Issue 16, 2020

Synergies and compromises between charge and energy transfers in three-component organic solar cells

Abstract

In this paper, we developed different three-component organic heterojunction structures supported by PET/ITO substrates with the aim to study the possible synergies and/or compromises between charge transfer (CT) and energy transfer (ET) processes in organic solar cells (OSCs). As components, we employed poly(3-hexylthiophene-2,5-diyl) (P3HT; donor), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) that is known to give good ET to P3HT. At first, we observed that in a planar heterojunction (PHJ) solar cell, F8BT has to be properly located in between P3HT and PCBM to get a cascade energy level configuration allowing for a better CT and power conversion efficiency. Then, we observed that by producing a P3HT:F8BT blend, the energy transfer process can be improved in the P3HT:F8BT/PCBM active layer. This may enable decreasing the thickness of the active layer while maintaining a similar PCE that is very interesting for the development of transparent OSCs. However, the P3HT:F8BT blend limits the P3HT–PCBM CT with respect to a P3HT/F8BT/PCBM PHJ, showing that a compromise between CT and ET is needed to get a higher PCE or higher transparency. By the above approach, in this paper, we developed highly transparent heterojunction structures for solar cell devices with PCEs comparable to those observed from the colorful reference P3HT/PCBM PHJ solar cells on PET/ITO substrates.

Graphical abstract: Synergies and compromises between charge and energy transfers in three-component organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
20 jan 2020
Accepted
17 mar 2020
First published
23 mar 2020

Phys. Chem. Chem. Phys., 2020,22, 8344-8352

Synergies and compromises between charge and energy transfers in three-component organic solar cells

C. Sartorio, G. Giuliano, M. Scopelliti, V. Vetri, M. Leone and B. Pignataro, Phys. Chem. Chem. Phys., 2020, 22, 8344 DOI: 10.1039/D0CP00336K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements