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meets mechanistic modelling for
accurate prediction of experimental activation
energies†

Kjell Jorner, a Tore Brinck, b Per-Ola Norrby c and David Buttar *a

Accurate prediction of chemical reactions in solution is challenging for current state-of-the-art approaches

based on transition state modelling with density functional theory. Models based on machine learning have

emerged as a promising alternative to address these problems, but these models currently lack the

precision to give crucial information on the magnitude of barrier heights, influence of solvents and

catalysts and extent of regio- and chemoselectivity. Here, we construct hybrid models which combine

the traditional transition state modelling and machine learning to accurately predict reaction barriers. We

train a Gaussian Process Regression model to reproduce high-quality experimental kinetic data for the

nucleophilic aromatic substitution reaction and use it to predict barriers with a mean absolute error of

0.77 kcal mol�1 for an external test set. The model was further validated on regio- and chemoselectivity

prediction on patent reaction data and achieved a competitive top-1 accuracy of 86%, despite not being

trained explicitly for this task. Importantly, the model gives error bars for its predictions that can be used

for risk assessment by the end user. Hybrid models emerge as the preferred alternative for accurate

reaction prediction in the very common low-data situation where only 100–150 rate constants are

available for a reaction class. With recent advances in deep learning for quickly predicting barriers and

transition state geometries from density functional theory, we envision that hybrid models will soon

become a standard alternative to complement current machine learning approaches based on ground-

state physical organic descriptors or structural information such as molecular graphs or fingerprints.
Introduction

Accurate prediction of chemical reactions is an important goal
both in academic and industrial research.1–3 Recently, machine
learning approaches have had tremendous success in quanti-
tative prediction of reaction yields based on data from high-
throughput experimentation4,5 and enantioselectivities based
on carefully selected universal training sets.6 At the same time,
traditional quantitative structure–reactivity relationship (QSRR)
methods based on linear regression have seen a renaissance
with interpretable, holistic models that can generalize across
reaction types.7 In parallel with these developments of quanti-
tative prediction methods, deep learning models trained on
reaction databases containing millions of patent and literature
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data have made quick qualitative yes/no feasibility prediction
routine for almost any reaction type.8

In the pharmaceutical industry, prediction tools have great
potential to accelerate synthesis of prospective drugs (Fig. 1a).9

Quick prediction is essential in the discovery phase, especially
within the context of automation and rapid synthesis of
a multitude of candidates for initial activity screening.3,10,11 In
these circumstances, a simple yes/no as provided by classica-
tion models is usually sufficient. More accurate prediction is
necessary in the later drug development process, where the
synthesis route and formulation of one or a few promising drug
candidates is optimized. Here, regression models that give the
reaction activation energy can be used to predict both absolute
reactivity and selectivity (Fig. 1b). Prediction of absolute reac-
tivity can be used to assess feasibility under process-relevant
conditions, while prediction of selectivity is key to reducing
purication steps. Predictive tools therefore hold great promise
for accelerating route and process development, ultimately
delivering medicines to patients both faster and at lower costs.

The current workhorse for computational studies of organic
reactions is density functional theory (DFT, Fig. 2a). Since rising
to prominence in the early 90s, DFT has enjoyed extraordinary
success in rationalizing reactivity and selectivity across the
reaction spectrum by modelling the full reaction mechanism.12
Chem. Sci., 2021, 12, 1163–1175 | 1163
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Fig. 1 (a) Example of synthetic route to a drug compound. Prospects for AI-assisted route design. (b) Accurate prediction of reaction barriers
gives both rate and selectivity. (c) The nucleophilic aromatic substitution (SNAr) reaction.
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The success of DFT can be traced in part due to a fortuitous
cancellation of errors, which makes it particularly suited for
properties such as enantioselectivity, which depends on the
relative energies of two structurally very similar transition states
(TSs). However, this cancellation of errors does not generally
extend to the prediction of the absolute magnitude of reactions
barriers (activation free energies, DG‡). In particular, DFT
struggles with one very important class of reactions: ionic
reactions in solution. Plata and Singleton even suggested that
computed mechanisms of this type can be so awed that they
are “not even wrong”.13 Similarly, Maseras and co-workers only
achieved agreement with experiment for the simple condensa-
tion of an imine and an aldehyde in water by introducing an ad
hoc correction factor, even when using more accurate methods
than DFT.14 These results point to the fact that the largest error
in the DFT simulations is oen due to the poor performance of
the solvation model.
Fig. 2 Different types of quantitative reaction prediction approaches. Me
Deep learning models (c) are emerging as an alternative. Hybrid models

1164 | Chem. Sci., 2021, 12, 1163–1175
Machine learning represents a potential solution to the
problems of DFT. Based on reaction data in different solvents,
machine learning models could in principle learn to compen-
sate for both the deciencies in the DFT energies and the
solvation model. Accurate QSRR machine learning models
(Fig. 2b) for reaction rates or barriers have been constructed for,
e.g., cycloaddition,15,16 SN2 substitution,17 and E2 elimination.18

While these models are highly encouraging, they treat reactions
that occur in a single mechanistic step and they are based on an
amount of kinetic data (>500 samples) that is only available for
very few reaction classes. Another promising line of research
uses machine learning to predict DFT barrier heights and then
use these barrier heights to predict experimental outcomes.19 A
recent study from Hong and co-workers used the ratio of pre-
dicted DFT barriers to predict regioselectivity in radical C–H
functionalization reactions.20 While these models can show
good performance, the predicted barriers still suffer from the
chanistic DFT (a) and QSRR (b) are the current gold standard methods.
(d) combine mechanistic DFT modelling with traditional QSRR.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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shortcomings of the underlying DFT method and solvation
model. We therefore believe that for models to be broadly
applicable in guiding experiments, they should be trained to
reproduce experimental rather than computed barrier heights.

Based on the recent success of machine learning for
modelling reaction barriers, we wondered if we could combine
the traditional mechanistic modelling using DFT with machine
learning in a hybrid method (Fig. 2d). Machine learning would
here be used to correct for the deciencies in the mechanistic
modelling. Hybrid models could potentially reach useful
chemical accuracy (error below 1 kcal mol�1)21,22 with fewer
training data than QSRR models, be able to treat more
complicated multi-step reactions, and naturally incorporate the
effect of catalysts directly in the DFT calculations. Mechanistic
models are also chemically understandable and the results can
be presented to the chemist with both a view of the computed
mechanism and a value for the associated barrier. As a proto-
type application for a hybrid model, we study the nucleophilic
aromatic substitution (SNAr) reaction (Fig. 1c), one of the most
important reactions in chemistry in general and the pharma-
ceutical chemistry in particular. The SNAr reaction comprises
9% of all reaction carried out in pharma,23 and features heavily
in commercial routes to block-buster drugs.24,25 It has recently
seen renewed academic interest concerning whether it occurs
through a stepwise or a concerted mechanism.26 We show that
hybrid models for the SNAr reaction reach chemical accuracy
with ca. 100–200 reactions in the training set, while traditional
QSRR models based on quantum-chemical features seem to
need at least 200 data points. Models based on purely structural
information such as reaction ngerprints need data in the
range of 350–400 samples. If these results hold also for other
reaction classes, we envision a hierarchy of predictive models
depending on how much data is available. Here, transfer
Fig. 3 Distribution of (a) activation energies (b) nucleophilic atoms and (c
for combinations of nucleophilic atom and leaving atom. (e) Frequency o

© 2021 The Author(s). Published by the Royal Society of Chemistry
learning might ultimately represent the best of both worlds.
Models pre-trained on a very large number of DFT-calculated
barriers27 can be retrained on a much smaller amount of
high-quality experimental data to achieve chemical accuracy for
a wide range of reaction classes.
Results and discussion

First, we describe how the SNAr reaction dataset was collected
and analysed. We then describe the featurization of the reac-
tions in terms of ground state and TS features. Machine
learning models are then built and validated. Finally, we use the
model for regio- and chemoselectivity prediction on patent
reaction data, a task the model was not explicitly trained for.
Reaction dataset

We collected 449 rate constants for SNAr reactions from the
literature and ran 443 (98.7%) successfully through the
modelling procedure. Of these 443 reactions, 336 corresponded
to unique sets of reactants and products, of which 274 were
performed under only one set of conditions (temperature and
solvent) while 62 were performed under at least two sets of
conditions. Activation energies were obtained from the rate
constants via the Eyring equation at the reaction temperature,
and were in the range 12.5–42.4 kcal mol�1 with a mean of
21.3 kcal mol�1 (Fig. 3a). The dataset is diverse, with nitrogen,
oxygen and sulphur nucleophiles (Fig. 3b) and oxygen, halogen
and nitrogen leaving groups (Fig. 3c), although the combina-
tions of nucleophilic atom and leaving atoms is unevenly
populated (Fig. 3d). The two most common nucleophiles are
piperidine (96 entries) and methoxide (49 entries), while the
most common substrates are dinitroarenes (Fig. 3e). A principal
components analysis of the full feature space (vide infra) reveals
) leaving atoms in the dataset. (d) Number of reactions in the training set
f the five most common nucleophiles and substrates in the training set.

Chem. Sci., 2021, 12, 1163–1175 | 1165
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Fig. 4 Dataset visualization with unsupervised (PCA) and supervised (PLS + UMAP) dimensionality reduction for the Xfull feature set.
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a clear separation of reactions with respect to different nucle-
ophile and leaving group atom types (Fig. 4). Supervised
dimensionality reduction with partial least squares (PLS) to 5
dimensions, followed by unsupervised dimensionality reduc-
tion with the uniform manifold approximation and projection
(UMAP) method28 yielded separated clusters with clear chemical
interpretation (Fig. 4).
Reaction feature generation

To calculate the reaction features automatically, we constructed
a workow called predict-SNAr. The workow takes a reaction
SMILES representation as input, deduces the reactive atoms
and computes reactants, transition states and products with
a combination of semi-empirical (SE) methods and DFT
(Fig. 5a). Both concerted and stepwise mechanisms are treated
and all structures are conformationally sampled, making use of
the lowest-energy conformer (Fig. 5b). In the case of anionic
nucleophiles, a mixed explicit/implicit solvation model was
employed to reduce the errors of the computed barriers. The
workow also automatically calculates the quantum mechan-
ical reaction features (Fig. 5c). When reactions corresponded to
substitution on several electrophilic sites in a substrate, each
reaction was treated with a separate calculation. Initially, we
attempted to calculate the transition states with SE methods,
but this was unsuccessful. Anionic nucleophiles are articially
destabilized by the lack of diffuse basis functions in the SE
method, and the resulting potential energy surface is therefore
1166 | Chem. Sci., 2021, 12, 1163–1175
highly distorted. We therefore used a more robust combination
of SE and DFT as outlined in the ESI, Section 2.3.† There are still
some limitations of our SNAr workow that could be improved
in future work, such as treating counter-ions and acid and base
catalysis.

For the hybrid model, we needed features for both the
ground state molecules and the rate-determining transition
state. We opted for physical organic chemistry features which
would be chemically understandable and transferable to other
reactions.29 We selected features associated with nucleophi-
licity, electrophilicity, sterics, dispersion and bonding as well as
features describing the solvent. As “hard” descriptors of
nucleophilicity and electrophilicity, we used the surface average
of the electrostatic potential (�V s) of the nucleophilic or elec-
trophilic atom.30,31 (“Descriptor” and “feature” are here used as
synonyms.) As “so” descriptors we used the atomic surface
minimum of the average local ionization energy (Is,min),32 as well
as the local electron attachment energy (Es,min), which has been
shown to correlate well with SNAr reactivity.33,34 From concep-
tual DFT, we used the global electrophilicity descriptor u and
nucleophilicity descriptor N, as well as the corresponding local
nucleophilicity and electrophilicity descriptors ‘N and ‘u.35

These electronic features were complemented with atomic
charges (q) from the DDEC6 scheme36 and the electrostatic
potential at the nuclei (VN) of the reactive atoms.37 In terms of
sterics and dispersion, we use the ratio of solvent accessible
surface area (SASAr)38 of the reactive atoms and the universal
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Automatic workflow for calculation of reaction mechanism and features. (b) Important components of the workflow. (c) Features
calculated for ground and transition states. Conformational sampling done with GFN2-xTB using the CREST tool, geometries refined with
uB97X-D/6-31+G(d) with SMD solvation. Final single points energies with uB97X-D/6-311+G(d,p). Electronic structure features calculated with
B3LYP/6-31+G(d).
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quantitative dispersion descriptor Pint.39 For bonding, we used
the DDEC6 bond orders (BO) of the carbon-nucleophile and
carbon-leaving group bonds.40 Solvents were described using
the rst ve principal components (PC1–PC5) in the solvent
database by Diorazio and co-workers.41 The most important TS
feature was the DFT-calculated activation free energy
(DG‡

DFT), i.e., a “crude estimation” of the experimental target.42

We also added VN, DDEC6 charges and bond orders at the TS
geometry. We decided to not include the reaction temperature
as one of the features, as reactions with higher barriers tend to
be run at higher temperatures as they are otherwise too slow,
and therefore correlate unduly with the target (see ESI, Section
5.6†). Atomic features are denoted with C (central), N (nucleo-
philic) or L (leaving) in parenthesis, e.g., q(C) for the atomic
charge of the central atom. Features at the TS geometry are
indicated with a subscript “TS”, e.g., q(C)TS.

We chose to investigate three main feature sets: (1) Xfull,
containing all the features (34 in total) for maximum predictive
accuracy, (2) XnoTS without any information from the TS, to
assess whether hybrid models are indeedmore accurate, and (3)
© 2021 The Author(s). Published by the Royal Society of Chemistry
Xsmall, which represents a minimal set of 12 features that can be
interpreted more easily, with DG‡

DFT as the only TS feature (see
ESI† for complete list). We also made two versions of XnoTS,
excluding either surface electronic descriptors (Xtrad, missing
�V s, Is,min, Es,min and Pint) or traditional features (Xsurf, missing
u, N, ‘u, ‘N, VN, q, and BO). As a comparison to the physical
organic features, we investigated four feature sets that only
make use of the 2D structural information of the molecule: the
Condensed Graph of Reaction (CGR) with the In Silico Design
and Data Analysis (ISIDA) descriptors43 (XISIDA,atom and
XISIDA,seq), the Morgan reaction ngerprints44 as implemented
in the RDKit (XMorgan),45 as well as the deep learning reaction
ngerprints from Reymond and co-workers (XBERT).46 These
structural features can be calculated almost instantaneously
and are useful for fast prediction. We added solvent informa-
tion to the structural features by concatenating PC1–PC5.
Choosing the best machine learning model

We split the data randomly into 80% used for model selection
(training set) and 20% used to validate the nal model (test set).
Chem. Sci., 2021, 12, 1163–1175 | 1167
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To compare the performance of a series of machine learning
models on the training set, we used bootstrap bias-corrected
cross-validation (BBC-CV) with 10 folds.47 BBC-CV is an
economical alternative to nested cross-validation to avoid
overtting in the model selection process and also gives an
estimate of the bias for choosing the model that performs best
on the training set. We measure performance with the squared
correlation coefficient (R2), the mean absolute error (MAE) and
the root mean squared error (RMSE). We focus on theMAE as its
scale is directly comparable to the prediction error. Error bars
are given in terms of one standard error of the mean.

The results of the model validation (Fig. 6a and Table S5†)
show a clear progression from simpler models such as linear
regression (LR) with a MAE of 1.20 kcal mol�1, to intermediate
methods such as random forests (RF) at 0.98 kcal mol�1, to
more advanced Support Vector Regression (SVR) and Gaussian
Process Regression (GPR) models at 0.80 kcal mol�1. Most
importantly, the best methods are well below chemical accuracy
(1 kcal mol�1). In comparison, the raw DFT barriers DG‡

DFT show
a high MAE of 2.93 kcal mol�1 and have the same predictive
value as just guessing the mean of the training dataset (Fig. 6b).
Compensating for systematic errors in the DFT energies by
linear correction helps, but still has an unacceptable MAE of
1.74 kcal mol�1. Interestingly, simpler linear methods such as
the Automatic Relevance Determination (ARD) can achieve the
same performance as the non-linear RF when polynomial and
Fig. 6 Model performance. (a) Selection of hybridmodels of increasing c
of physical organic feature sets. (d) Comparison of structural feature sets.
the text. The orange bar corresponds to the same model in all subplots, G
same scale is given in Fig. S6.†

1168 | Chem. Sci., 2021, 12, 1163–1175
interaction features of second order (PF2) are used to capture
non-linear effects. The overall best method considering MAE is
GPR with the Matern 3/2 kernel (GPRM3/2). This result is very
gratifying as GPRs are resistant to overtting, do hyper-
parameter tuning internally and produce error bars that can be
used for risk assessment. We therefore selected GPRM3/2 as our
nal method and also used it to make comparisons between
different feature sets. In the BBC-CV evaluation, it had an R2 of
0.87, an MAE of 0.80 kcal mol�1, and an RMSE of
1.41 kcal mol�1. Importantly, the BBC-CV method indicates
a very low bias of only 0.02 kcal mol�1 for MAE in choosing
GPRM3/2 as the best method, so overtting in the model selec-
tion can be expected to be small. Indeed, GPRM3/2 shows
excellent performance on the external test set, with a R2 of 0.93,
a MAE of 0.77 kcal mol�1 and an RMSE of 1.01 kcal mol�1

(Fig. 7). The prediction intervals measuring the uncertainty of
the individual prediction have a coverage of 99% for the test set,
showing that the model can also accurately assess how reliable
its predictions are.

Performance of different feature sets

Now, are hybrid models using TS features better than the
traditional QSRR models based on just ground-state features?
The validation results indicate that hybrid models built with the
full feature set Xfull perform the best, but not signicantly better
than models built on XnoTS without TS features (Fig. 6c). Also
omplexity. (b) Performance of DFT versus hybridmodel. (c) Comparison
Error bar corresponds to one standard error. Abbreviations explained in
PRM3/2 with the Xfull feature set. A comparison of all the models on the

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Performance of final GPRM3/2 model on the external test set.
Coverage for test set: 99%. The grey band corresponds to
�1 kcal mol�1 with respect to the identity line.
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the model built on the small expert-chosen feature set Xsmall

shows similar performance. To investigate the matter more
deeply, we calculated the learning curves of GPRM3/2 using the
different features sets (Fig. 8a) on the full dataset. We see that
all models indeed do perform similarly with the amount of
training data used for the model selection (318 reactions), but
that the hybrid models based on Xfull and Xsmall seem to have an
advantage below 150 samples. Indeed, the learning curve for
predicting the DG‡

DFT based on XnoTS also starts levelling off
aer ca. 150 samples (Fig. 8b). This indicates that the model is
able to implicitly learn DG‡

DFT from the ground state features
given sufficient data. It seems that there is still a residual
advantage using the full hybrid model even with larger dataset
sizes, although this advantage becomes smaller and smaller.
For larger datasets it would therefore make sense to apply the
“one-standard-error” rule and use the less complex model based
on XnoTS which is easier to implement. This rule states that
a simpler model could be chosen in place of a better-scoring
and more complex one if the score of the simpler model is
within one standard error of the more complex model.48,49 But
with fewer datapoints, it would instead make sense to use Xfull
Fig. 8 (a) Learning curve giving the mean absolute error as a function of
DFT activation energies using the ground state features. Shaded regions

© 2021 The Author(s). Published by the Royal Society of Chemistry
for maximum performance. Models built on ground state
features lacking either surface features (Xtrad) or lacking more
traditional electronic descriptors (Xsurf) showed worse perfor-
mance (MAE: 1.00 and 1.10 kcal mol�1, respectively) than when
both were included as in XnoTS (MAE: 0.86 kcal mol�1). There-
fore, both should be included for maximum performance and
seem to capture different aspects of reactivity. It will be inter-
esting to see if these trends with regard to dataset size hold up
also for other reaction classes.

How good can the model get given even more data? Any
machine learning model is limited by the intrinsic noise of the
underlying training data, given in our case by the experimental
error of the kinetic measurement. In the dataset, there are four
reactions reported with the same solvent and temperature but
in different labs or on different occasions. Differences between
the activation energies are 0.1, 0.1, 0.5 and 1.6 kcal mol�1. The
larger difference is probably an outlier, and we estimate the
experimental error is on the order 0.1–0.5 kcal mol�1. In
comparison, the interlaboratory error for a data set of SN2
reactions was estimated to ca. 0.7 kcal mol�1.17 It is thus
reasonable to believe that the current model with a MAE of
0.77 kcal mol�1 on the external test set is getting close to the
performance that can be achieved given the quality of the
underlying data. Gathering more data is therefore not expected
to signicantly improve the accuracy of the average prediction,
but may widen the applicability domain by covering a broader
range of structures (vide infra) and reduce the number of outlier
predictions.
Models based on structural information

Given the time needed to develop both traditional and hybrid
QSRR models, an attractive option is using features derived
from just chemical connectivity. We investigated this option
using the CGR/ISIDA approach with either atom-centred
(XISIDA,atom) or sequential (XISIDA,seq) fragment features, as well
as reaction difference ngerprints of the Morgan type with
a radius of three atoms (XMorgan3). The results with GPRM3/2

show good performance using XMorgan3, almost reaching
number of reactions in the training set. (b) Learning curve to predict the
correspond to one standard error.
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chemical accuracy with a MAE of 1.09 kcal mol�1 (Fig. 6d).
ISIDA sequence and atom features perform worse (Fig. 6d). They
also require an accurate atom-mapping of the reaction, and we
found that automatic atom mapping failed for 50 (11%) of the
reactions studied. The methods above rely on expert-craed algo-
rithms to generate ngerprints or feature vectors. In recent years,
deep learning has emerged as a method for creating such repre-
sentations from the data itself, i.e., representation learning. The
recent reaction ngerprint from Reymond and co-workers is one
such example, where the ngerprint is learned by a BERT deep
learning model that is pre-trained in an unsupervised manner on
reaction SMILES from patent data.46 Gratifyingly, the model built
on the XBERT feature set performs on par or slightly better than
XMorgan3 with an MAE of 1.03 kcal mol�1 (Fig. 6d). The big
advantage with the BERT ngerprint is that it does not need atom
mapping and can potentially be used with noisy reaction SMILES
with no clear separation between reactants, reagents, catalysts and
solvents. We also used BERT ngerprints specially tuned for
reaction classication to construct reaction maps, which show
clear separation between different types of nucleophiles and elec-
trophiles in the dataset (Fig. S7†). The learning curve shows that
the model based on XBERT is more data-hungry than the models
based on physical organic features, and requires ca. 350–400 data
points to reach chemical accuracy (Fig. 8a). The radius of three for
the Morgan ngerprint was chosen to incorporate long-range
effects of electron-donating and electron-withdrawing groups in
the para position of the aromatic ring (Fig. 9b). Plotting theMAE as
a function of the ngerprint radius shows a clear minimum at
a radius of three (Fig. 9a). With this radius, all relevant reaction
information seems to be captured, and increasing the radius
further probably just adds noise through bit clashes in the
ngerprint generation. Encouraged by the promising results with
the structural data, we wondered if a combined feature set with
both the physical organic features in Xfull and the structural
features in XBERT would perform even better. However, the model
built on the combined feature set performs on par with the model
built on only Xfull (Table S5†).

In summary, models based on reaction ngerprints are an
attractive alternative when a sizeable dataset of at least 350
reactions are available as they are easy to develop and make very
fast predictions.
Fig. 9 (a) Mean absolute error for GPRM3/2 as a function of Morgan finger
different radius. A radius of radius three or more is needed to capture th

1170 | Chem. Sci., 2021, 12, 1163–1175
Interpretability

There has a been a push in the machine learning community in
recent years to not only predict accurately but also to under-
stand the factors behind the prediction.50 Models are oen
interpreted in terms of their feature importances, i.e., how
much a certain feature contributes to the prediction. Feature
importances can be obtained directly from multivariate linear
regression models as the regression coefficients and have been
used extensively to give insight on reaction mechanisms based
on ground-state features.51 A number of modern techniques can
obtain feature importances for any machine learning tech-
nique, including SHAP values52 and permutation importances,53

potentially allowing the simple interpretation of linear models
to be combined with the higher accuracy of more modern non-
linear methods.

Although feature importances can be easily calculated, they
are not always easily interpretable. In particular, correlation
between features poses severe problems. This problem is
present for our feature set, as shown by the Spearman rank
correlation matrix and the variance ination factors (VIFs)54 of
Xfull (Fig. S8†). Therefore, special care has to be taken when
calculating the feature importances, and the nal interpretation
of themwill not be straightforward. To get around this technical
problem of multicollinearity, we clustered the features based on
their Spearman rank correlations, keeping only one of the
features in each cluster (Fig. 10a). The stability of the feature
ranking was further analysed by using ten bootstrap samples of
the data.

First, we looked at how important DG‡
DFT is in our hybrid

model. It turns out that it is consistently ranked as the most
important feature across all bootstrap samples (Fig. 10b). The
second-most important feature is the so electrophilicity
feature Es,min(C). To see more clearly which are the most
important ground-state features, we analysed a model built on
XnoTS (Fig. 10b). The most important feature is again the so
electrophilicity descriptor Es,min(C). Other important features
are the so nucleophilicity descriptor Is,min(N) and the feature
cluster of hard electrophilicity represented by �V s(C). The global
nucleophilicity descriptor N and the electrophile–nucleophile
bond strength through BO(C–N) are also ranked consistently
high.
print radius. (b) Atoms and bonds considered by Morgan fingerprints of
e effect from groups in the para position of the aromatic ring.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 (a) Clustering of correlated features based on Spearman rank correlation. (b) Bootstrapped feature ranking for clustered Xfull and XnoTS.
For identity of feature clusters, see the ESI.†
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In summary, the most important feature for the hybrid
models is, as expected, the DFT-computed activation free energy
DG‡

DFT. Models trained without the TS features give insight into
the features of substrates and nucleophiles that govern reac-
tivity. Here, the most important features are the electrophilicity
of the central carbon atom of the substrate, followed by those
related to nucleophilicity. Steric and solvent features are less
important. There are a number of plausible reasons why solvent
features have lower importance. Firstly, the effect of the solvent
is already incorporated in the DG‡

DFT through the use of both
implicit and explicit solvation (for anions of second and third
row elements of the periodic table). Secondly, the implicit
solvent inuences the values of the quantum-mechanically
derived features. For the Es,min descriptor this effect has been
shown to be substantial.34,55 Thirdly, the solvent correction can
likely be learnt implicitly also from the other features for
problematic nucleophiles such as those with anionic oxygen.
This aspect is also connected to the fourth factor, that solvent
variation is low for the anionic nucleophiles, where for example
reactions with oxygen nucleophiles are only carried out in water
or methanol (Fig. S25†). There is therefore limited data for the
model to learn from the solvent features for some nucleophile
classes. Collection of more balanced data will be key to
improved models. Steric features may become more important
for other types of substrates as the current data set doesn't
include very sterically crowded substrates or nucleophiles.

Applicability domain

The applicability domain (AD) is a central concept to any QSRR
model used for regulatory purposes according to the OECD
guidelines.56 The AD is broadly dened by the OECD as “the
response and chemical structure space in which the model
© 2021 The Author(s). Published by the Royal Society of Chemistry
makes predictions with a given reliability”. Although there have
been many attempts to dene the AD for prediction of molec-
ular properties, there has been little work for reaction predic-
tion models. Here, we will follow a practical approach to (1)
dene a set of strict rules for when the model shouldn't be
applied based on the reaction type and the identity of the
reactive atoms, (2) identify potentially problematic structural
motifs from visualization of outliers, and (3) assess whether the
uncertainty provided by the GPRM3/2 model can be used for risk
assessment.

First, the model should only be applied to SNAr reactions.
Second, the model can only be used with condence for those
reactive atom types that are part of the training set (Fig. 3b). One
example of reactions falling outside the applicability domain
according to these rules are those with anionic carbon nucleo-
philes. A provisional analysis of the outliers (residual of
>2 kcal mol�1) for the training set identies many reactions
involving methoxide nucleophile (Fig. 11). This tendency can be
partly understood based on the poor performance of implicit
solvation models for such small, anionic nucleophiles which is
probably not corrected fully by our model. Additionally, some of
these reactions with methoxide and unactivated substrates are
very slow and have been run at high temperature and the rate
constants have been determined through extrapolation tech-
niques, leading to a larger error in the corresponding rates.
Outliers from the test set involve azide and secondary amine
nucleophiles. However, secondary amines are also the most
common type of nucleophile in the dataset and are therefore
expected to contribute to some outliers. For a complete list of all
outliers, see the ESI.†

We also investigated whether the prediction uncertainty
given by the GPRM3/2 model could be trusted. For predicting
Chem. Sci., 2021, 12, 1163–1175 | 1171
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Fig. 11 Example of outliers for training and test set. Ranges in parenthesis correspond to signed errors in kcal mol�1.
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molecular properties, similarity to the training set is usually
used to assess whether a prediction should be trusted (in the
applicability domain) or not (outside the domain). The simi-
larity is measured by distance metrics based on molecular
ngerprints.57 For reactions, difference ngerprints have been
shown to differentiate between reaction classes, but their suit-
ability for dening an applicability domain within one reaction
class is not clear.58 In the absence of a clear similarity metric, we
used the Distance to Model in X-space (DModX) of a PLS model
with two components (dimensions) to compare to GPRM3/2. PLS
is a type of linear method that uses dimensionality reduction
and that is used widely in chemometrics. DModX is based on
distance in the latent space used by the PLS model and is an
established metric for dening the applicability domain.59 We
compared the performance of DModX to the standard deviation
(std) of the GPRM3/2 predictions using integral accuracy aver-
aging curves (Fig. 12). The integral accuracy averaging curve is
a standard tool for evaluating uncertainty metrics, where the
predicted values are ordered from most to least reliable
according to the uncertainty metric.60 The MAE is then plotted
as a function of the portion of included data. A good uncertainty
metric should show a curve with an upward slope from le to
right, as including more points with larger uncertainty should
lead to a larger error. As can be seen from the plot, both DModX
and GPRM3/2 std are decent measures of uncertainty. As the
GPRM3/2 std performs best, the prediction intervals (as shown in
Fig. 12 Integral accuracy averaging curve. Predicted values are
ordered according to an uncertainty measure from most certain to
least certain. MAE is calculated from the predictions of the GPRM3/2

model.

1172 | Chem. Sci., 2021, 12, 1163–1175
Fig. 7) can be used directly as a measure of how reliable the
prediction is.

As there are 62 reactions which occur in the dataset with
more than one reaction condition (different temperature or
solvent), we investigated the performance of leaving these
reactions out altogether in the modelling. With this leave-one-
reaction-out validation approach, we observed a MAE of
1.00 kcal mol�1 for GPRM3/2 (compared to 0.80 kcal mol�1 from
normal cross-validation). In comparison, a model trained on
XBERT decreased from 1.03 to 1.11 kcal mol�1. We also tested
leave-one-electrophile-out, giving a MAE of 1.20 kcal mol�1 and
leave-one-nucleophile-out, giving a of MAE 0.68 kcal mol�1.
These results indicate that the model is able to predict outside
its immediate chemical space with good accuracy, and not only
interpolate.

Taken together, the applicability domain of our model is
dened strictly in terms of the type of reaction (SNAr) and the
types of reactive atoms in the training set. The outlier analysis
identied that extra care should be taken when interpreting the
results of reactions at high temperature and with certain
nucleophile classes. The width of the prediction interval from
the GPRM3/2 model is a useful measure of the uncertainty of the
prediction.
Validation on selectivity data

To assess whether the model can be used not only for predicting
rates, but also selectivities, we compiled a dataset of reactions
with potential regio- or chemoselectivity issues from patent
data.61 A total of 4365 SNAr reactions were considered, of which
1214 had different reactive sites on the same aromatic ring,
while only one product was recorded experimentally. A reactive
site was considered as a ring carbon with a halogen substituent
(F, Cl, Br and I) that could be substituted with SNAr. Regiose-
lectivity means distinguishing between reactive sites with the
same type of halogen, while for chemoselectivity the halogens
are different. Out of these 1214, we selected the 100 with lowest
product molecular weight for a preliminary evaluation. As
reaction solvent or temperature was not available, we used
acetonitrile for neutral reactions and methanol for ionic reac-
tions and a reaction temperature of 25 �C. It is possible that
neglecting conditions information in this way reduces the
accuracy of our model. Each possible reaction leading to
different isomers was modelled by a separate predict-SNAr
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Models for quantitative rate prediction for different data
regimes based on the SNAr dataset.
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calculation (209 in total), and the predicted major isomer was
taken as the one corresponding to the lowest DG‡. As another
testament to the robustness of the workow, only 3 of 209 TS
calculations failed (1.4%), leading nally to results for 97
reactions with selectivity issues. Of these, 66 involved regiose-
lectivity and 31 chemoselectivity. The results show that GPRM3/2

was able to predict the correct site in 86% of the cases (top-1
accuracy), with 85% for regioselectivity and 87% for chemo-
selectivity. In comparison, predictions based on only the DFT
activation energies give a comparable top-1 accuracy of 87%,
with 91% for regioselectivity and 77% for chemoselectivity. It is
notable that the GPRM3/2 model shows a much better score for
chemoselectivity (87%) than DFT (77%). For regioselectivity
prediction, where the same element is being substituted, DFT
probably works well due to error cancellation. That the hybrid
MLmodel performs better than DFT for chemoselectivity clearly
shows that it has learnt to compensate for the systematic errors
in the DFT calculations. In fact, it seems that the ML model is
balancing the gain in chemoselectivity prediction with a loss in
regioselectivity (85%) compared to DFT (91%), leading to
a comparable accuracy on both tasks. More training data is
expected to alleviate this loss in regioselectivity accuracy. Also,
inclusion of the actual solvents and temperatures could also
increase accuracy. Further validation work could extract the
conditions from the original patents, or use a dataset that
already contains this information.

Overall, it is remarkable that the hybrid model GPRM3/2

performs so well (86%) for selectivity as it was not explicitly trained
on this task. In comparison, for electrophilic aromatic substitution
(SEAr), single-task deep learning models trained for selectivity
prediction of bromination, chlorination, nitration and sulfonyla-
tion achieved top-1 accuracies of 50–87%.62 For bromination, the
RegioSQM model based on semiempirical energies of the regioi-
someric intermediate s-complexes achieved 80%, compared to
85% for the neural network just mentioned. In light of these
models, the 86% top-1 accuracy obtained with GPRM3/2 for SNAr
looks very competitive. Likely, hybrid models explicitly trained for
selectivity prediction can perform even better. Another approach
would be to use transfer learning to repurpose deep learning
models for barrier prediction to selectivity prediction.
Conclusions and outlook

We have created hybrid mechanistic/machine learning models
for the SNAr reaction which incorporate TS features in addition
to the traditional physical organic features of reactants and
products. The chosen Gaussian Process Regression model
achieved a mean absolute error of only 0.77 kcal mol�1 on the
external test set, well below the targeted chemical accuracy of
© 2021 The Author(s). Published by the Royal Society of Chemistry
1 kcal mol�1. Furthermore, the model achieves a top-1 accuracy
for regio- and chemoselectivity prediction on patent reaction
data of 86%, without being explicitly trained for this task.
Finally, the model comes with a clear applicability domain
specication and prediction error bars that enables the end user
to make a contextualized risk assessment depending on what
accuracy is required.

By studying models built on reduced sets of the physical
organic features, as well as reaction ngerprints, we identied
separate data regimes for modelling the SNAr reaction (Fig. 13).
In the range 0–50 samples, it is questionable whether accurate
and generalizable machine learning models can be con-
structed.63 Instead, we suggest that traditional mechanistic
modelling with DFT should be used, with appropriate consid-
eration of its weaknesses. With 50–150 samples, hybrid models
are likely the most accurate choice, and should be used if time
and resources for their development is available. In the range
150–300 samples, traditional QSRR models based on physical
organic features reach similar accuracy as hybrid models, while
models based on purely structural information become
competitive with over 300 samples. It will be very interesting to
see if these numbers generalize to other reaction classes. For
choosing features for QSRR models, it is notable that electronic
reactivity features from DFT were consistently ranked high in
the feature importances, and we saw that the inclusion of
surface features makes the models signicantly better.

Our workow can handle the mechanistic spectrum of
concerted and stepwise SNAr reactions, and we are currently
working on extending it to handle the inuence of general or
specic acid and base catalysts as well as treating related reaction
classes. This general model is a signicant improvement in
generality compared to previous work, which modelled selectivity
of SNAr reactions in terms of the relative stability of the s addition
complexes and therefore was only applicable to reactions with
step-wise mechanisms.64–66 Although promising, we believe that
widespread use of hybrid models is currently held back by diffi-
culties in computing transition states in an effective and reliable
way.We envision that this problemwill be solved in the near future
by deep learning approaches that can predict both TS geometries67

and DFT-computed barriers27 based on large, publicly available
datasets.68,69 In the end, machine learning for reaction prediction
needs to reproduce experiment, and transfer learningwill probably
be key to utilizing small high-quality kinetic datasets together with
large amounts of computationally generated data. Regardless of
their construction, accurate reaction prediction models will be key
components of accelerated route design, reaction optimization
and process design enabling the delivery of medicines to patients
faster and with reduced costs.
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