light absorption over time, which
reflects their relaxation, recombination, and migration
behaviours. In photocatalytic studies, TA spectroscopy is

(a)

View Article Online
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employed to analyse the Ilifetime, migration, and
recombination rates of the photogenerated carriers, offering
valuable insights into the efficiency of charge separation and
their role in catalytic reactions. And, the principle of ISI-XPS
in photocatalytic applications is based on monitoring the
surface chemical states and electronic properties of a
photocatalyst under different light exposure conditions. ISI-
XPS combines conventional XPS with light irradiation,
enabling the analysis of changes in the chemical
composition, binding energy, and oxidation states of
elements on the surface of the photocatalyst during
photoexcitation. ISI-XPS is particularly valuable for
understanding the catalytic mechanism, surface dynamics,
and stability of photocatalysts under illumination. By
examining how the surface electronic structure evolves with
light exposure, it helps in optimizing photocatalytic materials
for reactions like water splitting, CO, reduction, and
pollutant degradation. In this research study, after loading
MoS,-Au, the TiO,/MoS,-Au composite shows a significant
increase in the contact potential difference (CPD), rising by
approximately 185.4 mvV (from -51.3 to 134.1 mV) under
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Fig. 9

(@) A schematic illustration depicts the synthesis of TiO,/MoS,-Au, involving lactic acid-induced MoS, deposition on the TiO, surface,

followed by S-induced selective photodeposition of the Au cocatalyst onto the MoS, layer. (b) and (c) The KPFM image and corresponding surface
potential profiles of TiO,/MoS,-Au were analyzed under dark conditions and 365 nm LED light illumination. (d) The ISI-XPS spectra of Au 4f for
TiO,/MoS,-Au were recorded before and after light illumination. (e) Pseudo-color plots of TiO,/MoS,-Au, with GSB representing ground-state
bleaching. (f) The fs-TA spectra of TiO,/MoS,-Au were recorded within a timescale of 20 ps. A schematic illustration depicts the decay pathways of
photogenerated electrons in (g) TiO, and TiO,/MoS,-Au. Reproduced from ref. 76 with permission from [Springer Nature], copyright [2024]. (h)
HRTEM image of SA-Co-CN/g-C3sN4 (i) fs-TA spectra of SA-Co-CN/g-CsN,. (j) The corresponding transient absorption kinetics for SA-Co-CN/g-
C3N4 are shown. (k) A schematic representation illustrates the suggested charge localization model in SA-Co-CN/g-CsN4. Reproduced from ref. 77

with permission from [Wiley-VCH]I, copyright [2023].
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photonic irradiation, accompanied by a colour shift from
blue to red. This change is attributed to the increased hole
buildup on the surface of TiO, (Fig. 9b and c), providing
strong evidence that photogenerated electrons are rapidly
moved from TiO, to the MoS,-Au co-catalyst. To further
confirm the photogenerated electrons transfer and their
accumulation on the Au active sites of TiO,/MoS,-Au, in situ
XPS analysis was conducted (Fig. 9d). The Au 4f,, and Au
4fs,, peaks in TiO,/MoS,-Au shift Significantly in the
direction of lower binding energies (from 83.6 eV to 83.5 eV)
upon exposure, indicating that the electrons are transferred
from TiO, to MoS,-Au and predominantly accumulate on the
electron-deficient Au’* sites, thereby enhancing the
photocatalytic H,0, production rate. To gain deeper insights
into the electron transfer dynamics in TiO,/MoS,-Au, fs-TA
spectra were performed with careful attention (Fig. 9e and f).

The pseudo colour plots for TiO,, TiO,/Au, and TiO,/
MoS,-Au reveal a typical photobleaching peak (~380 nm),
which corresponds to ground-state bleaching (GSB) and
reflects the relaxation of the excited state. Monitoring the
GSB signal at 380 nm within 20 ps shows stronger intensities
in TiO,/Au and TiO,/MoS,-Au compared to TiO,, indicating
enhanced electron accumulation in the former two systems.
Decay kinetics were analyzed using biexponential equations
for the 380 nm signal within 25 ps to further investigate the
interfacial electron transfer. The short-lived 7; (1.63 ps)
represents electron trapping at e-TS, while the long-lived z,
corresponds to interfacial electron transfer from TiO, to the
cocatalyst. A; and A, denote the decay fractions during
electron trapping and transfer, respectively. In the TiO,
system, the dominant process within 25 ps is electron
trapping at e-TS (Fig. 9g). Interestingly, the 7; values for TiO,/
Au and TiO,/MoS,-Au decrease significantly to 0.36 and 0.92
ps, respectively, indicating rapid electron transfer from TiO,
to the Au (7, = 5.88 ps) and MoS,-Au (7, = 7.10 ps) cocatalysts.
Notably, TiO,/MoS,-Au exhibits a higher A, value (4, =
39.6%) than TiO,/Au (4, = 32.3%), suggesting more efficient
electron transfer from TiO, to Au, facilitated by the MoS,
mediator. This improved electron transfer in TiO,/MoS,-Au
aligns well with results from photoelectrochemical and
transient-state photoluminescence (TRPL) measurements.
Collectively, these findings provide strong evidence that the
MoS,-Au cocatalyst acts as an effective platform for rapid
electron transfer, enabling the subsequent H,O, production
reaction at the electron-deficient Au’" sites, ultimately
leading to high photocatalytic H,0, yields. M. Qian et al.”’
designed a heterojunction between of Co-CN single-atom
catalysts (SACs) and g-C3;N, for heterogeneous photo-Fenton-
like reactions. HRTEM image (Fig. 9h) of SA-Co-CN/g-C;N,
shows the formation of heterojunctions between Co-CN and
2-C3N,. Transient absorption spectroscopy demonstrates the
modulated charge transfer and trapping in the SA-Co-CN/g-
C;N,; heterostructure, leading to significantly enhanced
reactive oxygen species generation under light irradiation.
The femtosecond-TA spectra of SA-Co-CN/g-C3;N, (Fig. 9i)
revealed a negative absorption signal between 370 and 570
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nm. A positive absorption band (570-670 nm) observed in
the fs-TA spectra of SA-Co-CN/g-C;N,, attributed to excited-
state absorption, indicates the presence of abundant
shallowly trapped electrons in the SA-Co-CN/g-C3;N, The
negative signals exhibit a rapid increase in peak intensity at
early time scales following photoexcitation (inset in Fig. 9i),
attributed to the immediate generation of charge carriers and
their direct excitation from the ground state to the emissive
state. The generation of shallowly trapped excitations in SA-
Co-CN/g-C3N, aids in retaining photoinduced charges,
allowing them to contribute to the surface photocatalytic
reaction. These results highlight the controlled trapping
behaviour of photoinduced electrons by the island-like
single-atom Co catalyst, which enhances photo-redox
reactions by increasing the concentration of charge carriers.
A tri-exponential decay function was used to model the
kinetic traces (Fig. 9j). Interestingly, SA-Co-CN/g-C3N, exhibits
two rapid decay components, corresponding to electron
transfer to the SA-Co-CN trapping sites (r; = 4.5 ps) and
shallow ST (r; = 5.4 ps), respectively. The fs-TA decay
behaviour of SA-Co-CN/g-C3N, differs from that of pure g-
C;3N,, confirming the enhanced charge trapping and
transport facilitated by the island-like Co-CN SACs.
Considering the above result, a charge trapping model is
proposed (Fig. 9k), where it is shown that by the formation of
an electric field, an electron transfer has occurred between g-
C;N, and SA-Co-CN. Also, SA-Co-CN/g-C3N, forms a shallower
trap than pristine g-C;N,, which also confirms the effective
segregation and rapid movement of charge carriers, which
increase the catalytic activity.

4. Applications of semiconductor-
cocatalyst electron transfer in
photocatalysis

The semiconductor-cocatalyst interface is vital for
photocatalysis, as it governs charge transfer, enhances e -h"
separation, and reduces recombination. Cocatalysts provide
active sites for reactions like water splitting and CO,
reduction.”® Optimizing interface properties, such as band
alignment and bonding, improves charge flow and overall
photocatalytic performance. Engineering this interaction is key
to advancing solar energy conversion efficiency.

4.1. Pollutant degradation

The continuous discharge of persistent non-biodegradable
effluents from industries into the water bodies has resulted in
the deterioration of the aquatic ecosystems and provided a
detrimental effect on the quality of human life.”**® Therefore,
wastewater remediation via advanced redox processes has
become the global consensus in recent years to minimize water
pollution and safeguard our environment. Photocatalytic
degradation of these harmful contaminants using
semiconductors offers a desirable and eco-friendly approach
towards the removal of these toxic dyes, heavy metals and
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antibiotics.*"® In this regard, special emphasis has been laid
on the rational fabrication of visible-light active photocatalysts
with favourable band positions suitable for redox reactions.*>**
However, the limitations of a single semiconductor, like
inefficient visible light absorption, sluggish charge transfer
dynamics and rapid charge recombination, trigger the
combination of the semiconductors with co-catalysts to improve
the photocatalytic performance.

For example, Guo and coworkers explored the co-catalytic
effect of the cobalt phosphide nanoparticles (CoP) deposited
on g-C;N, nanosheets via a solvothermal method.®> The TEM
image reveals the formation of the CoP nanoparticles with an
average size of 5-7 nm bound to the surface of g-C;N,
nanosheets as observed in Fig. 10a. The photocatalytic
performance of the g-C;N,/CoP composites was examined
towards tetracycline (TC) degradation and the composites
with an optimized loading of CoP nanoparticles exhibited a
remarkable rate of photodegradation (0.0275 min~") with an
efficiency of 96.7% in 120 minutes which is 10.2 times higher
than that of pristine g-C;N, nanosheets (0.0027 min™) as
depicted in Fig. 10b and c. To elucidate the role of active
species involved in the redox reaction, various scavengers like
ethylene diamine tetra-acetic acid disodium salt, isopropanol,
and benzoquinone were added to capture the holes, ‘'OH and
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‘O, radicals respectively. It was observed that the
introduction of isopropanol and benzoquinone significantly
reduced the degradation efficiency to 31.4% and 22.1%
respectively, which signifies that "O,” and "OH radicals play a
major role in the photocatalytic degradation of tetracycline
(Fig. 10d).

Razafintsalama et al.®® coupled MXene as a co-catalyst
with BiVO, nanoparticles and observed that the MXene-based
BiVO, heterostructures exhibited superior activity towards
photocatalytic Cr(vi) reduction up to 96.4% within 30
minutes. The DRS reveals that the MXene cocatalyst-loaded
BiVO, heterostructure exhibits enhanced visible light
absorption compared to pristine BiVO, (Fig. 10e). The net
surface charge density of pure MXene and the
heterostructures was determined by the zeta-potential
measurements. It was observed that BiVO, exhibited positive
potential, which signifies that BiVO, possesses superior
electrical stability whereas the Ti;C,T, MXene exhibits a
negative zeta-potential of -14.42 mV. The optimized Ti;C,Ty-
based BiVO, heterostructure exhibits a mean zeta potential of
4.29 mV on account of the stronger electrostatic interaction
and extensive electroactive coupling between MXene and
BiVO, as observed from Fig. 10f. The EPR spectra indicate
that the EPR signal intensity reduces after heterostructure
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