New perspectives on green and sustainable wet cleaning systems for art conservation

Abstract

The field of cultural heritage conservation science has seen significant advancements over recent decades, particularly through the application of soft matter and colloid science. Gels, nanostructured fluids, nanoparticles, and other advanced functional materials have been developed to address challenges in cleaning, consolidation, and protection of art. More recently, the focus has shifted toward “green” materials and sustainable practices, aligning with broader trends in science and technology. This emphasis on sustainability has revealed the immense potential for cross-disciplinary exchange between conservation science and fields like drug delivery, the food industry, tissue engineering, and more. A clear example of this synergy is seen in the cleaning of artworks, where bio-derived surfactants and biomaterials are increasingly incorporated into microemulsions and gels. These innovations not only enhance cleaning efficacy but also align conservation practices with sustainable principles, drawing parallels to research in cosmetics, pharmaceuticals, and detergents. The examples and materials discussed in this contribution illustrate how advancements in art conservation science can foster mutual technological transfer with other industries. By leveraging the central role of soft matter and colloids, these collaborations produce sustainable solutions that can address critical societal, environmental, and economic challenges.

Graphical abstract: New perspectives on green and sustainable wet cleaning systems for art conservation

Article information

Article type
Paper
Submitted
07 jan 2025
Accepted
11 mar 2025
First published
12 mar 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025, Advance Article

New perspectives on green and sustainable wet cleaning systems for art conservation

D. Chelazzi, R. Bordes, A. Casini, R. Mastrangelo, K. Holmberg and P. Baglioni, Soft Matter, 2025, Advance Article , DOI: 10.1039/D5SM00017C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements