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Optical properties of metal–organic networks
from distributed atomic polarizabilities†

Michelle Ernst, Leonardo H. R. Dos Santos‡ and Piero Macchi*

Metal–organic networks have become very popular materials in view of various chemical and physico-

chemical applications. Much attention is normally focused on porous compounds (metal–organic frame-

works), although densely packed polymers may also find applications. In this paper, we propose a rather

simplified method to estimate the dielectric constants and the optical indicatrices of metal–organic net-

works, which could be useful for rapid selection of materials with specific optical properties. The method

adopts the distributed atomic polarizabilities calculated for secondary building units of metal–organic net-

works. With the atomic quantities, one can evaluate the crystal susceptibility, assuming an oriented gas

model corrected for the polarization induced by the crystal medium. A simple oriented gas model enables

a rapid evaluation of the anisotropy of the optical indicatrix of a crystal, as confirmed by calculations under

periodic boundary conditions. The correction for polarization induced by the crystalline environment pro-

vides, in addition, more accurate estimation of the refractive indices, at least in the regime of low frequen-

cies. The computational costs are smaller than those for fully periodic calculations and could be signifi-

cantly smaller if a set of precomputed, transferable atomic polarizabilities would be used.

Introduction

In order to make materials science predictive, it is vital to ad-
dress the molecular or sub-molecular key features that impart
a specific property to the bulk.1 State of the art studies re-
quire a rather sophisticated and robust level of prediction.
Therefore, empirical or heuristic approaches are nowadays
not sufficiently accurate for engineering functional materials
and selecting the most appropriate building blocks. First
principles calculations of ideal crystals using periodic bound-
ary conditions (PBC) may successfully predict materials prop-
erties, but the selection of the atoms, groups or molecules
that trigger a given functionality is still empirical.2 In fact, a
periodic wavefunction does not address directly which
subpart of the system (crystal) contributes most to a specific
property. Moreover, it suffers from significant computational
costs, from an approximate description of the electron corre-
lation effects (limited to density functional theory, DFT) and
restrictions in the atomic one-electron basis sets.

For materials based on molecular fragments, a suitable al-
ternative is to calculate the specific contribution of each

building block to the desired property, using molecular (in-
stead of PBC) quantum mechanics. Once such a connection
is established, the selection of a material from first principle
calculations becomes more efficient, because only convenient
combinations of suitable building blocks are to be tested.3

For this reason, engineering functional materials necessar-
ily requires accurate evaluation of the connections between
electronic features of atoms and groups and the bulk proper-
ties.4 This implies, first of all, a definition of atoms within
molecules and within aggregations of molecules, as it occurs
in crystals. The second step is the identification and quantifi-
cation of the contribution of each atom or functional group
to the crystalline properties. Finally, it is necessary to investi-
gate how the atomic or group properties change due to inter-
molecular interactions.5 Once these criteria are fulfilled, a
good predictive tool is one that minimizes the computational
costs and the inaccuracy of the calculation, in order to pro-
vide a rapid, though reliable, estimation of the material
properties.6

In view of developing a tool for engineering materials
from their building blocks, we focus here on one family of
materials, namely, metal–bioorganic networks (MBioF), and
one kind of property, namely, light refraction. In particular,
following a preliminary study on pure amino acids,6 we now
aim at testing whether networks based on metal connectors
and amino acid linkers could provide high refractive indices,
at least along some directions of their crystal structures. High
refractive index polymers are an important class of materials
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for technological applications, in particular for anti-reflecting
coatings and wave-guides,7 and requirements of transparency
and low conduction usually foster the research toward or-
ganic based polymers, often poly-aromatic chains.2,7 In this
work, we aim at testing whether non-porous, densely packed
coordination polymers may be suitable materials for high re-
fractivity. Despite the inherent smaller transparency of transi-
tion metals in the visible range, they can increase the polariz-
abilities of the ligands and therefore that of the crystal, thus
producing higher refractivity.

In our procedure, we adopt the Quantum Theory of Atoms
in Molecules (QTAIM) to compute atomic or group polarizabil-
ities in a crystal.8 QTAIM is one of the most popular methods
for space partitioning into atomic domains and for estimating
the exact subsystem contributions to a given electronic prop-
erty. The adjective “exact” means that the total property of a
system is the exact sum of the atomic components. The calcu-
lated value may, of course, suffer from imprecision and accu-
racy issues. The former may arise if numerical integration
steps are necessary to estimate the atomic counterparts. Inac-
curacies depend instead on the level of theory employed for
the calculation of the wavefunction describing the system.

Other partition schemes are also able to provide exact
atomic values, like Voronoi polyhedra, Hirshfeld atoms etc.,
whereas methods based on projection or fitting, like the mul-
tipolar expansion fitting of the electron density or the electro-
static potential, can only provide approximate quantities.

In previous works,6,9 we could demonstrate that functional
group polarizabilities calculated with the QTAIM partitioning
are quite transportable, meaning that the atomic and group
tensors representing these quantities are sufficiently similar
in different molecules and supramolecular aggregates. This
enabled us to ascertain that some groups contribute more to
the total crystal refractivity than others do. Thus, the three
criteria enunciated above can be fulfilled. However, the abil-
ity to reconstruct the properties of a system from their pa-
rameterized building blocks needs further evaluation, espe-
cially for polymeric materials. The perturbation due to
intermolecular interactions was already investigated in some
hydrogen bonded species,10 whereas the combination of co-
ordinative bonds and intermolecular interactions has not
been investigated in detail yet.

Our analysis is structured as follows: first, we investigate
the polarizabilities of secondary building units, i.e. the mo-
lecular subunits that assemble to produce coordination net-
works based on two reference amino acids (alanine and tryp-
tophan) and a series of metals. Then, we estimate the crystal
polarizabilities and dielectric susceptibilities based on differ-
ent approaches. Finally, we compare these results with peri-
odic DFT calculations of the electric susceptibilities.

Theoretical background and
computational details

The starting geometries of the two network types investigated
in this work are known as crystal structures, retrieved from

the Cambridge Crystallographic Database,11 namely, CuĲL-
Ala)2 (1, Fig. 1; Ala = C3H6NO2, CCDC refcode: CIYQAC12a)
and M(D,L-Try)2 (2; Fig. 2; M = Mn,12c,e Fe,12d Co,12b Ni,12e

Zn;12f Try = C11H11N2O2, CCDC refcodes: VENCOH01,
SITPUH, POHRIO, TIPFAA, and HUHCOD01).

1-Cu crystallizes in a chiral space group (P212121), whereas
all crystals of species 2 are isomorphic, with the racemic
space group P21/c. In both kinds of structures, the stoichio-
metric ratio implies one metal cation to two amino acid an-
ions; therefore, the crystal structures feature amino acids
with a neutral amino group and an anionic carboxylate group
(see Scheme 1). The protonation state is confirmed for 1 by
neutron diffraction data.12a In 1, the asymmetric unit con-
tains one metal cation and two amino acid anions, whereas
in 2, the metal sits on an inversion center, and therefore, the
asymmetric unit contains only one amino acid. In 1, the
metal is overall coordinated to three anions, forming a
distorted square-pyramidal environment (see Fig. 1), whereas
in 2, four amino acids coordinate the metal, which sits in the
center of a distorted octahedron, as shown in Fig. 2. In both
structures, two amino acids chelate the metal with strong co-
ordination bonds (N → and O → donor) forming a square-

Fig. 1 The chain motif in the MĲL-Ala)2 structure (1). The central square
planar unit is highlighted. The apical connection builds up the local
square pyramidal geometry and produces the chain propagation along c.

Fig. 2 The packing motif in MĲD,L-Try)2 structures (2). The central
square planar unit is highlighted. The apical connections produce the
local distorted octahedron, which gives rise to a bidimensional layer
parallel to the bc plane.
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like plane (the base of the pyramid for 1, the equatorial plane
of the distorted octahedron for 2). The apical sites in 1 and 2
are occupied, respectively, by one or two O → M coordinative
bonds with other amino acids (see the ESI† for details on
the geometries), which then bridge neighboring metals and
form a one-dimensional chain (1) or a two-dimensional layer
(2) (see Fig. 1 and 2). The apical bonds are weaker for all
structures but 1-Zn. The coordination mode of 1 leaves one
unsaturated electron donor oxygen, which is instead involved
in weaker N–H⋯O bonds interconnecting different chains.
In 2, the layers interact only through van der Waals forces.

Although 1 is known only with Cu, isomorphic crystal
structures (not yet known experimentally) were simulated, re-
placing Cu with other first row transition metals, ranging
from Mn to Zn, all in the oxidation state +2. Despite only one
crystal is known, this network type is representative of coordi-
nation modes, which are rather frequent also for the other
metals (in MBioF as well). In fact, Ni and Zn show similar
penta-coordination in other MBioFs with other amino acid
linkers.

Periodic DFT calculations

We simulated the network structure types 1 and 2 applying
periodic boundary condition calculations using the program
CRYSTAL14.13

For all calculations, we adopted the B3LYP density func-
tional. We used basis sets specifically optimized for periodic
calculations for the metal ions, namely, the functions pro-
posed by Jaffe et al.14 (21s,13p,6d, contracted to 6s,5p,3d),
and Pople-basis 6-31G(d,p) for C, N, O and H. For an unbi-
ased comparison with the gas phase simulations (see below),
a cc-pVDZ basis set was also tested, but serious wavefunction
convergence problems occurred for all structures.

For the network type 1, only the Cu2+ structure is known,
which is clearly affected by pseudo Jahn–Teller distortion.
Therefore, for all other metals, crystal structures were fully
optimized, using a dispersion correction, as proposed by
Grimme.15 For the sake of consistency, also the experimen-
tally known Cu structure was optimized.

For the structures of 2, which are all known from X-ray
diffraction analysis, the experimental geometries of species
containing Fe to Zn were used, after normalizing the posi-

tions of H atoms to satisfy averaged distances from neutron
diffraction data. In order to investigate the role of the metal
atomic size, we simulated structure 2 also with Cd ions, after
geometry optimization. Because the same basis set of Jaffe
et al.14 is not suitable for second row metals, we used instead
effective core potentials.16 For a fair comparison, the struc-
ture of 2-Zn was also recalculated with the same potential.

Coupled perturbed Kohn–Sham calculations were used to
compute analytically the crystal polarizability αcryst, and
therefore the linear electric susceptibility χ, the dielectric con-
stants ε and the refractive indices n, based on the optimized
geometries.

(1)

Noteworthy, αcryst, χ, ε and n are second order tensors and
I is an identity matrix.

Gas phase DFT calculations on building blocks

If a crystal can be partitioned into constituent building
blocks, the crystal polarizability αcryst may be approximated
as:

(2)

where αBB,i is the polarizability of the building block i, in the
crystal orientation. If the building blocks coincide with the
asymmetric unit, RiαBBR

T
i is the polarizability of the building

block rotated according to the symmetry operation i, de-
scribed by the matrix Ri. A simple summation of building
blocks calculated in isolation leads to the so-called oriented
gas model, which does not account for the mutual polariza-
tions between building blocks.17 However, if the building
block is calculated in an environment that mimics the crys-
tal, those effects are somewhat recovered. For example,
Champagne and Bishop5 proposed a cluster approach for es-
timating the crystal dielectric properties. The procedure con-
sists in calculating the polarizability of a portion of the crys-
tal, i.e. a finite aggregate containing a sufficient number of
molecules to mimic the effects of the intermolecular interac-
tions. The crystal properties are then obtained from the sum
of the averaged polarizabilities of the moieties, as it occurs
for a standard oriented gas model.18 In practice, the
building-block polarizability can only be approximately
extracted from the aggregate:

(3)

where the cluster is formed by m, identical, building blocks
packed as in the crystal.5 Of course, the larger the m is, the
more accurate the model and the derived crystal dielectric
properties are. However, long-range effects of the crystal me-
dium are not considered. This method is more difficult
for polymers, because both covalent and non-covalent

Scheme 1 The coordination modes of an amino acid skeleton to a
metal: the antiparallel and parallel coordination of two ligands (a and
b) through glycinate chelation and the bridging mode (c).
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interactions define the crystal packing. In coordination poly-
mers though, the metal–ligand bonds enable a softer inter-
ruption of the polymeric chain, without implying radicals in
the organic linkers. Therefore, a cluster approach is possible,
although modelling the intermolecular interactions could be
quite complicated and computationally expensive if the
monomeric unit of the polymer is large.

In this work, we adopted a modified cluster approach,
based on secondary building units (SBU) of coordination net-
works. Noteworthy, the SBU may not be commensurate to the
crystal asymmetric unit, as it occurs for species 1 and 2.
From atomic partitioning, one can retrieve the appropriate
asymmetric unit of the crystal and use these polarizabilities
for calculation of the crystal properties. Therefore,

(4)

where n are all atoms of the SBU, but only those belonging to
the asymmetric unit (asu) are used for the calculation of the
crystal properties. This means that the set of polarizabilities
used for the crystal calculation only contains the central
atoms of the cluster, instead of an average among central
and peripheral atoms. To increase the accuracy, the cluster
may consist of several SBUs. Non-bonded interactions be-
tween chains or layers can be simulated by saturating the hy-
drogen bond donor/acceptor sites of the SBU, therefore pro-
ducing a larger cluster, or with a polarizable continuum
medium (PCM), normally used to simulate molecules in sol-
vents. By using the dielectric constant obtained from a pre-
liminary oriented gas model, the PCM approach is able to
simulate the average polarizable field of the crystal (although
without accounting for the anisotropy of the permanent crys-
tal dipolar field).

For the Cu structure of species 1 (1-Cu), we tested the ef-
fect of augmenting the SBU, modelling a chain of two or
three metal centres and saturating the hydrogen bond sites
with appropriate molecules (using NH3 and H2O). A full list
of these results is given in the ESI.† For all the other struc-
tures, we tested only minimal SBUs calculated with or with-
out a PCM environment.

The starting geometries of the building units came from
the optimized crystal structures of species 1 or the known ex-
perimental structures of species 2 (see the previous section).

The distributed atomic polarizabilities of the fragment
(Fig. 3 and 4) were calculated by numerical derivation
according to Krawczuk et al.18 Gaussian 09 (ref. 19) was used
to calculate the wavefunctions of the selected fragments with
and without the application of an electric field (0.001 a.u.)
along each one of the positive and negative x, y and z direc-
tions of an orthonormal coordinate system.18 The calcula-
tions were performed at the B3LYP/cc-pVDZ and B3LYP/aug-
cc-pVDZ levels of theory.

The electron density distributions computed with and
without the electric field were partitioned into individual
atomic contributions according to the QTAIM scheme using

AIMAll.20 Within the finite field approach, the atomic polariz-
abilities are the numerical derivatives of the dipole moment
with respect to the electric field and were calculated using
the program PolaBer.18 The polarizabilities of the atoms con-
stituting the asymmetric unit yield the polarizability of the
entire system and the dielectric properties, according to
eqn (1)–(4).

Spin polarization

Some of the metal ions considered in our simulations are, of
course, paramagnetic. For metal ions with uneven number of
d electrons (Mn, Co and Cu), a spin polarized solution was
calculated for both gas and crystalline phases, with the ap-
propriate spin states and assuming ferromagnetic coupling.
For the Zn structures, closed-shell solutions only were com-
puted. For structures with Ni, we tested both the atomic spin
S = 0 and S = 1 states, but the latter gave convergence prob-
lems under periodic boundary conditions, so full characteri-
zation was possible only for the gas phase calculations. Note-
worthy, the presence of magnetic moments and the types of
magnetic coupling occurring in the networks do not affect
significantly the electric polarizabilities. In the ESI† (Table
S4), we report the refractive indices calculated for 1-Ni as-
suming the metal in different spin states, showing small
differences in the individual components of the optical

Fig. 3 The square planar and the square pyramidal SBUs used for the
oriented gas simulation of 1-Cu. Atomic polarizability tensors calculated at
B3LYP/aug-cc-pVDZ are symmetrized ellipsoids, rescaled for the sake of
clarity. Note that for both SBUs, only the atoms of the square base belong
to the asymmetric unit and are taken into account in the calculation of
the crystal properties. The local coordinate system is shown.

Fig. 4 The SBUs used for the oriented gas model of 2-Fe. Left, the
pseudo-square planar; right, the pseudo-octahedral complex. Symme-
trized ellipsoids represent the atomic polarizability tensors, rescaled
for the sake of clarity (see discussion in ref. 17). The local coordinate
system is shown.
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indicatrix that do not change qualitatively the rationalization
presented in the next section.

Results and discussion

As discussed in the introduction, the strategy for selecting
suitable building blocks for a high refraction material in-
cludes starting from the analysis of the building block polar-
izabilities in isolation. Our previous study6 demonstrated that
amino acids containing phenyl groups in the lateral chains
feature a larger polarizability density (i.e. polarizability per
unit of volume). According to eqn (1), this should impart a
higher refractivity to the structures, especially along the di-
rections parallel to the aromatic ring. From calculations on
atomic ground states,21 transition metals are known to ex-
hibit a rather large polarizability, especially those centrally lo-
cated in the transition series. This does not hold for cations
in isolation, which are very poorly polarizable. However, in
coordination complexes, the effective valence electrons of
metals overwhelm the formal oxidation state and this leads
to rather large polarizabilities, especially along the
directionĲs) of the coordination bonds. For example, Cu2+ in
isolation has a polarizability of 2.5 Bohr3, compared to 42.6
Bohr3 for neutral Cu (from B3LYP/aug-cc-pVDZ calculations,
in agreement with multi-reference complete active space cal-
culations21). In CuĲL-Ala)2, the isotropic polarizability αCu =
14.4 Bohr3, with largest components along the Cu–O and
Cu–N bonds (19.1 and 17.7 Bohr3, respectively). In addition,
the highly polarizing power of metals enhances the ligand
polarizabilities. For example, α of alanine increases by ca.
20% from the isolated anion to the QTAIM partitioned ligand
in the Cu(L-Ala)2 square planar complex.

On extending the complex into a polymer, the enhanced
polarizabilities along Cu–ligand directions add up, due to the
periodic and homogeneous arrangement of building blocks,
eventually demonstrating significant optical anisotropy.

Secondary building units

The polymeric networks of species 1 and 2 contain penta- or
hexa-coordinated metal cations. The amino acids may act as
simple ligands in metal complexes or as linkers in metal net-
works,22 taking advantage of their rather flexible binding
groups (see Scheme 1). All amino acids in anionic configura-
tions possess at least three donor atoms: the two oxygens of
the carboxylic group and the amino nitrogen. One of the clas-
sical coordination modes is the five-membered glycinate che-
late ring (O,N-chelating mode, see Scheme 1), which leaves
the other carboxylic oxygen available for coordination to an-
other metal or for accepting a hydrogen bond.

Both the model structures we analysed contain a double
glycinate chelation (see Scheme 1), forming a strong “square
planar” coordination, with the amino acids being parallel (1)
or antiparallel (2). 1 is homochiral and has an asymmetric
apical site around the metal, whereas 2 is racemic and the
metal sits on an inversion centre, therefore producing sym-
metry related coordinations at the apical sites. As a result,

the metal in 1 forms a square pyramid (with a long M–O api-
cal bond), whereas in 2 it forms an elongated octahedron.
The asymmetric coordination at the metal centre in 1 gener-
ates metal–amino acid chains interconnected through
medium-weak N–H⋯O hydrogen bonds, whereas the sym-
metric coordination in 2 produces layers connected through
weak van der Waals interactions (see Fig. 1 and 2).

We first computed the refractive indices of the structures
using an oriented gas model and tested two kinds of second-
ary building units: a) the pseudo-square planar complex and
b) the complexes including the axial coordinationĲs) as well
(Fig. 3 and 4). Noteworthy, the square planar building unit
corresponds to the asymmetric unit of crystal species 1 and
twice the asymmetric unit of 2. In both cases, the secondary
building unit with apical coordination exceeds the asymmet-
ric unit. Using the atomic partitioning and eqn (4), one can
extract the polarizabilities of the atoms within the asymmet-
ric unit, thus allowing the calculation of the crystal dielectric
constant and the refractivity. If at least one apical ligand is
included, the axial component (direction z in Fig. 3 and 4) of
the metal polarizability increases by ca. 15% at the expense
of components x and y in the plane. Nevertheless, the metal
polarizability (and that of the SBU) remains larger along the
direction connecting the two linkers in the plane (direction x
in Fig. 3 and 4). For example, in the experimental geometry
of 1-Cu, αxx = 20.5 Bohr3, whereas αyy = 6.5 Bohr3 and αzz =
9.3 Bohr3. This is certainly a key feature of these networks,
and therefore, one can anticipate a larger refractivity along
this direction. Because of the 222 crystal symmetry of 1 (see
Fig. 1), the x direction of the various SBUs are oriented along
the ac diagonal, producing a zig-zag kind of packing, with
the chain propagating along c (see Fig. 1). As a result, the ori-
ented gas models predict that the c direction has the largest
refractivity. Direction b is poorly polarizable, whereas a is
intermediate. This analysis clearly shows that this packing
motif is not efficient for maximizing the refractivity. In fact, a
parallel, instead of a zig-zag, arrangement of the x directions
of the SBUs would produce the largest refractivity. Calcula-
tions based on square planar SBUs give qualitatively similar
results but larger anisotropy (see Table S3†).

Fig. 5 reports the results of the oriented gas models with
different metals for network 1. The global refractivity does
not change much on changing the metal atom, apart from
the Zn homologue that features a significant reduction
though preserving the anisotropy. This is not unexpected be-
cause Zn behaves as a post transition metal, therefore with
an inherently smaller atomic polarizability as it has no possi-
bility to rearrange the electrons in the 3d shell. On the other
hand, central transition metals are the most polarizable ones
and a trend is clearly visible, albeit small.

For the structures of species 2, instead, the trans coordina-
tion mode in the equatorial plane makes the main direction
of the polarizability not so evenly oriented. As a matter of
fact, the metal polarizability tensors have the largest compo-
nent preferentially along the N⋯N direction, therefore ap-
proximately along xy in Fig. 4. In addition, the lateral chain
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of tryptophan contains an indole fragment, which is, as all
aromatic groups, highly polarizable in the plane.6 In trypto-
phan, this is almost perpendicular to the equatorial plane of
the metal coordination sphere.

The combination of these two effects makes crystal direc-
tion a more polarizable (see Fig. 2). More precisely, the direc-
tion of highest polarizability forms an angle of ca. 25° with
the unit cell direction a. The refractivity is therefore quite an-
isotropic (see Fig. 6). In species 2, the role of the metal seems
to be less relevant, as the refractivity is almost independent
from the number of d electrons and the spin state. Even the
Zn structure has very similar refractive indices. The reason is
that the organic part in this case is larger and the contribu-
tion of the metal is smaller, in relative terms.

Secondary building units in polarizable medium

The results reported in the previous paragraph are rather
straightforward. As we recently demonstrated,6 transferable
atomic polarizabilities for each functional group and for the
metal would lead to similar results. This model is optimal for
a rapid prediction of the directions of highest refractivity in
crystals, but it underestimates the effective refractivity, be-
cause it neglects the mutual polarization produced by pack-
ing the SBUs. The semi-classical approach of Lorentz–Lorenz
correction,23a using the Lorentz dipole-tensor,23b can correct
for this limitation. The induced electric field is calculated at
some points of the building unit (e.g. the nuclear sites) and
then assumed homogeneous, using the polarizability of the
unit to calculate the induced dipole.24

This approach can be improved using the distributed
atomic polarizabilities, which means that the induction is
evaluated from the field at each atomic site and the atomic
polarizability.6 The results of Lorentz–Lorenz correction are

Fig. 5 Refractive indices for structure 1. Top: oriented gas model
polarizabilities calculated using the square pyramidal SBU; centre: the
same SBU in a PCM based on the average dielectric function of the
crystal; bottom: with periodic boundary conditions. a, b and c are the
refractive index components along the three crystallographic
directions and the anisotropy is calculated as Δn2 = 0.5ĳ3Ĳn1

2 + n2
2 +

n3
2) − (n1 + n2 + n3)

2], where n1, n2, n3 are the eigenvalues of the optic
indicatrix (coinciding with na, nb, and nc only in orthogonal crystal
systems, as species 1).

Fig. 6 Refractive indices for structure 2 from oriented gas model
polarizabilities, calculated using the pseudo-octahedral SBU (top), the
same SBU in a PCM based on the average dielectric function of the
crystal (centre) and with periodic boundary conditions (bottom). Sym-
bols as in Fig. 5. Because of the crystal symmetry, n2 coincides with nb,
whereas n1 and n3 do not coincide with na and nc.
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reported in the ESI† (Fig. S2 and S3). Here, instead, we illus-
trate another procedure that does not depend on the evalua-
tion of the field at specific sites, but it includes the effect in
the Kohn–Sham molecular orbital calculations. Using the ap-
proximate dielectric constant obtained from the oriented gas
model, one can perform a calculation in a polarizable contin-
uum medium (PCM). The pitfall of this method is that the
anisotropy of the permanent field is not taken into account,
whereas the accuracy of the calculation is higher because the
field induced polarization is inherently calculated at all
points of the building unit and automatically included in the
new polarizability. With PCM calculations, new atomic and
SBU polarizabilities are obtained. The PCM generally in-
creases the polarizability tensors by ca. 50%, resulting in re-
fractive indices n about 0.15–0.3 larger, without modifying
substantially the shape of the optical indicatrix calculated
without PCM. In fact, the intramolecular chemical bonds are
the ones that mainly determine the direction of highest po-
larizability. In the ESI,† the results obtained correcting the
SBU oriented gas models with the Lorentz tensor are com-
pared against PCM calculations, showing that these two ap-
proaches are quite comparable.

Noteworthy, the PCM procedure is computationally as ex-
pensive as the simple SBU oriented gas model described in
the previous section or the SBU corrected by the Lorentz ten-
sor. It actually requires an estimated dielectric constant of
the material. A preliminary guess easily comes from the ori-
ented gas model or even from transferable atomic polarizabil-
ities, at very low computational costs. The procedure would
instead be more time consuming if one is seeking a fine con-
vergence of the dielectric constant, because this would re-
quire several iterations.

Periodic boundary conditions

As discussed in the introduction, the most accurate simula-
tion of an ideal crystal is, in principle, a wavefunction calcu-
lation with periodic boundary conditions (PBC). Here, the
crystal field is fully included in the self-consistent procedure
at variance from the various cluster approaches presented
above. There are however some inherent limitations:
a) At variance from SBU simulations, PBC calculations cannot
go beyond single determinant wavefunctions; therefore, the
electron correlation is approximated at the density functional
theory level.
b) In crystal orbital calculations (the method we adopted),
the atomic basis sets are limited, because diffuse primitive
functions produce divergence of the self-consistent field
calculations.
c) Calculation with plane waves, instead, does not accurately
describe the core electron densities, simulated only with
pseudo-potentials.

The PBC calculated refractive indices of structure types 1
and 2 are reported in Fig. 5 and 6. These results confirm the
type of anisotropy of the refractivity predicted by the oriented
gas model, although, as expected, the overall refractivity is
larger because interactions between the secondary building

units are explicitly accounted for. For the two directions of
lower refractivity, the PBC indices are quite close to those
obtained for SBUs in a polarizable continuum medium. For
the direction of largest refractivity, especially n1 of species 2,
the PCM calculations predict significantly larger values for all
metals. This discrepancy fosters experimental confirmations,
which are presently not available. The difference between
PBC and SBU + PCM could be due to the limited basis set
used for the PBC calculations. The derived crystal polarizabil-
ities may be inaccurate along the direction of the van der
Waals connections between layers, which almost coincides
with the direction of largest refractivity (as explained above).
Directions with interruption of the covalent skeleton clearly
depend more on the basis set incompleteness of crystal or-
bital calculations.

In order to investigate the effect of metal size, we carried
out PBC calculations of 2-Cd. This structure is not known,
and therefore, it was optimized (see the experimental section
for details). Because this required an effective core potential
basis set, the 2-Zn homologue was also calculated with the
same functions for a fair comparison. The two optical
indicatrices are very similar with differences within 0.01 for
each direction. The angle between the two optical axes is
however quite smaller for Cd than for Zn (49° vs. 66°). In gen-
eral, one cannot expect severe changes to occur through the
transition series, because the contribution of the metal polar-
izability is not so large.

Conclusions

In this work, we used distributed atomic polarizabilities to
investigate the light refractivity of metal–organic coordination
networks. The purpose of this work was twofold: a) testing a
new portable method for rapid identification of directions of
large refractivity in crystals and b) checking if non-porous
metal–organic polymers could act as high refractive index
materials.

The distributed atomic polarizabilities offer a useful
partitioning of SBUs and address the key features necessary
for enhancing the refractivity. In particular, calculations of
SBUs in a polarizable continuum medium lead to sufficiently
reliable refractivities, offering the following advantages: a)
computational costs are smaller than PBC by ca. one order of
magnitude; b) the partition into atomic polarizabilities ad-
dresses the individual contribution of each building block; c)
post-Hartree–Fock calculations are doable; d) there is no ba-
sis set limitation.

All simulations shown in this work assumed a static field,
therefore ideally an infinite wavelength. Of course, practical
applications requires knowing the refractivity at a specific
wavelength, for example in the visible region. The atomic
partitioning based on QTAIM requires a static electron den-
sity; therefore, it is not applicable to systems perturbed by an
oscillating electric field. However, as recently proposed by
Champagne and co-workers,25 an appropriate scaling of the
QTAIM atomic polarizabilities would enable an estimation of
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the wavelength dispersion. The scale factor for the atomic po-
larizabilities would correspond to the ratio between cluster
(or SBU) polarizabilities computed with double energy deriva-
tives at infinite and finite wavelengths.

For the networks analysed in this paper, we conclude that
the stereochemistry at the metal centre plays a central role
for the crystal refractivity. In fact, the directions of largest re-
fraction occur along the coordinative bonds. This is not only
due to the M–O or M–N bonds themselves but also due to the
specific conformation that the metal coordination imposes to
the organic linkers. The side chain of the amino acid is then
useful to tune the polarizability of the linker, using suitable
functional groups and the packing may amplify or quench
the features of a secondary building unit. The metal polariz-
ability itself is, instead, much less important, given that only
minor trends are visible along a transition series and even a
post-transition metal does not affect too much the refractiv-
ity, especially if the organic linker is large. On changing the
transition series, the differences are also quite smaller.

The choice of the metal is, of course, more important
when the transmittance in the visible range is considered.
Only the Zn polymers would be ideal in this respect.

In conclusion, we have shown that the combination of
transferable polarizabilities and automation in the calcula-
tion of SBU polarizabilities from parametrized atomic polariz-
abilities will enable a more rapid screening of the suitable
species in the future.
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