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A Povarov-Type Reaction to Access Tetrahydroquinolines from N-
Benzylhydroxylamines and Alkenes in HFIP
Valentyn Pozhydaiev,a Daniella Al-Othman,a Joseph Moran*a,b,c and David Lebœuf*a 

Here, we report the synthesis of tetrahydroquinolines between 
newly developed N-benzylhydroxylamine reagents and alkenes 
using HFIP as a solvent. This transformation is notably applicable to 
highly electronically deactivated styrenes and aliphatic alkenes, 
expanding the range of tetrahydroquinolines attainable.

Tetrahydroquinolines assume a pivotal role across diverse 
industrial sectors as building blocks for the synthesis of 
pharmaceuticals, agrochemicals, and materials (Scheme 1A).1,2 
Currently, the Povarov reaction and the partial reduction of 
quinolines are among the most popular approaches to 
synthesise tetrahydroquinolines (Scheme 1B).1-3 Both have 
nevertheless their own limitations. In the case of the Povarov 
reaction, the transformation is mainly limited to alkenes 
bearing electron-donating groups (EDGs),4 while the reduction 
of quinolines requires the pre-installation of the desired 
functionalities through multi-steps synthesis. More recently, 
new elegant strategies for the preparation of 
tetrahydroquinolines have appeared that rely on the 
intramolecular CH amination of arenes via nitrogen-centered 
radicals formed from electrophilic aminating agents,5,6 as 
exemplified by the groups of Marsden, Morandi and Murphy 
(Scheme 1C).7-9 Other relevant variants to access 
tetrahydroquinolines were also reported by the groups of Falck 
and Bower via rhodium catalysis and Brønsted acid-promoted 
reactions.10,11 However, overall, the scaffolds attainable are 
limited, and engineered substrates are often required to access 
more complex molecules.

C. Access to tetrahydroquinolines through the use of electrophilic aminating agents
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Scheme 1. Importance of tetrahydroquinoline motif and synthetic approaches to 

access them

In this context, hydroxylammonium salts serve as promising 
sources for the incorporation of nitrogen in feedstock 
compounds.12,13 These reagents have attracted the attention of 
researchers owing to their chemical properties and versatility. 
Hydroxylammonium salts are prepared from relatively 
inexpensive and commercially available starting material which 
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makes their synthesis straightforward. These reagents grant 
access to a variety of free unprotected amines; their nitrogen
oxygen bond can be homolytically cleaved to generate a 
nitrogen-centered radical that adds to CC double bonds. Their 
use has been remarkably exploited by the group of Morandi in 
several iron(II)-catalysed alkene aminofunctionalisations.14-16 
Our group has recently described efficient methods for the 1,2-
aminoarylation and 1,2-diamination of highly electronically 
deactivated styrenes, affording unprotected amines in a one-
pot sequence while displaying broad functional group 
compatibility.17,18 During our investigations, we noted that the 
reactions only occurred when hexafluoroisopropanol (HFIP) 
was used as a solvent,19-21 which we attributed to its ability to 
enhance the reactivity of the various reactive intermediates.

To exploit these reagents in intermolecular processes, we 
aimed to develop a new set of readily available and bench-
stable hydroxylamine reagents that could react with alkenes to 
provide complex tetrahydroquinolines. By relying on the unique 
properties of HFIP, we hypothesised that we might unlock the 
reactivity of highly electronically deactivated styrenes to 
complement the scope of the Povarov reaction. Our design plan 
relied on the use N-benzylhydroxylamine derivatives that could 
be easily obtained by a Mitsunobu reaction (Scheme 1D). 
Following a Boc deprotection under acidic conditions, a 1,2-aryl 
migration could occur to give an N-aryliminium; this 
intermediate could then engage in an aza-Diels-Alder reaction 
to yield the corresponding tetrahydroquinoline. Here, we 
disclose our research efforts in the development of this 
transformation.

In our initial investigations, we evaluated the reaction between 
hydroxylamine 2a and an excess of p-nitrostyrene 1a (2 equiv.) 
in the presence of a catalytic amount of iron(II) sulfate 
heptahydrate and trifluoroacetic acid (TFA) using HFIP (0.1 M) 
as a solvent. The role of TFA is to promote the in situ 
deprotection of the Boc group. Attempts to prepare the 
corresponding hydroxylammonium salt [MsONH2Bn][OTf] 
from hydroxylamine 2a and triflic acid led to rapid 
decomposition of the product. Under the reaction conditions 
mentioned above, the target product 3 was isolated in 50% 
isolated yield (Table 1, Entry 1). Other iron(II) salts were tested 
but did not improve the yields (Table 1, Entries 2 and 3). As 
observed in our previous studies, the reaction only took place 
in HFIP (Table 1, Entries 4-7). In the absence of either TFA or 
FeSO4·7H2O, a significant drop in yield was observed (Table 1, 
Entries 8 and 9). In the same vein, decreasing the amount of 
styrene, operating at higher concentration or higher 
temperature proved detrimental for the reactivity (Table 1, 
Entries 10-12). Using an excess of 2a also led to a decrease in 
efficacy (Table 1, Entry 13). Replacing the mesyl group by a tosyl 
one on 2a did not affect the reactivity, delivering 3 in 52% yield 
(Table 1, Entry 14). Some of the mass balance of the reaction 
was found to be diverted to the formation of side product 4 
(10% yield), resulting from the reaction with the isobutene 
produced in situ during Boc group deprotection of 
hydroxylamine 2a.

Table 1. Optimisation of reaction conditions

HFIP (0.1 M)
RT, 1 h

FeSO4·7H2O
(10 mol%)

TFA (2 equiv.)MsO N
Boc

1a (2 equiv.)

+

2a (1 equiv.)

O2N N
H

NO2

3
Ph N

H
4

Me Me

Entry Variation from standard conditions[a] Yield[b]

1 none 52% (50%)
2 Fe(OTf)2 instead of FeSO4·7H2O 41% (38%)
3 Fe(OAc)2 instead of FeSO4·7H2O 44% (41%)

4 MeNO2 instead of HFIP n.r.
5 TFE instead of HFIP n.r.
6 1,2-DCE instead of HFIP n.r.
7 DCM instead of HFIP n.r.

8 without TFA 32%
9 without FeSO4·7H2O 17%

10 1 equiv. 1a 24%
11 0.2 M 19%

12 40 °C 19%
13 1 equiv. 1a, 3 equiv. 2a 36%
14 TsO instead of MsO 55% (52%)[c]

16
TsO instead of MsO and argon 
bubbling

63% (60%)

[a] Standard reaction conditions: 1a (0.4 mmol), 2 (0.2 mmol), 
FeSO4·7H2O (10 mol%) and TFA (0.4 mmol) in HFIP (0.1 M), rt, 1 h (in 
a sealed tube). [b] NMR yield using triethylsilane as an external 
standard (isolated yield in parentheses). [c] Product 4 obtained in 
10% yield. n.r. = no reaction.

Thus, two different alkenes in the reaction medium compete to 
react with the hydroxylammonium salt. A similar side-product 
was observed by the group of Falck during their studies on 
amination of benzyl alcohols.22 Although we failed to 
completely suppress its formation, bubbling argon in the 
reaction mixture slightly improved the yield (60%) (Table 1, 
Entry 15).

We then began to explore the scope of the reaction by using 
electronically varied hydroxylamines 2d-2l in reaction with p-
nitrostyrene 1a (Scheme 2). The transformation tolerates the 
presence of various electron-donating and moderate electron-
withdrawing groups at the para-position, including ether, 
thioether, aryl, and halide, to afford the corresponding 
tetrahydroquinolines 5-8 in 46-68% yields. On the other hand, 
in the case of the more electron-deficient nitro-containing 
hydroxylamine 2h, aziridine 9’ was obtained, as a major product 
(33% yield) with only traces of tetrahydroquinoline 9 (7% yield). 
The formation of product 9’ seems to indicate that the 
migration of the aryl does not occur in the presence of a strong 
electron-withdrawing group. Therefore, the reaction between 
the styrene and hydroxylammonium takes place to form, 
instead, the aziridine as observed in our previous studies.17,18
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Scheme 2. Scope of the transformation.

The reaction is also compatible with the presence of electron-
rich substituents at the ortho- and meta-position (10-12, 50-
63%). The reaction is not limited to primary benzyl alcohols but 
could also be extended to secondary ones such as 13 (55%). 
Tetrahydrobenzo[f]quinoline scaffolds such as 14 (62%) are also 
accessible using this methodology from naphthyl 
hydroxylamine 2l. In these different examples, the reaction did 
not produce observe notable by-products, suggesting that some 
of the moderate yields result from the partial decomposition of 
the hydroxylamines during the reaction.

Regarding the reactivity of various alkenes, 2l was used as a 
model hydroxylamine. The functional group tolerance of this 
method was studied towards styrenes incorporating strong 
electron-withdrawing groups as they show limited reactivity in 
the existing Povarov reaction. To our delight, electron-deficient 
styrene derivatives afforded products 15-19 in high yields (59-
80% yields). The cis configuration for the major products was 
ascertained by NOESY analyses (see SI). On the other hand, in 
the case of styrene bearing a moderate electron-withdrawing 
group (Br, 20) or electron-donating group (tBu, 21), 
oligomerisation of the styrene was observed. The versatility of 
the method was also tested with electron-rich aliphatic alkenes. 
For instance, product 22 was obtained from 1-hexene in 70% 
yield. In the case of trans-3-hexene, product 23 was obtained in 

70% yield as major diastereoisomer. Its structure was evidenced 
by NOESY analyses (see SI). The fact that the stereochemistry of 
the starting material was retained in the product implies that 
the reaction might involve a concerted mechanism. We next 
examined cyclic alkenes. Satisfyingly, cyclopentene was well-
tolerated in the reaction, yielding two diastereoisomers 24 and 
24’ in a combined yield of 92%. Finally, different 
hydroxylamines were tested with isobutene generated in situ. 
First, para-substituted methoxy hydroxylamine afforded 
product 25 in a nearly quantitative yield (95%). Second, ortho-
methyl substituted hydroxylamine led to the formation of 26 in 
80% yield. However, no product was observed with naphthyl 
hydroxylamine 2l. In that case, it seems that the hydrolysis of 
the postulated iminium intermediate is faster than the reaction 
with isobutene since only 2-naphthylamine was recovered from 
the reaction.

Regarding this transformation, various observations make us 
lean towards a radical cation crossover mechanism: (1) In the 
presence of TEMPO, the reaction is completely inhibited, which 
strongly suggests the involvement of radical species; (2) As 
mentioned above, in the absence of an alkene partner, naphthyl 
hydroxylamine 2l led to 2-naphthylamine, which is consistent 
with the 1,2-aryl migration proposed; (3) The fact that the 
stereochemistry of the alkene is retained in the product implies 
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that the reaction likely involves a concerted mechanism.

We thus propose the following mechanism (Scheme 3): Initially, 
the Boc group is deprotected in the presence of TFA, generating 
the corresponding ammonium B. Then, a classical homolytic 
cleavage of the NO bond occurs to provide aminium radical 
cation C. At this point, the reaction can diverge depending on 
the substitution pattern of the hydroxylamine. In the presence 
of an electron-withdrawing group (EWG), the 1,2-aryl migration 
is disfavoured and the aminium radical cation can directly add 
across the double bond (D) to finally provide aziridine E.23 On 
the other hand, in the presence of an EDG, a rare but not 
unprecedented radical 1,2-aryl migration can occur to provide 
-aminomethyl radical G.24 From there, G can regenerate C by 
single electron transfer to B, a mechanism consistent with a 
precedent report by the group of Phipps.25 Lastly, iminium H 
would engage in a classical aza-Diels-Alder to deliver 
tetrahydroquinoline I. Regarding the positive effect of HFIP on 
the reactivity, it might be explained by its ability to strongly 
donate H-bonds, thereby increasing the electrophilicity of 
various intermediates such as C or H to facilitate the key steps 
of the process, namely the 1,2-aryl migration and aza-Diels-
Alder.

In conclusion, through exploring the reactivity of new 
hydroxylamine reagents, we have demonstrated their efficacy 
in generating tetrahydroquinolines with different substitution 
patterns. In contrast to the classical Povarov reaction, our 
methodology accommodates electron-deficient and aliphatic 
alkenes, thereby expanding the chemical space of available 
tetrahydroquinoline scaffolds. The ability of these reagents to 
react with isobutene without the need to directly handle this 
hazardous compound also represents a significant advantage. 
Ongoing investigations are focusing on deciphering the 
mechanism of this transformation.
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