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Enantioselective a-amination enabled by a BINAM-
derived phase-transfer catalysty
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Chiral anion phase-transfer of aryldiazonium cations was utilized to achieve highly enantioselective a-
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amination of carbonyl compounds. A broad scope of indanone- and benzosuberone-derived substrates

was amenable to this strategy. Critical to obtaining high levels of enantioselectivity was the use of
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Chiral amines are attractive targets for enantioselective meth-
odology due to their prominent representation amongst bioac-
tive molecules and chiral catalysts.' Particularly attractive are o-
amino acids, which are utilized directly as building blocks for
pharmaceuticals, natural products, agrochemicals, and as
precursors for commonly employed chiral ligands." Several
methods exist that provide access to enantioenriched, protected
amines.” The use of dialkyl azodicarboxylates as masked elec-
trophilic nitrogen sources in auxiliary-directed,® organo-
catalytic* and transition metal catalyzed® amination reactions is
prevalent. These methodologies furnish highly enantioenriched
hydrazines that can be converted to amines after multiple
chemical operations.

We hypothesized that the use of aryldiazonium cations as
electrophilic nitrogen sources within a chiral anion phase-
transfer (CAPT) manifold could provide a complementary
enantioselective amination method.® In this scenario, chiral
anion phase-transfer of an insoluble aryldiazonium cation
would generate a soluble N-electrophilic, chiral diazonium ion
pair. This species could react with nucleophilic carbonyl
derivatives to provide enantioenriched o-diazenated
compounds (Fig. 1a and b). Importantly, this methodology
would complement established a-amination methodologies in
several ways. Firstly, well-established methods for reductive
cleavage of azo compounds such as 2 would provide facile
access to unprotected o-amino acid derivatives (3).” Secondly,
straightforward preparation of complex aryldiazonium cations
from readily available anilines would facilitate development of
application-specific amination reagents with tunable reactivity.®
This manuscript details the successful execution of this
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BINAM-derived phosphoric acids. The utility of this transformation was demonstrated through facile
conversion of diazene products to valuable a-amino acid derivatives.

hypothesis through the first examples of catalytic, enantiose-
lective a-amination using aryldiazonium cations. This advance
is enabled by the preparation of BINAM-derived chiral phos-
phoric acids (BDPAs) that proved critical to obtaining high
levels of enantioinduction.

As a model system, we were attracted to indanone-derived -
ketoesters due to their potential for elaboration into con-
formationally constrained tyrosine analogues (CCTAs) such as
5-hydroxy-2-aminoindan-2-carboxylic acid (Hai) (4),° spi-
rohydantoin-derived CGRP antagonists investigated for treat-
ment of migraine headaches (5),'° and amino-indane natural
products such as dihydroparfumidine (6) (Fig. 1c). We initially
found that exposure of B-ketoester 17 to TCyP (7), NazPO,, and
PhN,BF, provided diazene 18 with excellent conversion, albeit
with low enantioselectivity (Table 1).**
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Fig. 1 (a) Chiral anion phase-transfer concept. (b) Application to a-
amination. (c) Biologically active amino-indanone derivatives.
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Table 1 Optimization

Commonly Utilized Chiral Phosphoric Acid Scaffolds:

\//
o “oH o “oH

7 R=H,Ar=24,6-(Cy);CH,
8 R=H, Ar=2,4,6 (i-Pr);C¢H,
9 R=CgHyz, Ar=2,4,6 (i-Pr);C¢H,

10 Ar=2,4,6 -(i-Pr);C¢H,
11 Ar=2,4,6 -(Cy);CgH,

12 Ar=2,4,6 (i-Pr);CH,

BINAM-Derived Chiral Phosphoric Acids:

ot
N0
N
N “oH
\

13 Ar = 3,5-(Me),C¢H3
14 Ar = 3,5-(OMe),CqH;

15 Ar=3,5-(Ph),CgH;
16 Ar=4-CF3-CgH,

o]
5 mol% cat.
@é_«o solvent
Ot-Bu T
17

» Aryl moiety tunes phosphate
electronics

« Improved hydrogen-bond acceptors
relative to BINOL derivatives

« Stronger ionic character improves
ion-pairing

PhN,BF,

Entry  Cat. Solv. Base Conv.” (%)  ee® (%)
1 7 Hexanes Na;PO, >95 9
2 8 Hexanes Na;PO, >95 7
3 9 Hexanes Naz;PO, >95 0
4 10 Hexanes Na;PO, >95 2
5 11 Hexanes Naz;PO, >95 7
6 12 Hexanes NazPO, >95 4
7 7 Hexanes NaHCO; >95 21
8 7 Hexanes NaH,PO, >95 34
9 13 Hexanes NaH,PO, >95 -7
10 14 Hexanes NaH,PO, >95 4
11 15 Hexanes NaH,PO, >95 5
12 16 Hexanes NaH,PO, >95 87
13 16 2-MeTHF NaH,PO, >95 10
14 16 Toluene NaH,PO, >95 40
15 16 Cyclohexane NaH,PO, >95 90

“ Conditions: 17 (1 equiv.), cat. (13-16) (5 mol%), base (6 equiv.),
PhN,BF, (1.2 equiv.), solvent (0.025 M), rt, 2-24 h. ” Conversion based
on consumption of starting material as determined by 'H NMR.
¢ Determined by chiral phase HPLC.

With this encouraging result in hand, a screen of CAPT
catalysts and inorganic bases was undertaken (Table 1). Exam-
ination of the commonly employed chiral phosphate scaffolds
did not identify a catalyst capable of providing improved
enantioselectivity (entries 1-6); however, linear screening
carried out with TCyP (7) proved fruitful, as use of weaker bases,
such as NaH,PO,, increased enantioselectivity to 34% ee while
maintaining excellent conversion (entry 7, 8).

Challenged by low levels of enantioselectivity using common
chiral phosphate scaffolds, we undertook efforts to design novel
CAPT catalysts. We were drawn to the BINAM-derived phos-
phoric acids (BDPAs, Table 1, 13-16) first prepared by Ishihara
and coworkers," as they offer two potential improvements over
BINOL-derived phosphates (7-11): first, we hypothesized that
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the nitrogen lone pairs would improve hydrogen-bonding
interactions with the substrates relative to traditional chiral
phosphoric acid catalysts (7-12).** Second, increased resonance
donation from the nitrogens could improve ion-pairing with the
diazonium cation. Furthermore, this catalyst system would be
highly modular, allowing for variation of both the ionic char-
acter and the hydrogen-bonding strength via synthetic modu-
lation of the N-aryl groups.™

A small library of BDPAs was prepared (13-16). Upon exam-
ination of these catalysts under our diazenation conditions
(Table 1, entries 9-12), we were pleased to find that electron-
poor BDPA 16 provided the diazenated product (18) in excellent
conversion and 87% ee (entry 12). Fine-tuning of solvent
(entries 13-15) identified cyclohexane as optimal, yielding
indanone 18 in 90% ee (entry 8).

Table 2 Substrate scope®?<4

o]
N:N
28

OMe
90% vyield, 85% ee

F
91% yield, 93% ee

Br
93% yield, 93% ee

(o}

Wm Bu ©f§_)tor Bu
Nz N=p
31 32 @

t-B
89% yield, 82% ee ! 86% yield, 82% ee

“ Conditions: nucleophile (1 equiv.), 16 (10 mol%) NaH,PO, (6 equiv.),
ArN,BF, (1.2 equiv.), cyclohexane (0.025 M). * Conditions: nucleophile
(1 equiv.), 17 (10 mol%), NalHZPO4 (6 equiv.), ArN,BF, (1.2 equiv.),
MTBE (0.025 M). ¢ Isolated yield. ¢ Enantiomeric excess determined by
chiral phase HPLC.
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With optimized reaction conditions in hand, we investigated
the scope of this reactivity. Indanones with electron-rich (20, 21,
24, Table 2) and electron-poor (19, 22, 23) substitution at the
—4, —5, and —6 positions provided their corresponding dia-
zenes in good yields and enantioselectivities. Importantly, both
protected phenol and halogenated derivatives (20 and 22-24)
were competent under the reaction conditions, permitting
derivatization of the reaction products. Additionally, substitu-
tion of the diazonium aryl group with electron-poor, as well as
electron-rich, groups at -ortho, -meta, and -para position
provided excellent yields and good to excellent enantiose-
lectivities (Table 2, 25-32).

Additional ketone derivatives were amenable to CAPT dia-
zenation with slight modification of the reaction conditions
(Scheme 1). Benzosuberone derivative 33 was a suitable nucle-
ophile, affording diazene 34 in 96% ee and 78% yield. Use of -
ketoamide 35 provided diazene 36 in 90% ee and 91% yield. We
were pleased to find that nonstabilized enamide 37 underwent
enantioselective C-N bond formation, providing imine 38 in
80% ee and 59% yield.

We were pleased to find that hydrogenation of indanone 18
and benzosuberone 34 under standard conditions smoothly
formed their respective B-hydroxy amino acid derivatives with
excellent diastereoselectivity and without loss of enantioen-
richment (Scheme 2, 39 and 40). Additionally, compound 24
was reduced to protected CCTA 41, a synthetic precursor of Hai
(4) using standard heterogeneous Pd/C conditions followed by
homogeneous reduction with polymethylhydrosiloxane (PHMS)
and PdCl, (Scheme 2c).'* Importantly, enantioenriched
compounds akin to amine 41 (Scheme 1c) have been previously
prepared via classical resolution in 9 steps.”” Furthermore, as
CCTAs such as Hai (4) are utilized for study of protein confor-
mation,” we envisioned that '°N-labeling would be of great
utility, and a powerful application of our methodology. Towards
this end, isotopically enriched amino indanone 42 was prepared
in a three-step sequence from inexpensive Na'°NO,. It is

10 mol% 7
OFBU by N,BF,, NaH,PO,
toluene

78% yield, 96% ee

34

10 mol% 7

4-Br-PhN,BF;, NaH,PO, o]
toluene
NH- Bu Y NH?-Bu
N:N

91% yield, 90% ee

35 36 Q

10 mol% 7
4-F-PhN,BF 4, NaH,PO,4
toluene

NHCbz NCbz

' I : f N:
59% yield, 80% ee
37 38 Q
F

Scheme 1 Diazenation of additional substrates.
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Scheme 2 Applications of diazene products.

noteworthy that the use of an azodicarboxylate electrophile for
this application would require two equivalents of isotopically
enriched nitrogen.

Conclusions

In closing, we have developed a method for the enantioselective
a-diazenation of enolate derivatives. This work was enabled by
the development of novel BDPAs. The presented methodology
possesses a broad scope, allowing for diazenation of diverse
nucleophiles. As an application of our methodology, several
diazenes were directly reduced to provide amino acid deriva-
Furthermore, facile '°N-labeling was demonstrated
through preparation of protected amino acid 42.

tives.
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