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Xiaowei Xie, cd Shyam Dwaraknath c and Kristin A. Persson *be

Modeling reactivity with chemical reaction networks could yield fundamental mechanistic understanding

that would expedite the development of processes and technologies for energy storage, medicine,

catalysis, and more. Thus far, reaction networks have been limited in size by chemically inconsistent

graph representations of multi-reactant reactions (e.g. A + B / C) that cannot enforce stoichiometric

constraints, precluding the use of optimized shortest-path algorithms. Here, we report a chemically

consistent graph architecture that overcomes these limitations using a novel multi-reactant

representation and iterative cost-solving procedure. Our approach enables the identification of all low-

cost pathways to desired products in massive reaction networks containing reactions of any

stoichiometry, allowing for the investigation of vastly more complex systems than previously possible.

Leveraging our architecture, we construct the first ever electrochemical reaction network from first-

principles thermodynamic calculations to describe the formation of the Li-ion solid electrolyte

interphase (SEI), which is critical for passivation of the negative electrode. Using this network comprised

of nearly 6000 species and 4.5 million reactions, we interrogate the formation of a key SEI component,

lithium ethylene dicarbonate. We automatically identify previously proposed mechanisms as well as

multiple novel pathways containing counter-intuitive reactions that have not, to our knowledge, been

reported in the literature. We envision that our framework and data-driven methodology will facilitate

efforts to engineer the composition-related properties of the SEI – or of any complex chemical process

– through selective control of reactivity.
1. Introduction

Understanding and controlling complex reactive processes is
a fundamental challenge in the development of novel chemical
technologies. While computational chemistry has provided
crucial insight for a broad array of reactive systems, important
areas of electrochemistry,1,2 atmospheric chemistry,3,4 and
metabolic biochemistry5–7 remain poorly understood due to
their scale (in terms of number of species and reactions
between them) and accompanying complexity. Moreover,
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critical properties and dynamics of such systems may only
emerge on long timescales, particularly if they rely on key rare
events, for instance reactions with high kinetic barriers. Typical
atomistic modeling approaches like classical molecular
dynamics (MD) and ab initio molecular dynamics (AIMD) are
thus inherently insufficient, as they are too costly to adequately
sample these rare events. On the other hand, chemical reaction
networks, which use graph theory to dene relationships
betweenmolecules and reactions, are well positioned to capture
such complex long-time reactivity.

Reaction networks have the capacity to interrogate
competing reaction mechanisms in complex chemical systems
on long timescales. By simplifying chemical space into a set of
connected molecule nodes and reaction nodes,8 reaction
networks abstract away the spatial interactions of three
dimensional molecular structures while preserving a realistic
description of the underlying interconnected chemical mecha-
nisms. Reaction networks can be used to compare viable reac-
tion pathways that transform a set of starting molecules into
nal products or to identify optimal pathways using path-
nding algorithms.9 The cost to traverse a given reaction can
capture the relevant thermodynamics and/or kinetics, ensuring
Chem. Sci., 2021, 12, 4931–4939 | 4931
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that the “shortest” pathway (the pathway with the lowest cost) is
also the one most likely to occur. Such pathway analysis
inherently accounts for long-time behavior without requiring an
arduously long propagation as long as important rare reactions
are present in the network. Substantial work has been con-
ducted to apply reaction networks to a wide range of scientic
applications, including organic chemistry,9–12 retrosyn-
thesis,13–15 combustion,16–18 catalysis,19–21 and sugar forma-
tion,22,23 as well as metabolic7,24 and prebiotic chemistry.23

However, network scale has remained fairly small; no reaction
network reported in the literature built from rst principles has
included more than 1000 species or more than 10 000
reactions.8

The size of networks reported thus far has been limited in
part due to the use of graph representations that cannot capture
the chemical reality of multi-reactant reactions (e.g. A + B/ C).
Such representations prevent the use of optimized pathnding
algorithms. Instead, researchers employ custom approaches
that can calculate path costs while respecting reaction stoichi-
ometry.25 These algorithms suffer from performance and
scaling limitations11,25 that have historically made it necessary
to signicantly restrict network size. As a result, reaction
networks have not previously been applied to complex electro-
chemical or photochemical systems which may include thou-
sands of species and millions of reactions.

The development of reaction networks to study electro-
chemical processes is both highly desirable and very chal-
lenging due to the extreme inherent complexity of such systems.
For example, the exposure of an electrolyte to highly oxidative as
well as reductive electrode materials necessitates the consider-
ation of redox reactions coupled with irreversible chemical
decomposition in a rapidly evolving local environment. These
reactions form ions, fragments, and radicals, all of which may
be more stable in solvent than they would be in the gas phase or
in vacuum. Such factors mean that a much wider range of stable
and metastable species must be included in the network than
would be otherwise. As a further complication, ions and radicals
are oen much more reactive than neutral, closed-shell organic
molecules,26 and their reaction mechanisms are not as well
understood,27 precluding heuristic pruning and necessitating
consideration of a vast number of reactions for each specie.

Because a reaction network capable of describing electro-
chemical processes must include massive quantities of species
and reactions, the use of optimized pathnding algorithms is
essential. Thus, we need a graph representation that supports
general network construction, including any reaction stoichi-
ometry in a chemically consistent manner. Such an approach
will ensure that all participating reaction pathways in general
reaction networks of even massive size can be tractably
identied.

In this article, we will rst identify underlying problems in
existing reaction network architectures that can potentially
produce unphysical results and that prevent the use of opti-
mized pathnding algorithms. We then resolve this issue
through the adoption of both a novel graph representation for
reactions involving multiple reactant species and an iterative
algorithm for the calculation of such reaction costs. To
4932 | Chem. Sci., 2021, 12, 4931–4939
demonstrate the power of our chemically consistent graph
architecture, we apply it to a network describing the electro-
chemical reaction cascade that forms the lithium-ion solid
electrolyte interphase (SEI), a nanoscale layer that is largely
responsible for battery health and capacity retention. Our
approach facilitates analysis of the resulting massive reaction
network containing nearly 6000 species and 4.5 million reac-
tions, and we identify both previously accepted pathways and
novel pathways to a key SEI component.
2. Current state of chemical reaction
network graph theory

Chemical reaction networks (CRNs) are graph-based data
structures encoding the reactivity of a collection of molecular
species using nodes and edges8 which can identify reaction
pathways from starting molecules to desired products and
facilitate comparisons between those pathways. In reality,
complex reactive chemistries can explore an innite space of
possible system states. CRNs are powerful because they reduce
the traversal through an unbounded space to a tractable path-
nding problem on a nite graph by ignoring system history
and treating each reaction as an independent process. However,
the choice of graph representations for reactions in a CRN is
non-trivial. Throughout this work, we will depict molecule
nodes as circles and reaction nodes as triangles (Fig. 1a).
Molecule nodes will only connect to reaction nodes, and vice
versa. Our edges encode reaction directionality: an edge
directed into a molecule node must originate from a reaction
node which yields that molecule as a product, and an edge
directed out of a molecule node must terminate at a reaction
node which consumes that molecule as a reactant (Fig. 1a).
Additionally, each reaction node has an associated cost, F,
which must be paid in order to traverse from reactant(s) to
product(s). The cost could be a function of reaction thermody-
namics, kinetics, or an experimentally derived value such as
reaction yield. Summing the reaction costs along a reaction
path thus yields the total cost of performing such a sequence of
reactions.

We will start by considering the graph representations of
three fundamental reaction types with different stoichiometries
(Fig. 1b). Type I reactions are of the form A / B; type II reac-
tions are of the form A/ B + C; and type III reactions are of the
form A + B/ C. Each reaction implicitly denes a change in the
state of the reacting system that can be addressed by simple
accounting, where a system's state is specied by the amount of
each species present. As a result of a reaction, the reactants
must be subtracted from the state, and the products must be
added to the state. Summing the initial system state and the
system state changes along a reaction path yields the nal
system state aer the reactions in the path have taken place. We
note that for CRNs, which do not consider the history of the
system, the system state can only be determined by post hoc
reconstruction.

A chemically intuitive graph representation of a reaction
with multiple reactants (e.g. type III) fundamentally conicts
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Standard reaction graph representation and multi-reactant pathfinding problem. (a) General reaction network reaction and molecule
node representations, where molecule nodes are only connected to reaction nodes and vice versa, nodes are connected via directed edges
according to reaction directionality, and reaction nodes have a cost, F, which must be paid in order to be traversed. (b) The three fundamental
reaction types: type I – A reacts to B, type II – A reacts to B plus C, type III – A plus B react to C, where type I and type II are chemically consistent
while type III is chemically inconsistent since it fails to enforce reaction stoichiometry. (c) Example network composed of only type I and type II
reactions exhibits a chemically consistent path from A to G with only positive species amounts. (d) Example network including a type III reaction
exhibits a chemically inconsistent path from A to G in which a negative specie occurs in the system state, demonstrating that chemically
inconsistent multi-reactant reaction representations cause standard pathfinding algorithms to yield unphysical results.
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with an underlying assumption of graph theory. Graph theory
assumes that cost alone governs connected traversal; if node A
is connected to node C, then it is always possible to traverse the
© 2021 The Author(s). Published by the Royal Society of Chemistry
graph from A to C, provided the cost is paid. Meanwhile,
chemically, a reaction must obey its stoichiometry (i.e. all
reactants must be present for a reaction to occur), and there
Chem. Sci., 2021, 12, 4931–4939 | 4933
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must be a non-negative amount of each species in the system. A
system state with a negative quantity of a species is thus
chemically inconsistent. In a type III reaction, connectivity
allows traversal from one reactant node to the product node
while ignoring the second reactant, contradicting chemical
laws. Such contradiction can cause chemically inconsistent
reaction paths to be selected during conventional pathnding.

When only single-reactant reactions like type I and type II are
used to construct a model network, an example path from node
A to node G proceeds without issue (Fig. 1c). In contrast, when
a type III reaction is included in the model network, an example
path from node A to node G yields a negative quantity of species
E in the nal system state, violating chemical assumptions and
making the path chemically inconsistent (Fig. 1d). This is
a fundamental problem with any current multi-reactant
Fig. 2 Novel type III graph representation resolves multi-reactant inco
reactant type III reaction representation is obtained by splitting the reacti
other unconnected prerequisite reactant (PR) directly from starting mole
same example network as in (d), but with our fixed type III representation
the path from A to G no longer incurs a negative specie but instead requi
Thus, if all prerequisite costs are obtained beforehand, standard pathfind

4934 | Chem. Sci., 2021, 12, 4931–4939
reaction representation. To resolve this problem, it is neces-
sary to know the cost to create the other participating reactant
during pathnding.

Current multi-reactant representations signicantly limit
the utility of CRNs. Reaction networks are commonly used to
identify the “best” or lowest-cost reaction paths from a set of
starting molecules to any target molecule(s) of interest. The
ideal tools for this task are efficient pathnding algorithms
such as Dijkstra's algorithm28 for single-shortest paths and
Yen's algorithm29 for the N-shortest paths. However, as
described above, these algorithms will not necessarily produce
chemically valid pathways in networks containing multi-
reactant reactions. It has historically been necessary to use
custom methods that have suboptimal performance and scale
poorly with network size based on tree traversal algorithms,22
nsistency and enables standard pathfinding. (a) A novel fixed multi-
on node in two and conferring the additional cost on each to make the
cules, denoted with the oval FPR below the reaction node. (b) With the
replacing the standard chemically inconsistent type III representation,

res paying the cost to make prerequisite E from starting molecules (FE).
ing algorithms can be used with our reaction network representation.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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breadth-rst-search,25 or depth-rst-search.11,25 Performant
stochastic sampling approaches can instead be employed,30 but
they are not guaranteed to nd the true best solution(s). While
these custom approaches may be sufficient for relatively small
and simple networks, analyzing larger networks describing
more complex systems will necessarily require the optimal
performance of Dijkstra's and Yen's algorithms. A multi-
reactant graph representation that respects both graph theo-
retical and chemical principles is clearly needed.
3. Novel graph architecture resolves
multi-reactant inconsistency and
enables optimized pathfinding

Here, we present a novel multi-reactant reaction graph repre-
sentation that resolves previous inconsistencies by incorpo-
rating the cost to make prerequisite reactants (Fig. 2a). We split
the A + B / C reaction node into two nodes which both
represent the same original reaction, one node connecting A
and C and the other connecting B and C. Each reaction node's
cost includes both the original reaction cost F (based on the A +
B / C reaction thermodynamics/kinetics or other cost func-
tion) and the additional cost to create the other “prerequisite”
reactant (PR) from the available starting molecules, given by
FPR. For example, traversing the A/ C reaction node, for which
B is a PR, costs F +FB. The PR is implicitly created by paying the
PR cost and is then immediately consumed in the reaction;
thus, the PR does not appear in the reaction node system state
change. As a result of this transformed representation, true
edge connectivity and node cost now accurately captures the
chemical reality that both reactants are required for the A + B/

C reaction to proceed.
Our type III representation enables the use of standard

pathnding algorithms. Consider the previous pathnding
example in which a type III reaction yielded a negative species
quantity in the system state. Employing our xed type III
representation, the same example path proceeds without issue
(Fig. 2b). There are two critical changes: the nal system state
no longer includes a negative quantity of species E, and the total
path cost additionally includes the cost of producing prereq-
uisite E (FE) as part of the last reaction. Thus, our novel type III
representation resolves the multi-reactant reaction inconsis-
tency and enables pathnding via optimized Dijkstra's and
Yen's algorithms for any chemical reaction network. However,
our representation additionally requires that prerequisite costs
be solved and included in reaction node costs before path-
nding is performed.

We have developed an iterative algorithm to simultaneously
solve all prerequisite costs before pathnding. Naively
attempting to solve PR costs on the y oen results in unbound
recursion. Instead, we iteratively solve all PR costs with the
following procedure outlined in Fig. 3:

(1) We calculate the shortest path from each starting mole-
cule to every possible molecule in the network that may act as
a prerequisite using Dijkstra's algorithm.
© 2021 The Author(s). Published by the Royal Society of Chemistry
(2) We then identify solved PRs in which the shortest path to
that molecule node itself has no unsolved PRs.

(3) If any PRs remain unsolved, we update all PR costs in the
network and continue iterating until all PRs are solved.

In this manner, PR costs at any iteration are an effective
lower bound on the true PR costs. The cost of each unsolved PR
will rise from one iteration to the next until that PR is solved, at
which point the cost remains xed through all further itera-
tions. Additionally, by only updating the network at the end of
each iteration, PR costs are uniquely dened and do not depend
on the implementation details of Dijkstra's algorithm such as
the order that the nodes are searched. We show an example of
PR solving for a model network in Section S1 of the ESI.† While
this example and the concept of PR solving are quite simple, we
note that the PR solving process is the key to allowing optimized
pathnding in reaction networks and is the most computa-
tionally intensive step of our chemically consistent graph
architecture.

One subtlety of PR costs is the temptation to think that
a species created incidentally as a byproduct of a type II reaction
(for example, molecule B in Fig. 2b) could then be used as
a prerequisite for a later reaction, thus avoiding the need to pay
FPR and reducing the cost of the path overall. However, a CRN-
based approach cannot accommodate such a cost reduction
since system history is ignored and reaction costs must be
independent, which is further enforced by the greedy nature of
Dijkstra's algorithm. This is a limitation of our methodology,
since real chemical processes may contain paths where
byproducts from one step are consumed as reactants multiple
steps later. However, we note that in the chemical application
considered in this work, this synergy is not relevant to the paths
identied.
4. Autonomous identification of
optimal reaction pathways in SEI
formation

Here we demonstrate the application of our chemically
consistent graph architecture to the formation of a particular
component of the Li-ion battery solid-electrolyte interphase.
When the electrolyte reductive stability limit is reached during
the initial charging of a Li-ion battery, a cascade of interde-
pendent reactions – including reduction, oxidation, bond
cleavage, and bond formation – spontaneously occur to form an
SEI on the battery anode surface.31 This process is critical to
cycling performance, as the formation of a functional, passiv-
ating SEI enables many battery technologies to operate outside
of the thermodynamic stability limit of the electrolyte.32–36

Specically, the SEI needs to conduct metal ions while pre-
venting electrical conduction and remaining chemically stable
to minimize undesirable ongoing electrolyte or anode
degradation.37

Understanding the mechanisms of SEI formation is critical
to the development of battery technologies. Such under-
standing could allow researchers to modify the initial battery
conditions or electrolyte composition to suppress or promote
Chem. Sci., 2021, 12, 4931–4939 | 4935
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Fig. 3 Iterative prerequisite cost solving algorithm. Starting with an initial network N and startingmolecules A, we find the shortest path from A to
each specie in N. We then identify solved prerequisites where the shortest path to a given specie node itself contains no unsolved prerequisites. If
unsolved prerequisites remain, all prerequisite costs are updated according to the solve shortest paths, and another iteration is performed.
Eventually, all prerequisites will be solved and the final network will be returned.
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targeted reaction pathways, thereby engineering and control-
ling the properties and composition of the SEI. With the capa-
bility to predict the formation of SEI components and the
properties of the resultant SEI based solely on the initial
conditions of the electrolyte, it would be possible to computa-
tionally screen the vast chemical space of potential electrolyte
salts, solvents, and additives to guide experimental investiga-
tions and expedite the development of novel next-generation
battery chemistries beyond lithium-ion.

Over roughly two decades of dedicated research into SEI
formation, it has become accepted that lithium ethylene
dicarbonate, also known as Li2EDC or LEDC, is a major, early-
formed organic component of the interphase in Li-ion
batteries, based on both experimental and computational
results.38–41 A number of pathways from the ethylene carbonate
(EC) solvent molecule and Li+ to LEDC have been proposed in
the literature. From these, two prominent paths have emerged.
In the “one-electron” path, two reduced EC molecules, coordi-
nated with lithium (Li+EC�), ring-open and combine to form
LEDC and ethylene.39 In the “two-electron” path, aer ring-
opening, one LiEC molecule is reduced again and decom-
poses to form ethylene and LiCO3

�. This LiCO3
� then attacks an

EC molecule to form LiEDC�, which then coordinates with a Li+
4936 | Chem. Sci., 2021, 12, 4931–4939
to form LEDC.38,42,43 Here, we employ a reaction network to
determine if these proposed pathways are indeed the most
thermodynamically competitive, or if there are other pathways
that may contribute to LEDC formation.

Our reaction network methodology, based on a novel graph
representation for multi-reactant type III reactions and an
iterative PR cost solving algorithm, is uniquely suited to provide
insights into SEI formation processes. Because the SEI forms
spontaneously on an electried interface in the presence of
multiple species and local environments, there is a vast number
of possible reactive fragments which in turn gives rise to
millions of plausible reactions. As a result, a reaction network
describing SEI formation will necessarily be of massive scale to
ensure that key pathways are not missed, making such
a network an ideal test case for our approach. We emphasize
that attempting to analyze such a reaction network with
millions of reactions is completely unprecedented and is only
feasible with optimized pathnding algorithms.

We have constructed a reaction network to describe SEI
formation using our chemically consistent graph architecture
that contains 6000 species and nearly 4.5 million reactions. We
employ a thermodynamic cost function F ¼ C + eDG/kT, where
DG is the free energy of the reaction and C is a constant that
© 2021 The Author(s). Published by the Royal Society of Chemistry
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provides a lower bound on reaction cost and encourages shorter
paths. We use C ¼ 1 in this work based on empirical investi-
gation and the physically reasonable result that, with this
choice, one reaction with DG ¼ 0 costs an equivalent amount as
two reactions with DG � 0. Further discussion of the cost
function and our procedure for network construction is pre-
sented in Section S2 of the ESI.†

Aer solving the prerequisites of our nal network, path-
nding autonomously identies both previously reported and
novel formation mechanisms for LEDC (Fig. 4). We dene Li+

and ethylene carbonate (EC) as our starting molecules and are
able to solve all prerequisite costs in 19 iterations over the
Fig. 4 LEDC five shortest paths. The 2nd shortest path (purple) and the 3r
in the literature and each contain one two-bond reaction. The shortest p
purple and green, respectively, but they contain a counterintuitive ring
Finally, the 5th shortest (gold) path exhibits both the counterintuitive rin
previously proposed.

© 2021 The Author(s). Published by the Royal Society of Chemistry
course of 14 hours on a laptop. Prior to the reactions shown in
Fig. 4, all paths include the bidentate coordination of Li+ with
EC followed by reduction.

A key validation of our approach is that both previous
prominent mechanisms, proposed through manual investiga-
tions – the two-electron path (Fig. 4, purple) and the one-
electron path (Fig. 4, green) – are recovered as our 2nd short-
est and 3rd shortest paths, respectively. The shortest and 4th
shortest paths (Fig. 4, blue and red) are nearly equivalent to the
2nd and 3rd shortest paths, respectively, with the blue path
being another two-electron mechanism and the red path being
another one-electron mechanism. However, both include
d shortest path (green) were the twomechanisms previously proposed
ath (blue) and 4th shortest path (red) follow very similar mechanisms to
-opening step (�1.08 eV) which has not been previously considered.
g-opening and stabilization via a transient Li-ion that has never been
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a counterintuitive ring-opening step that has not been previ-
ously considered because it is slightly less thermodynamically
favorable than the conventional ring-opening mechanism
(�1.08 eV vs. �1.21 eV). Intuitively, a chemist would select the
more favorable route at a given step, but in this case non-
intuitive reactions could meaningfully contribute.

The 5th shortest path (Fig. 4, gold) is entirely novel and
leverages a transient lithium ion to decompose ring-opened
Li+EC� exergonically. Note that decomposing ring-opened
Li+EC� in isolation is slightly endergonic according to our
calculations (+0.25 eV), which may be why it has not previously
been reported. However, our procedure autonomously identi-
ed that the coordination of an additional lithium ion simul-
taneous with the decomposition yields a much more
thermodynamically favorable reaction (�0.42 eV), perhaps
making it competitive with the other mechanisms emerging
from the network. The additional lithium ion can then disso-
ciate simultaneously with the addition of a ring-opened Li+EC�

to form LEDC (�4.44 eV), making it a transient participant in
the gold pathway.

Since our network contains only thermodynamic informa-
tion, reaction costs are a function of free energy changes. While
a more accurate cost would be based on reaction kinetics,
calculating reaction barriers is extremely computationally
intensive and challenging to automate. In the case of LEDC
formation, the electron transfer rate has further been shown to
be important in determining pathway tness;44 in principle,
electron transfer should also be accounted for. While we
currently do not have any kinetic information in our network,
including such information would not require any modication
to the reaction representation or pathnding algorithm.

The ability to identify the best reaction paths in highly
complex reaction networks is the rst step towards reverse
engineering SEI composition and complex reactivity more
generally. The best paths identied by our approach are the
natural targets for reaction engineering. Paths that yield desir-
able products provide a set of reactions that can be strategically
promoted, through additives and concentration tuning, while
paths that yield undesirable products instead identify reactions
that may be selectively hindered. Such reaction engineering
leveraging knowledge of desirable and undesirable reactions
has already been put into practice in the eld of heterogeneous
catalysis,45–48 where substrates are chosen to minimize parasitic
reactions and maximize output of the desired chemical.

5. Conclusion

We have developed a novel reaction network architecture that
accommodates any reaction stoichiometry. We split reactions
with multiple reactants into multiple reaction nodes that each
include the cost of creating the other prerequisite reactant. We
have additionally developed a procedure to iteratively solve for
all prerequisite costs. Our approach allows optimized shortest
path algorithms like Dijkstra's and Yen's to be used to identify
the best or N-best reaction paths to any given molecule node in
any chemical reaction network for the rst time. The ability to
use these algorithms facilitates pathway analysis on much
4938 | Chem. Sci., 2021, 12, 4931–4939
larger chemical reaction networks, which can describe much
more complex systems, than previously possible.

Using our chemically consistent architecture, we have
generated a thermodynamic network that contains nearly 6000
species and roughly 4.5 million reactions, the largest chemical
reaction network ever built from rst principles. Pathnding on
the resulting network to the early-SEI component LEDC iden-
ties both previously-proposed mechanisms and three new
possible mechanisms, all in an automated fashion. Identica-
tion of optimal paths informs which reactions could be
promoted or hindered to control the abundance of benecial or
detrimental species, a key step towards the goal of engineering
SEI composition and controlling complex reactive systems in
general.

Future work will include pathnding to other important SEI
components and investigating the impact of additives on SEI
formation pathways. We are also developing an automated
procedure to calculate and incorporate reaction barriers into
the network as well as an automated approach to adding reac-
tions with more than two bonds changing or with one or more
bonds changing simultaneously during redox processes. With
this highly general, robust, and scalable approach, it will be
possible to understand and control complex chemical or elec-
trochemical reactive systems, expediting the development of
novel materials and chemical technologies in domains such as
energy storage and medicine and improving upon synthetic
pathways for industrial applications.
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