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model in Cu(In,Ga)Se2
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The commercial attractiveness of Cu(In,Ga) (S,Se)2 (CIGS) photovoltaics is still curtailed by the R&D gap that

separates it from silicon. Overcoming the gap requires the pursuit of strategic approaches, leaving plenty of

room for R&D at both industrial and lab scale. Yet, its technological progress hinges on our understanding of

the diffusion phenomena that occur during and after the absorber growth, particularly in combination with

alkali metal doping. This contribution introduces a simplified model of atomic diffusion in CIGS based on

insights drawn from recent and older (but crucial) literature. The concept of anisotropy-induced

fluctuations emerges. We hypothesize that grain-dependent inhomogeneities arise in CIGS devices

because of crystallographic dependent alkali metal diffusivities. Numerical simulations reveal that

inhomogeneous doping density and CdS buffer layer thickness may impair the device performance by

up to more than 1% absolute efficiency.
1. Introduction

At 23.6%, CIGS cells are the most efficient among the
commercially available polycrystalline thin lm technologies.1

Very high efficiencies are attained with two distinct deposition
strategies, both of which are employed industrially for module
manufacturing: reactive annealing of metal precursors,2 and
elemental co-evaporation.3 CIGS is also deposited on exible
substrates such as stainless steel foils and even polymers.4 This
is particularly attractive for building-integrated applications,
which is expected to become compulsory for new constructions
in Europe and certain US states.

One appealing prospect is to deploy CIGS as a low-bandgap
partner to higher bandgap semiconductors such as metal
halide perovskites,5 with the aim of developing tandem cells
with a Shockley–Queisser (SQ) efficiency limit of 46%.

However, the high record efficiencies at laboratory cell scale
are still lagging 3.4 percent points behind the competitive
silicon technology. This efficiency gap is also transferred at
module level,6 mainly due to resistive losses in the front trans-
parent conductive oxide (TCO) that become important when
passing from small to large areas. In tandem applications,
utilizing low-bandgap CIGS with reduced short circuit photo-
current density mitigates signicantly the impact of these TCO
resistive losses.

A long-sought approach to solve this conundrum is to
develop wider-gap CIGS, as this would increase the voltage and
decrease the electrical current, hence the resistive losses in the
TCO. Efficient wider-gap CIGS would also serve as a stable top
caneso 31, 16146 Genova, Italy. E-mail:
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junction in tandem cells. This so-called chalcopyrite material
allows bandgap widening by simply increasing the relative
concentration of gallium compared to indium or sulfur
compared to selenium. Nevertheless, achieving highly efficient
wider-gap CIGS cells has been very challenging, due to signi-
cant voltage losses.7–9 Recently, advances have been achieved on
both S-rich10 and Ga-rich11 CIGS cells through processing
changes to minimize the scale of spatially varying disorder –

a major root cause of voltage decit – and silver alloying as an
effective strategy to improve crystal quality.

Conceivably, if recent advances in wider-gap CIGS devices, as
well as trends and limitations of today's narrow-gap CIGS
devices can be understood, and the path towards SQ parity can
be identied, holistic insights into the material will be learned,
for the benet of the technology as a whole.12 Herein, a revani †
model of atomic diffusion is presented to account for both
recent and older overlooked evidence and suggest the crucial
link to CIGS device performance.
2. Do we really understand alkali
metal doping?

The efficiency decit of record CIGS from the viewpoint of
carrier management (expressed as the product ff × VOC, ll
factor times open circuit voltage13) is approximately 24% rela-
tive to SQ. This decit is larger for CdTe (conservative estimate:
28% relative), but considerably lower for silicon (ca. 16% rela-
tive). Therefore, research is being devoted to understanding its
origin, particularly relating to VOC.
† Revani is a traditional semolina-based Ottoman cake that is drenched with
citrus syrup aer baking. It is also known in Greece as ravani, in Egypt as
basbousa and in Maghreb as harissa hloua.
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Voltage losses in record cells have long been attributed to
electrostatic potential uctuations,14 but SRH recombination
cannot be excluded although it is hard to detect defects
potentially acting as recombination centres.15

Voltage decit in record CIGS has been shrinking since the
introduction of alkali (Ak) metal doping in 1993. Ak metals are
typically incorporated by diffusion of Na from soda-lime glass
substrates and/or post-deposition treatments (Ak-PDT) per-
formed on the absorber's surface aer growth3,4. The benecial
effect of Ak-PDT on VOC has been ascribed to reduced uctua-
tions,16 decreased defect density at the interface,17 and grain
boundaries.18 There is evidence that Ak-PDT reduces non-
radiative recombination originating from grain boundaries,19

also in combination with oxygen.20 Yet, the underlying diffusion
interplay between Ak dopants and matrix atoms in CIGS21–23

(including its copper decient surface layer, CDL24), cannot be
excluded to play an important role within the interior of the
grains, given that photoluminescence analyses point to Ak
reducing electrostatic potential uctuations even in CIGS free
from grain boundaries.25

CIGS is a complex playground for exotic atomic diffusion
phenomena that we are just now starting to grasp.26,27 This
contribution simplies the picture with a wet sponge cake
called revani, where the porous cake itself is the CIGS lattice and
the wet syrup is the Ak metal dopant, particularly the sodium.

3. Revani model of atomic diffusion
interdependence

This model (Fig. 1) is a simplication of a new theory of atomic
diffusion illustrated in ref. 26 that is based on experimental
evidence from Na-doped Cu(In,Ga)Se2 (ref. 22 and 28) and is
partially supported by a computational study.29 Starting
assumption for the theory is that diffusion of sodium can take
place via both vacancy and interstitial sites, according to the
known Frank–Turnbull mechanism (FT).30 Although the FT
mechanism has never been conrmed experimentally in CIGS,31

its likelihood is supported implicitly by computational studies
of atomic migration.32,33
Fig. 1 Revani model of atomic diffusion in CIGS. A dopant (e.g. Na,
green) within CIGS may enhance (a) surface/boundary diffusivity (e.g.
of another foreign atom like K, purple4) and/or (b) grain interior/bulk
diffusivity (e.g. of matrix atoms like In, cyan22), if its own diffusion
occurs via the Frank–Turnbull (FT) mechanism and is faster than those
of foreign/matrix atoms in CIGS. The two red arrows in the middle
section signify the FT mechanism of a Na atom diffusing to and from
substitutional/interstitial sites.

This journal is © The Royal Society of Chemistry 2023
In essence, the theory argues that the close proximity
between atomic surfactants34,35 (e.g. sodium dopant atoms) and
matrix anions (selenium) lowers the bond strength between the
matrix anions and the matrix cations (copper, indium and
gallium), thus decreasing the energy barrier for atomic migra-
tion. The end result is a migration catalysis: the spatial distri-
bution of matrix atoms in the material (i.e. from the atomic to
the microscopic level) may more easily approach the thermo-
dynamic limit by taking advantage of faster diffusion kinetics.
This migration catalysis may take place, to different extents, at
CIGS surfaces and grain boundaries (Fig. 1a) or grain interiors
(Fig. 1b).

(a) Revani cake soaking stage, Fig. 1a. At interfaces and grain
boundaries the presence of sodium can enhance ion exchange
and induce incorporation of impurity atoms such as potassium
and rubidium during Ak-PDT.

(b) Revani cake squeezing stage, Fig. 1b. In the bulk of CIGS
grains, sodium may ease the attainment of the equilibrium
elemental distribution, i.e. the CIGS-OVC phase separation,
with the latter destined to occupy surfaces and boundaries.

It follows from this model that the respective localization of
sodium and other elements at CIGS interfaces, grain bound-
aries or interiors is highly interdependent.36 The interdepen-
dence occurs because the migration route of sodium overlaps
with the migration routes of the other elements, leading to
mutually perturbed hopping events. The exact outcome of this
interdependence originates from an interplay between process
temperature and local composition (chemical potentials37),
jointly dictating the concentration of point defects, the
frequency of the event, and hence the likelihood of each indi-
vidual jump in the presence of the thermodynamic driving force
represented by phase segregation.
4. Fingerprints of the revani model
from the literature

Since the dawn of CIGS research, it is known that lm texture
and grain size vary signicantly, depending on the chemical
composition during growth and especially on the presence or
absence of Ak metal impurities. Ironically, crucial supporting
hints come from the very rst study on sodium doping dating
back to 1993.38 X-ray diffractograms of CIS lms grown on soda-
lime glass substrates showed pronounced crystallographic
orientation such that “virtually no other peak than the (112)”
was seen for uncoated substrates. The effect was conrmed by
other groups worldwide39–41 and linked to sodium incorpora-
tion, but the broader implications have been underappreciated.
Interestingly, changes in preferred orientation from (112) to
(220) were reported in the presence of sodium if the deposition
temperature is increased up to 570 °C,42 hinting to a transition
temperature between diffusion regimes.
4.1. Origin of anisotropy-induced uctuations

If sodium diffusion occurs (also) through interstitials, as
assumed in the revani model, different crystallographic orien-
tation of the grains become a possible source of property
J. Mater. Chem. A, 2023, 11, 26426–26434 | 26427
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Fig. 2 Possible anisotropy-induced fluctuations caused by orientation-dependent diffusivity of sodium in CIGS, as simplified by the revani
model. (a) If sodium diffuses via the FT mechanism, crystallographic directions displaying a larger concentration of interstitial sites (e.g. (220) and
(102) shown by the red double arrows) will act as preferential pathways for sodium diffusion and for indium-gallium mass transport, as displayed
here in a non-textured polycrystalline film. Hence, the growth of various grains is expected to be self-selected, leading to textured films with
interstitial-poor (112) planes parallel to the sodium-containing substrate. Likewise, the concentration of sodium from one grain to another may
vary as a result of orientation dependent uptake of extrinsic dopant, leading to granularity of carrier density at the length scale of grain size. (b)
The preferential diffusion of sodium along certain crystallographic directions implies an effectively larger sodium availability for ion–exchange
reactions at the surface of those grains oriented with (112) planes perpendicular to the substrate, such that it may affect buffer layer nucleation
and growth when this is done by chemical bath deposition, as observed by Witte et al.48 (c) Revani soaking (skg.) and squeezing (sqz.) stages,
exemplified by uptake of potassium atoms at CIGS grain boundaries (GB) through ion exchange by sodium (both identified at G.B.49), and by
removal of InCu donors from grain interior (GI) towards GBs. (d) Electronic consequences of the revani model onto the band structure of CIGS
across GBs: bandgap widening at the GBs results from a lowering of the valence band maximum and a lift of the conduction band minimum
following the compositional alterations. Such a band structure effectively repels photogenerated electron–hole pairs from defect-rich GB
regions otherwise responsible for Schockley–Read–Hall recombination, as suggested by Keller et al.50
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uctuations at the microscale. In fact, grains with (220) or (102)
planes oriented perpendicular to the substrate may convey
a higher concentration of mobile Na+ cations, due to the higher
concentration of interstitial sites they contain, compared to e.g.
(112) oriented grains, as exemplied in Fig. 2a. Certain facets
are expected to grow at a higher rate than others, due to higher
orientation-dependent atomic diffusivity induced by sodium.
The proposed FT-induced anisotropy of sodium migration in
CIGS complements previous studies on spontaneous surface
faceting43–46 and is consistent with recent ndings where pref-
erential sodium diffusion was reported to occur through the
(220)/(204) crystallographic direction.47

4.2. Implications for doping density uctuations

The model implies lateral step uctuations of acceptor
concentration. Even though the impact of these inhomogenei-
ties on device performance appears negligible for highly effi-
cient narrow-gap CIGS cells,51–53 it may still be a problem for
modules and wider gap CIGS.

4.3. Implications for potential-induced degradation (PID)

Sodium diffusion is the most likely culprit for PID in CIGS,
a module performance degradation that is common to all PV
technologies.54 PID occurs when a high voltage forms between
the solar cells in the module and the module frame, notably
when numerous modules are connected in series to attain
a high voltage output while minimising resistance losses. In
CIGS, sodium is thought to electromigrate and impair the p–n
junction and/or corrode the TCO contact.55,56 Granularity in the
sodium accumulation was reported by Harvey et al.,57
26428 | J. Mater. Chem. A, 2023, 11, 26426–26434
suggesting preferential diffusion through certain grains that
may be compatible with the revani model, even though the
authors attribute the effect to grain boundary diffusion. The
model may be tested experimentally by assessing the resilience
to PID of cells whose CIGS absorber was deliberately grown with
different preferential orientations.47 It is worth noting that the
main CIGS PV manufacturers have overcome PID issues by
employing barriers that prevent sodium diffusion from
substrate, and encapsulant glass slabs during operation.

4.4. Implications for buffer thickness uctuations

Different sodium availability from grain to grain, or facet to
facet, would also lead to a different extent of ionic exchange via
the revani model, as shown in Fig. 2b. This scenario is consis-
tent with recent ndings revealing that CdS and Zn(O,S) buffer
growth by chemical bath deposition is impaired on as-formed
(112) CIGS facets48,58, where sodium availability through the
interstitial route is less likely. Although the effect may be due to
other differences in surface energetics, the revani hypothesis
should be tested.

4.5. Implications for inter/intra-grain uctuations

The soaking stage (Fig. 2c, G.B. skg.) accounts for the intake of
heavier Ak atoms favoured over sodium,4,59–62 which results in
passivation due to bandgap widening at the grain boundary
(Fig. 2d). Simulations have shown that even in the presence of
high concentrations of defects at grain boundaries, the perfor-
mance of the cell improves if the energy gap at the grain
boundaries is sufficiently large compared to that of the grain
interior.63 The intake of heavier Ak ions may occur by
This journal is © The Royal Society of Chemistry 2023
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Fig. 3 Schematic representation of the two-grains CIGS solar cell
model (not to scale) employed to simulate the effects on device
performance of anisotropy-induced fluctuations such as grain-
dependent CdS buffer thickness and p-type doping.

Table 1 Main parameters used in the simulations.72 The CdS thickness
and p-type doping in CIGS grain A are set at 40 nm and 1016 cm−3,
respectively, whereas in grain B they are subject to variation. See Fig. 3
and text for more details

AZO i-ZnO CdS CIGS

Eg/eV 3.3 3.3 2.4 Graded
Thickness/nm 200 50 40 nm/variable 2300
Doping/cm−3 5 × 1019 1017 1017 1016/variable
me (mh)/cm

2 V−1 s−1 100 (25)
se (sh)/ns 10 (0.01) 10 (0.01) 33 (0.01) 250 (250)
CBO/eV −0.2 0.1
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displacement of sodium ions (i.e. by exchange), or by
a concerted movement of a sodium ion from its substitutional
position to an interstitial site and concomitant incorporation of
the heavier Ak ion into the emptied copper site (i.e. by FT
mediation). This stage would also explain why a potassium-
enriched surface is more prone to exchange potassium for
cadmium, accounting for the improved CIGS/CdS hetero-
junction in K-doped lms.4

The squeezing stage (Fig. 2c, G.I. sqz.) accounts for sodium-
induced migration of InCu antisite donors to the grain bound-
aries, thus decreasing compensation in the bulk (increasing the
relative share of copper vacancies in the grains64,65) and turning
the boundaries indium-rich (adding to bandgap widening) at
the same time. This could explain why Na-doping increases the
net acceptor concentration in CIGS,66 without excluding
a concomitant increase of copper vacancies within the grains,
according to the model by Yuan et al.67 (Fig. 2d), which is sup-
ported by the recent detection of sparse Cu-rich GBs even in
nominally Cu-poor lms.68

The combined effect is consistent with the general decrease
of electrostatic potential uctuations and may explain why
sodium doping happens to be essential in the rst place. In
2018, highly efficient single crystal devices were obtained for the
rst time in the history of CIGS. Decisively, these were fabri-
cated with epitaxial absorbers subject to NaF and KF-PDTs.69

Such a fact demonstrates that good CIGS optoelectronic quality
can indeed be attained even in the absence of grain boundaries,
a conundrum that took many years to unravel!

5. Numerical simulations

Since the hypothesized uctuations have a common root cause,
we conduct numerical simulations at the device level to analyse
how the varying thickness of the CdS buffer layer, along with the
presence of uctuating doping density in the underlying CIGS,
affects the behaviour of the solar cell.

The cell is simulated with the Synopsys Sentaurus-TCAD
suite. The current–voltage characteristics of the cell is calcu-
lated by solving the Poisson and continuity equations for elec-
trons and holes in a coupled manner, using the dri–diffusion
model, and incorporating the effects of non-radiative recombi-
nation in the various layers through the Shockley–Read–Hall
model. The behavior of the illuminated cell is computed by
illuminating it with the AM1.5G spectrum and employing the
experimental complex refractive indices of the various layers for
the calculation of optical generation and reection.70,71 The
Transfer Matrix Method (TMM) is employed to analyze the
behavior of the solar cells as the light passes through its layers.
In each layer, the optical intensity is determined by evaluating
the electric eld amplitudes of both forward- and backward-
propagating waves, considering the optical properties of the
material, which are described by the complex refractive index.
Aerwards, the optical generation is computed from the
calculated optical intensity and wavelength-dependent absorp-
tion coefficient.

Fig. 3 depicts the two grains cell model following the stan-
dard conguration of CIGS cell, i.e., from top to bottom, MgF2
This journal is © The Royal Society of Chemistry 2023
anti-reecting coating, Aluminum doped ZnO window, high-
resistive ZnO, CdS buffer and CIGS absorber. In particular, in
grain A, the thickness of CdS, and the doping of the underlying
CIGS are xed and set at 40 nm and 1016 cm−3, respectively,
while in grain B, they can vary. Similar to the ZSW cell, we also
consider a MgF2 antireective coating with a thickness of
100 nm to reduce reection at the cell surface. We simulated the
two-dimensional cross section of the cell in the red frame.

The main properties of the different layers and interfaces
used in the simulation are summarized in Table 1. More details
about simulations and material parameters can be found in our
previous works.72

First and foremost, we simulate a reference cell character-
ized by a constant buffer layer thickness and uniform CIGS
doping throughout the grains, i.e., same tCdS = 40 nm, and
acceptor density NA = 1016 cm−3 in both grain A and B, repli-
cating a ZSW cell with an efficiency > 22%.3

The ZSW cell features a double-graded [Ga]/([Ga] + [In]) (GGI)
composition CIGS layer, so we include the measured GGI prole
J. Mater. Chem. A, 2023, 11, 26426–26434 | 26429
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Table 2 Comparison between CIGS solar cell parameters for a real
device fabricated by ZSW,3 and the closely matching numerical
simulation constituting the base for the simulations performed here
(reference cell)

VOC/V JSC/mA cm−2
ff/% h/%

ZSW 0.744 36.70 80.50 22.00
Simulation 0.744 36.75 80.53 22.03

Fig. 4 Simulated solar cell parameters for the solar cell sketched in
Fig. 3. In all simulations, grain A has a uniform CdS thickness of 40 nm
and CIGS doping density of 1016 cm−3 (star symbol in the figures).
Region I displays results for the cell in which grain B has tCdS = 30 nm
and variable CIGS doping density (1015 cm−3 # NA # 1016 cm−3);
region II displays results for the cell in which grain B has tCdS = 50 nm
and variable CIGS doping density (1016 cm−3 # NA # 1017 cm− 3).
Different curves represent grain sizes with dimensions dG= 0.25, 0.5, 1
mm (square, circle, triangle symbols).
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of the highest efficiency cell shown in 73 within the CIGS layer.
This allows to account for the varying bandgap grading in the
CIGS layer and related optical coefficients that depend on the
GGI and position, as illustrated in 74. The IV curve is also
inuenced by the alignment of the conduction bands at the
hetero-interfaces, as shown in 75. In our simulations, we have
considered a conduction band offsets (CBO) of 0.1 eV, creating
a spike (i.e., the conduction band at the CIGS side is lower than
that at the CdS side) at the CdS/CIGS interface, and 0.2 eV,
forming a cliff (i.e., the conduction band at the ZnO side is lower
than that at the CdS side) at the ZnO/CdS interface.

Furthermore, we assume ideal heterointerfaces, which
entails zero recombination velocity. This choice was made to
direct our attention specically towards assessing the impact of
variations of doping and CdS thickness on cell performance.

The parameters of the simulated reference cell closely match
those of the 22% efficient CIGS cell fabricated by ZSW, as
summarised in Table 2.

To examine how changes in the CdS thickness and doping
levels within the CIGS layer might affect the cell's performance,
our approach simulates two grains of the cell (cf. Fig. 3): in grain
A, we maintain a uniform CdS thickness of 40 nm and CIGS
doping density of 1016 cm−3, as in the reference cell. In grain B,
we set either a CdS thickness tCdS = 30 nm with a CIGS doping
density, NA, ranging between 1015 cm−3 and 1016 cm−3 (referred
to as “scenario I”), or tCdS = 50 nm with NA ranging from 1016

cm−3 to 1017 cm−3 (denoted as “scenario II”).
Moreover, to determine if the impact of inhomogeneities can

vary with grain size, simulations were performed for each
combination of tCdS and NA using three different grain sizes, dG,
of 0.25 mm, 0.5 mm, and 1 mm.

Fig. 4 shows the results of numerical simulations performed
with varying tCdS against the CIGS doping level in grain B, NA,
with each distinct curve corresponding to different grain sizes
(denoted as dG). Each plot can be divided into two distinct
regions: region I displays ndings corresponding to scenario I,
while region II presents results from scenario II.

The cell parameters of the reference cell, characterized by
grains with uniform CdS thickness of 40 nm and CIGS doping of
1016 cm−3, are represented by the star symbol and are posi-
tioned midway between region I and region II.

Concerning the trends exhibited by the simulated cell
parameters, the observed behaviours stem from a combination
of electrical and optical factors.

Specically, an increased thickness of the CdS layer
decreases charge carrier generation within the CIGS layer,
consequently affecting JSC.
26430 | J. Mater. Chem. A, 2023, 11, 26426–26434 This journal is © The Royal Society of Chemistry 2023
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This phenomenon is readily apparent in Fig. 4b for a doping
level in grain B set at NA = 1016 cm−3: in this case, JSC exhibits
the highest current value at tCdS = 30 nm while a lower value is
observed at tCdS = 50 nm.

Conversely, a higher doping level in the CIGS layer enhances
VOC by reducing non-radiative recombination processes
(Fig. 4a), also enhancing JSC (Fig. 4b).

As a result of the combined inuence of these factors, the cell
efficiency curve exhibits a variation of over 1% in absolute
efficiency, with a more pronounced impact observed in the case
of larger grain sizes, dG.

The relationship between grain size and efficiency variation
suggests that the portion of the grain with doping and CIGS
thickness deviations has a greater inuence compared to the
portion with expected values.

If we visualize a cell containing thousands of grains resem-
bling the ones being simulated, the simulations indicate that
these deviations have a growing signicance when dealing with
larger grains and areas of non-uniformity that are similar to the
homogeneous regions.

6. Conclusions

The evolution of CIGS solar cell performance over the years can
be traced back to key technological innovations that improved
the absorber's optoelectronic properties. Among these, Ak
metal doping-especially sodium-has undeniably played the
lion's share to success. Here, a revani (wet sponge cake) model
of atomic diffusion, with soaking and squeezing stages, is
proposed as a simple unifying concept to account for a number
of unsettled experimental facts. The proposed micro-scale
anisotropy-induced uctuations, if conrmed, may account
for bandgap tailing and voltage decit in CIGS cells and/or
modules. We encourage the community to test these
hypotheses.
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4 A. Chirilă, et al., Potassium-induced surface modication of
Cu(In,Ga)Se2 thin lms for high-efficiency solar cells, Nat.
Mater., 2013, 12(12), 1107–1111, DOI: 10.1038/nmat3789.
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