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The high proportion of unidentified extractable organofluorine
(EOF) observed globally in humans and the environment indicates
widespread occurrence of unknown per- and polyfluoroalkyl
substances (PFAS). However, efforts to standardize or assess the
reproducibility of EOF methods are currently lacking. Here we
present the first EOF interlaboratory comparison in water and
sludge. Three participants (four organizations) analyzed unforti-
fied and PFAS-fortified ultrapure water, two unfortified ground-
water samples, unfortified wastewater treatment plant effluent
and sludge, and an unfortified groundwater extract. Participants
adopted common sample handling strategies and target lists for
EOF mass
chromatography (CIC) and liquid chromatography-tandem mass
spectrometry (LC-MS/MS) methods. EOF accuracy ranged from
85-101% and 76-109% for the 60 and 334 ng L~* fluorine (F) —
fortified water samples, respectively, with between-laboratory

balance but used in-house combustion ion-

variation of 9-19%, and within-laboratory variation of 3-27%. In
unfortified sludge and aqueous samples, between-laboratory
variation ranged from 21-37%. The contribution from sum
concentrations of 16 individual PFAS (}_PFAS-16) to EOF ranged
from 2.2-60% but extended analysis showed that other targets
were prevalent, in particular ultra-short-chain perfluoroalkyl
acids (e.g. trifluoroacetic acid) in aqueous samples and per-
fluoroalkyl acid-precursors (e.g. polyfluoroalkyl phosphate dies-
ters) in sludge. The EOF-CIC method demonstrated promising
accuracy, robustness and reporting limits but poor extraction
efficiency was observed for some targets (e.g. trifluoroacetic
acid).
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Environmental significance

Per- and polyfluoroalkyl substances (PFAS) occur as a complex mixture in
the environment. Typically, targeted analytical methods are used to
measure a small subset of PFAS, thereby underestimating the burden to
the environment. To address this problem, extractable organofluorine
(EOF)-based mass balance approaches have been developed, which aim to
capture all EOF in a sample, while quantifying the proportion of orga-
nofluorine attributed to known PFAS. However, despite increasing
interest, there has been relatively little standardization of EOF methods,
leading to questions surrounding reproducibility of data. This work
describes the first interlaboratory comparison of EOF in water and sludge
matrices. The results demonstrate reproducibility in EOF determination,
while confirming a large proportion of unidentified EOF, which would
otherwise be missed when using strictly targeted analytical approaches.

Introduction

Per- and polyfluoroalkyl substances (PFAS) represent a class of
>4500 substances containing at least one perfluorocarbon
moiety (i.e. -C,F,,-)." Environmental monitoring of PFAS
generally focuses on a suite of ~30 PFAS, mostly consisting of
perfluoroalkyl carboxylic and sulfonic acids (PFCAs and PFSAs,
respectively)® which underestimates the total PFAS burden in
the environment. To address this problem, several analytical
approaches have emerged which aim to capture the large
number and diversity of PFAS. One of these, the so-called
“fluorine mass balance” approach, represents a promising
method to estimate the fraction of organofluorine from
unknown PFAS. Fluorine mass balance studies consist of
a combination of measurements of different forms of fluorine,
expressed as “fluorine equivalents” (i.e. mass of fluorine per
mass of sample [e.g. ng g~ F] or mass of fluorine per volume of
sample [e.g. ng L' F]). Total fluorine (TF) refers to the total
amount of organic and inorganic fluorine measured directly in
a sample (i.e. no sample extraction), while extractable organo-
fluorine (EOF) refers to isolating organofluorine from the
sample matrix, while removing inorganic fluorine (typically
fluoride or its complexes with AI**)** from the extract. The sum
of “known” and “unknown” EOF can be measured using
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fluorine-specific approaches such as combustion ion chroma-
tography (CIC) while PFAS that make up the “known” EOF can
be measured by targeted approaches (e.g. liquid
chromatography-tandem mass spectrometry; LC-MS/MS) and
then converted to fluorine-equivalent concentrations. EOF mass
balance studies have been carried out on a wide range of
matrices, including water,>® sediment,” sludge,® biological
samples,”™ and consumer products,'® all of which report
a large proportion of samples containing unidentified EOF.

The EOF approach has some advantages over other methods
for capturing the large number and diversity of PFAS. For
example, unlike the total oxidizable precursors (TOP) assay,'®
which is designed to capture perfluoroalkyl acid precursors,
EOF analysis captures all organofluorine substances extracted
from a sample. Moreover, compared to compound-specific
approaches such as non-target analysis,"*?* the EOF approach
is not reliant on individual chemical standards. Quantification
of any organofluorine substance or the combination of multiple
organofluorine substances can be performed using any
fluorine-containing standard.

Despite increasing interest, there has been relatively little
standardization of EOF methods, leading to questions
surrounding reproducibility of data. The few known intercom-
parison studies involving TF or EOF have focused on comparing
different instrumental platforms'* and  extraction
methods.”** Round-robin testing and standardization of
adsorbable organic fluorine (AOF) was also attempted in the
mid-1980s and 1990s, but these efforts were largely unsuccess-
ful,* likely due to an absence of commercial CIC systems at the
time. Compared to EOF (which involves combustion of an
extract) AOF involves adsorption of organofluorine on activated
carbon followed by combustion of the sorbent. Most recently,
a standardized method for determination of AOF was published
as a draft in November 2020 (DIN 38409-59 draft), but this
approach has not yet been approved.>

In January 2021, the European Commission put into force
the revised Drinking Water Directive (DWD), to be implemented
by member states within two years.”® A new addition to the DWD
is the group approach for PFAS, intended to cover all possible
PFAS with a limit of 500 ng L™ " “PFAS Total” in drinking water.
This approach is intended to serve as a complement to the
100 ng L' limit based on the sum of 20 individual PFAS, as
soon as the required monitoring method for PFAS Total
becomes available. The method, which is not yet established,
should have a measurement uncertainty of <50% and a limit of
quantification of max. 30% of the parametric value, ie.
150 ng L', EOF represents a promising metric for capturing
PFAS Total, but to date no work has been carried out to stan-
dardize or assess the reproducibility of EOF methods.

In addition to European-based regulatory initiatives, total
fluorine methods were included as part of the national PFAS
management plans in the US*® and Australia/New Zealand,”
highlighting the broad international interest in these
approaches. To address the growing international demand for
standardization of total PFAS or total fluorine-based methods,
the present work aimed to carry out the first interlaboratory
comparison of EOF. The main objectives were to (a) assess the
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accuracy and/or reproducibility of EOF and F-mass balance
measurements in sludge and various aqueous matrices using
identical extraction methods; (b) evaluate whether method
detection limits are suitable for use of EOF in regulatory
applications; and finally, (c) identify areas for further improve-
ment in EOF determination.

Materials and methods
Experimental design

The interlaboratory comparison consisted of 3 participants:
Orebro University (ORU), Stockholm University (SU), and the
Swedish Environmental Research Institute together with the
German Water Centre (IVL and TZW, respectively). Common
sample handling procedures and targets were adopted by all
labs (see Sample handling section) and all participants used
a combination of CIC and LC-MS/MS. Isotopically-labelled (IL)
standards were added after extraction (necessary for EOF mass
balance experiments) and the choice of IL standards and other
in-house QC parameters were left up to individual labs.
Samples were analyzed between October and December 2020
and included ultrapure water (unfortified [UPO], and fortified at
60.2 [UP60] and 334.4 ng L™ ' F [UP334] with a mixture of PFAS),
two samples of groundwater (GWiow, GWhign; both unfortified
but known to contain highly contrasting PFAS concentrations),
samples of wastewater treatment plant effluent and sludge
(both pooled, unfortified), and a pooled groundwater extract
(GWey; details in Table 1). All samples were analyzed in tripli-
cate unless noted otherwise. Details on sample preparation and
fortification of individual PFAS are provided in the ESLf

Sample handling

Sludge extraction procedure. Oven-dried (105 °C; overnight)
homogenized sludge (~0.5 g) was weighed into a polypropylene
centrifuge tube. After addition of methanol (5 mL), the sample
was vortexed, sonicated (15 min), and centrifuged (5 min; 1000
x g). The supernatant was transferred to a clean centrifuge tube,
the extraction was repeated once and the extracts were
combined and reduced under nitrogen (final volume = 1 mL).
The extract was transferred to a 1.7 mL Eppendorf centrifuge
tube containing 25 mg ENVI-Carb and 50 pL of glacial acetic
acid which was vortexed and then centrifuged (8000 x g, 10
min). Thereafter, 600 pL of extract was transferred to another
Eppendorf tube. An aliquot of 50 puL was fortified with aqueous
ammonium acetate (150 pL), MeOH (40 pL) and IL-standards (in
MeOH; 10 pL), and then stored for targeted analysis. The
remainder was stored for EOF analysis.

Aqueous extraction procedure. Effluent samples (all labs)
and groundwater samples (SU only) were filtered through glass
fiber filters (Whatman Grade GF/B, pre-baked at 450 °C for =12
h) that were cleaned with MeOH and ultrapure water prior to
use. Afterwards, the walls of the filtration flask were rinsed (3 x
3 mL MeOH) and the rinsate was added to the filtered sample.
Solid phase extraction (SPE) was used according to an estab-
lished method® with some modifications. Briefly, Oasis WAX
cartridges (Waters; 150 mg, 6 cm®) were conditioned (4 mL 0.1%
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Table 1 Description of samples included in the EOF interlaboratory comparison and summary of performance. Details on sample preparation

and fortification of individual PFAS are provided in the ESI

EOF interlaboratory

performance

Accuracy” Precision”
Abbrev.  Sample Amount extracted  (range,n =3) (CV%, n = 3)
UPO Unfortified ultrapure water 500 mL na na
UP60 Ultrapure water fortified to 60.2 ng L' F equivalent to 91 ng L' 3 PFAS-6 500 mL 85-101% 9%
UP334 Ultrapure water fortified to 334.4 ng L™ F equivalent to 504 ng L™' Y_PFAS-6 500 mL 76-109% 19%
GWiow Low-level groundwater (unfortified) 500 mL na 36%
GWhigh High-level groundwater (unfortified) 500 mL na 25%
Effluent  Pooled effluent (unfortified) 250 mL na 27%
Sludge Pooled sludge (unfortified) 05¢g na 43%
GWext Pooled groundwater extract (unfortified) Direct analysis na 2.4%°

na: not applicable.” Recovery of fortified concentration. ? Coefficient of variation (CV) between laboratories. © Normalized difference between two

laboratories.

NH,OH in MeOH, 4 mL MeOH, 4 mL ultrapure water) and then
loaded with sample (adjusted to pH 4 using glacial acetic acid)
at ~2 drops per s. Cartridges were rinsed (20 mL 0.01% aqueous
NH,OH, 10 mL water, 4 mL pH 4 aqueous ammonium acetate,
4 mL 20% MeOH), centrifuged (2 min, 1000 x g) and eluted
(4 mL 0.1% NH,OH in MeOH). The extract was reduced to 600
puL under a gentle nitrogen stream and handled in the same
manner as sludge extracts (see above).

Instrumental analysis

Sample extracts were analyzed for EOF by CIC and for 16 target
PFAS (“PFAS-16”; Table S1f) by LC-MS/MS using established
methods.”*>**? Briefly, TZW and SU both utilized Thermo-
Mitsubishi CICs while ORU employed a Metrohm CIC, all of
which were operated under hydropyrolytic conditions, wherein
organofluorine is converted to fluoride and then measured by
conductivity detection. For LC-MS/MS analysis, ORU and SU used
Waters Xevo TQ-S instruments coupled to Acquity UPLCs, while
IVL used an AB Sciex AP14000 coupled to a Shimadzu Prominence
UPLC system. All labs performed analysis in negative ionization,
multiple reaction monitoring mode. For determination of EOF
mass balance, recovery correction was not performed on either
the EOF or target PFAS dataset. In other words, IL-standards
added immediately prior to LC-MS/MS analysis are only used to
correct target PFAS data for matrix effects, not procedural losses.
In an attempt to close the EOF mass balance, ORU also analyzed
14 additional PFAS not included in the interlaboratory compar-
This included trifluoroacetic acid (TFAA), per-
fluoropropanoic acid (PFPrA) and trifluoromethane sulfonic acid
(TFMS) for the aqueous matrices and polyfluoroalkyl phosphate
di-esters (diPAPs) and perfluorooctane sulfonamide derivatives
for sludge (Table S17). Details of all methods and instrumenta-
tion are provided in the ESI (Tables S2 and S37).

ison.

Quality control

The following quality control procedures were included along-
side the interlaboratory comparison (see ESIT for details):

1460 | Environ. Sci.: Processes Impacts, 2021, 23, 1458-1465

e Procedural blanks, consisting of reagents but no sample
matrix, were analyzed for both EOF and target PFAS.

e Evaluation of removal of inorganic fluorine was done by
spike/recovery experiments with NaF performed by SU and
ORU.

e To assess accuracy and precision of non-recovery corrected
PFAS concentrations, each lab analyzed replicate spiked
samples and/or certified reference material and/or in-house
reference material. These data were used for internal quality
control purposes and were not reported as part of the inter-
laboratory comparison (see ESIt for the individual labs' quality
control results).

e To assess PFAS extraction efficiencies, recovery-corrected
PFAS-16 concentrations + the additional 14 PFAS were deter-
mined on separate portions of sample which were fortified with
internal standard prior to extraction. These results were
compared to non-recovery corrected concentrations.

Data handling

All participants performed a blank subtraction of their EOF data
using the average of the procedural (reagent) blank. None of the
participants performed a blank subtraction on target PFAS data
or corrected data for apparent recoveries. To assess the contri-
bution of target PFAS to EOF, target PFAS concentrations were
converted to fluorine equivalent concentrations (Cg ppas; N g
F or ng L' F) according to eqn (1):

Cr_pras = Cpras X g X AWE/MWppag (1)

where Cppas and np are the concentration (ng L™ or ng ¢~ ') and
number of fluorine atoms for a given target, respectively, AWy, is
the atomic weight of fluorine (g mol '), and MWopg,s is the
molecular weight of the target (g mol ). Once the concentra-
tions of each of the 16 target PFAS (Table S17) were converted to
fluorine equivalents, they were summed to obtain ) PFAS-16
concentrations, which were directly comparable to EOF
measurements. All participants substituted values <LOQ with

This journal is © The Royal Society of Chemistry 2021
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0 for calculating ) PFAS-16, with the consequence that the
unidentified part of EOF is considered as an upper bound. LOQ
for > PFAS-16 is found in ESI Table S9.1 EOF mass balance
(expressed as a percentage) is calculated according to eqn (2), in
which EOF and ) PFAS-16 are both expressed in terms of
fluorine equivalents.

EOF mass balance (%) = > _PFAS-16/EOF x 100% 2

Target PFAS reporting limits were derived from the average
plus 3 standard deviations of the procedural blanks or the
lowest calibration point. EOF reporting limits were based on the
average plus 3 standard deviations of the procedural (reagent)
blanks. Concentrations below EOF reporting limits are provided
to facilitate interlaboratory comparison. In all cases, error is
reported as standard deviation.

Results and discussion

Overviews of the EOF and PFAS-16 results are given in Fig. 1,
Table S4 and S5.F All participants reported data for all samples,
except the groundwater extract. Due to limited extract avail-
ability from IVL, TZW reported n = 2 replicates for ultrapure
water and effluent samples, n = 1 replicate for groundwater,
sludge, and groundwater extract, and the laboratory procedural
blank.

Groundwater extract and (un)fortified ultrapure water

EOF measurements performed on the groundwater extract were
reported by ORU and TZW (but not SU) and showed highly
consistent results (738 and 756 ng mL™~" F, respectively), indi-
cating good reproducibility of the instrumental analysis
methods. In unfortified ultrapure water, EOF concentrations
after procedural blank subtraction were negligible, with
concentrations <LOD-4.5 ng L' F reported by the 3 partici-
pants. > PFAS-16 concentrations were also low, ranging from
<LOD-0.1 ng L™ F. Accuracy for EOF concentration in ultrapure
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water fortified to 60.2 ng L' F was 85-101% and interlab
precision, expressed as coefficient of variation (CV) was 9%
(intralab CV = 8-52%, Table S47). Similar results were obtained
for ultrapure water fortified to 334.4 ng L™ " F, with accuracy 76—
109% and interlab precision CV 19% (intralab CV = 4-26%).
The EOF mass balance for these samples was reasonably
consistent across participants with 72-114% identified for UP60
and ~87-114% identified for UP334. Recovery experiments with
NaF added to ultrapure water showed that >96-99% of inor-
ganic fluorine was removed during the sample preparation (see
ESIt Quality control for details).

Groundwater

PFAS concentrations in GW,,, and GWy,, were expected to
differ by approximately an order of magnitude (Table 1). For
GWiow, SU, ORU, and IVL/TZW reported EOF concentrations of
161, 118, and 242 ng L' F resulting in interlab precision of CV
36% (intralab CV = 12.1-12.7%; Table S4t), and ) PFAS-16
concentrations of 68, 70, and 55 ng L™ F, respectively (Fig. 1).
Taken together, 42, 60, and 23% of the EOF was accounted for
by known PFAS, respectively (Fig. 2). In GWy;g1, SU reported
lower EOF concentrations (1710 ng L™ " F; CV = 10%) compared
to ORU (2710 ng L™ ' F; CV = 13%) and IVL/TZW (2740 ng L " F),
while ORU reported higher ) PFAS-16 concentrations
(520 ng L' F) compared to SU and IVL (391 and 389 ng L™ F;
Fig. 1). Nevertheless, the interlab precision was 25% and the
EOF mass balance was relatively consistent, with 23, 19, and
14% accounted for by known PFAS, respectively (Fig. 2). The
variation seen in PFAS-16 concentrations is likely attributable to
the fact that internal standards were not fortified prior to
extraction. The lower EOF concentrations produced by SU in
GWhign, may be due to filtering groundwater samples prior to
extraction (not done by ORU and IVL for groundwater), and
which may have resulted in loss of some unidentified PFAS due
to sorption to filters® or suspended solids.** The target PFAS
results, on the other hand, did not follow the same pattern as
EOF and seems therefore unaffected by the filtration difference.
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Fig.1 Concentrations (ng L~* F for aqueous samples and ng g~ F for sludge) of EOF (A), >"PFAS-16 (B) in interlaboratory comparison samples.
Error bars represent standard deviation (n = 3 for EOF and Y PFAS-16). The dashed red lines indicate the expected concentrations. * indicates

that only a single measurement was performed.

This journal is © The Royal Society of Chemistry 2021

Environ. Sci.. Processes Impacts, 2021, 23, 1458-1465 | 1461


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1em00224d

Open Access Article. Published on 10 september 2021. Downloaded on 14.02.2026 21.54.27.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental Science: Processes & Impacts

View Article Online

Communication

200
180 Csu WoRrU [OIVL/TZW
160 10
~ 140 8 *
=
Q 120 6
§
< 100 { e
2 4
2 80
£
L 60 2
[e]
W40 0
*
; : e
0 e T |
UP60 UP334 effluent sludge GWilow GWhigh

Fig.2 EOF mass balance (%) in interlaboratory comparison samples. Error bars represent pooled standard deviation (n = 3 for EOF and > PFAS-
16). The dashed red lines indicate the expected EOF mass balance. * indicates that only a single measurement was performed.

Sludge and effluent

EOF concentrations in effluent ranged from 445-785 ng L' F
with an interlab precision of CV 27% (intralab CV = 12-14%) and
S"PFAS-16 of 17-34 ng L' F, resulting in 2.2-6.0% of the EOF
attributed to known PFAS (Tables S4 and S5t). In comparison,
sludge EOF ranged from 148-372 ng g ' F (intralab CV = 10-
55%), resulting in interlab variation of 43%. Reported > PFAS-16
concentrations ranged from 148-372 ng g~ ' F resulting in 4.7-
8.0% of the EOF accounted for by known PFAS (Fig. 1 and 2). The
variability in target concentrations between labs is not surprising
considering that IL standards were only added after extraction,
thus prohibiting the compensation for extraction losses that is
usually done in target quantification. Sludge also tends to be
a more heterogeneous matrix that also can be an explanation for
higher variability in EOF and PFAS concentrations. Nevertheless,
these results show that, provided the losses of known PFAS are
proportional to EOF, good consistency in EOF mass balance can
be achieved. Recovery experiments with added NaF to sludge
showed that >96-99% of inorganic fluorine was removed during
the sample preparation (see ESIt Quality control for details).

Background level and method reporting limits

CIC instrumental background, evaluated by empty boat
combustions, was low and similar across all labs despite
differences in manufacturer and/or instrumental parameters.
EOF concentrations in UPO ranged from 13 to 85 ng L ™" F (all
participants), similar to in-house procedural blanks for all
matrices (42-94 ng L™ F), indicating that the ultrapure water
used here does not contain unknown fluorine that is retained by
the extraction sorbent (Table S61). The EOF reporting limits
based on the signal and variation observed in UPO and water
procedural blanks for the three laboratories were 151, 124, and
13 ng L' F (average signal plus 3 standard deviations). The
reason for the large variation between laboratories is not known
and further work is needed to better understand contamination
sources and lower the EOF background level.

Blank levels have implications for the determination of
samples with low concentrations of EOF. While the accuracy of

1462 | Environ. Sci.. Processes Impacts, 2021, 23, 1458-1465

UP60 was very good (85-101%), the concentrations were below
method reporting limits for two laboratories. Nevertheless,
reporting limits (22-232 ng L™' when converted to PFOA
equivalents) are in the range of the requirements for the
proposed DWD limit of 500 ng L~' PFAS Total in drinking
water.”

Extended PFAS target list and extraction efficiency

Analysis of additional targets by ORU in the aqueous samples
revealed that ultra-short-chain PFAS made a significant contri-
bution when calculating recovery-corrected PFAS concentra-
tions (Fig. S1 and Table S77). TFAA was quantified using labeled
internal standards (spiked prior to extraction) in effluent
(700 ng L"), and groundwater (GW,,, 480 ng L™ and GWhigh
1960 ng L™ 1), together with PFPrA and TFMS. Collectively, ultra-
short chain PFAS accounted for 46-87% of the 23 quantified
PFAS in aqueous samples (Fig. 2 and Table S71). However, the
extraction efficiency was poor for ultra-short chain PFAS and
only 1% TFA, 6% TFMS, and 8% PFPrA was recovered. In
comparison, the recoveries were good for PFAS-16 (68-101%
recovery). Losses of very polar PFAS during extraction might be
due to the additional washing step added to remove inorganic
fluoride. Therefore, despite their prevalence in water samples,
the apparent contribution (i.e. not accounting for procedural
loss) of the ultra-short-chain PFAS to measured EOF were only
4.8%, 9.6%, and 0.64% for GW\4y, GWhig and effluent samples,
respectively.

In sludge, the additional targets analyzed by ORU which were
not included in the interlaboratory comparison (e.g. diPAPs)
accounted for a significant proportion of EOF (Fig. S2 and Table
S7t), consistent with prior reports.® However, the extended
analysis only contributed an additional 45.5 ng g ' F in sludge,
leaving 69% of the measured EOF in sludge unidentified.

Conclusions

Further validation of EOF-CIC is needed and important aspects
for are summarized as follows:

This journal is © The Royal Society of Chemistry 2021
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o Clearly, the greatest drawback from the current study is the
small number of laboratories involved, resulting in limited
statistical analysis. Future studies with increased numbers of
participating laboratories will provide greater confidence in
EOF measurements and insight into method limitations.

e CIC-instrumental background was low and consistent, and
no systematic differences between laboratories, that could be
expected due to e.g. varying calibration routines, were observed.
However, differences in procedural blank contamination were
observed between labs. The reasons behind this are unclear.
Efforts to reduce background F levels and improve reproduc-
ibility in blank levels are needed.

e Extraction methods used here were effective for capturing
priority PFAS and removing inorganic fluorine, but showed poor
extraction efficiency for very polar PFAS (e.g. TFAA) in aqueous
matrices. Considering the large variation in PFAS classes, one
EOF method will not fit all and the sum parameter will be set by
the procedure used. In relation to a PFAS Total assessment,
a compromise of modifying protocols to capture the largest
number of PFAS in different matrices while ensuring good
performance for prioritized substances might be required.

e Method development and quality control of unknown PFAS
is inherently difficult since their properties and behavior are
unknown. Monitoring possible extraction losses and matrix
effects of EOF is therefore challenging. Additional studies are
needed to assess the suitability of the method and for example
the extent of loss of unknown PFAS from filter sorption.

e Sodium fluoride was used to assess removal efficiency of
inorganic fluoride, but a larger concentration range as well as
other species of inorganic fluorine known to exist should be
evaluated.

Despite the aforementioned areas for future improvement,
considering the wide variation in concentrations (~60 to
~2500 ng L' F) and matrices investigated here, CIC-based
EOF measurements revealed good robustness between labo-
ratories, and in all cases achieved measurement uncertainty of
<50%, as required by the proposed DWD PFAS Total method.>
This is particularly impressive considering that each lab used
their own in-house CIC methods, including calibration using
injection of NaF (i.e. no combustion), combustion of PFOS, or
combustion of NaF. This indicates that combustion of PFOS is
efficient. An efficient combustion, although with varying
response for different PFAS and NaF, has been reported in
a separate study.*> Comparable results between labs are also
promising considering that EOF concentrations cannot be
corrected for procedural losses. The small difference between
CIC results for the groundwater extract also indicates that the
sample treatment procedure will be the most challenging part
in standardizing a EOF method. A future comparison study
involving a larger number of participants using entirely in-
house protocols would shed more light on the current
compliance in EOF analysis.
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