L-Proline catalyzed multicomponent one-pot synthesis of gem-diheteroarylmethane derivatives using facile grinding operation under solvent-free conditions at room temperature

Goutam Brahmachari* and Suvankar Das
Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India. E-mail: brahmg2001@yahoo.co.in; brahmg2001@gmail.com; Fax: +91-3463-261526; Tel: +91-3463-261526

Received 22nd August 2013 , Accepted 2nd January 2014

First published on 6th January 2014


Abstract

An efficient and straightforward L-proline catalyzed one-pot synthesis of a series of biologically relevant gem-(β-dicarbonyl)arylmethanes has been developed via a three-component reaction between indoles, aldehydes and C–H activated acids by grinding them together under solvent-free conditions at room temperature. Mild reaction conditions, high atom-economy, good yields, and eco-friendliness are some of the salient features of the present protocol.


Introduction

Both 1,1-dihomoaryl- and 1,1-diheteroaryl-methane scaffolds, particularly involving indolyl and coumarolyl moieties represent “privileged” structural motifs in pharmaceutical drugs and numerous potentially bioactive natural products.1–5 Fig. 1 offers a glimpse of such naturally occurring pharmaceutically potent molecules: 3,3′-diindolylmethane (DIM; I; anticancer),6,7 1,1-bis(3′-indolyl)ethane (BIE; II; antibacterial),8 5-bromo-1-ethyl-3-((4-fluorophenyl)(1H-imidazol-1-yl)methyl)-1H-indole (III; aromatase inhibitor),9 arzanol (IV; anti-inflammatory, antibiotic, anti-oxidant),10 carbochromen (V; a potent drug for estimation of coronary dilatory capacity),11 warfarin (VI; anticoagulant normally used in the prevention of thrombosis and thromboembolism)12 and bromadiolone (VII; anticoagulant functioning as a vitamin K antagonist).13 In spite of their natural prevalence and wide range of biological activities, gem-diheteroarylmethanes have indeed gained little attention to the synthetic chemists; one such method is reported earlier for the synthesis of gem-(β-dicarbonyl)arylmethanes by Minassi and co-workers.14 However, this method suffers from using chlorinated solvent, long reaction time (24–72 h) and poor yields in many occasions.14 Hence, the development of a simple and high-yielding environmentally benign protocol for the one-pot synthesis of such biologically relevant gem-(β-dicarbonyl)arylmethane scaffolds is of great challenge. Inspired by successful completion of one of our recent works in developing an efficient method to synthesize 3-aminoalkylated indoles,15 we thus have been motivated to explore our vision for a more facile and environmentally benign route to the title compounds. As part of our continuing efforts to develop green synthetic methodologies for useful organic transformations,15,16 herein we wish to report a convenient, clean and highly efficient protocol for the synthesis of gem-(β-dicarbonyl)arylmethanes via multicomponent reaction (MCR) simply by grinding the mixture of indoles, C–H activated acids (4-hydroxycoumarin, 4-hydroxy-6-methyl-2H-pyran-2-one, dimedone, N,N-dimethylbarbituric acid, Meldrum's acid) and aldehydes in the absence of solvent under L-proline catalysis at room temperature (Scheme 1).
image file: c3ra44568b-f1.tif
Fig. 1 Representative examples of few bioactive gem-dihomoaryl- and diheteroarylmethanes.6–13

image file: c3ra44568b-s1.tif
Scheme 1 L-Proline catalyzed three-component one-pot synthesis of gem-(β-dicarbonyl)arylmethanes.

A striking advantage of using amino acids as organocatalysts is their amphoteric nature, possessing both amine and carboxylic acid moieties—the amino group could catalyze the reaction via electrophilic imine formation and the carboxylic group might stabilize the charge generated on the nitrogen.17 Furthermore, MCR technique is now-a-days a well accepted strategy to the synthetic chemists at large for the construction of novel and complex molecular structures due to its several benefits including shorter reaction times, high atom-economy, lower costs, and avoidance of time consuming expensive purification processes.18,19

In addition, implementation of several transformations in a single manipulation in MCR strategy is highly compatible with the goals of sustainable and “green” chemistry.20,21 With increasing public concern over environmental degradation, the use of environmentally benign solvents like water22 and solvent-free reactions23 offers very powerful green chemical protocols from both the economic and synthetic point of view with several advantages like reduced pollution, lower cost, and simplicity in processing, which are beneficial to the industry as well as to the environment. In recent years, mechanochemistry, i.e. reactions conducted by grinding solid reactants together, has attracted much attention because it allows promotion of reactions under solvent-free conditions.24 Mechanochemical synthesis affords many advantages, such as greater efficiency with regard to time, materials, and energy usage, as well as the discovery of new or improved reactivity and products, as an alternative approach to synthesis.24a

Results and discussion

Preliminary studies were mainly focused on optimization of the reaction conditions, and for this purpose a series of trial reactions of indole (1a), 5-bromoindole (1b) and 5-fluoroindole (1c) with benzaldehyde (2a) and 4-hydroxycoumarin (3a) were performed in 1 mmol scale in the absence and presence of different catalysts at room temperature (Table 1), and also checked the effects of varying amounts of catalyst-loading and solvents (Table 2). It was much astonishing to observe that the reaction pathway is directed towards the formation of bis-indole derivatives 5a–5c rather than the desired products 4aa, 4af and 4ah in presence of all the Lewis acid catalysts and the ionic liquid except sodium formate and L-proline, whereas the latter exhibited better performance. It was also observed that although simple indole 1a underwent the reaction affording the desired product 4aa with moderately good yield of 63% under catalyst- and solvent-free conditions, the substituted indoles 1b and 1c gave the corresponding desired product 4af and 4ah with poor yields (36% and 31%, respectively) under the same reaction conditions (Table 1; entry 11). To our delight that use of catalytic amount of L-proline was sufficient enough to enhance the reaction rate remarkably for these reactions (Table 1; entry 9). A variety of solvent systems and proportion of aldehydes were also screened for this particular reaction using L-proline as catalyst (Table 2); however, the best result was obtained when the reaction was carried out using 1.2 equivalent of aldehyde, by grinding the reactants together under solvent-free conditions (Table 2; entry 3).
Table 1 Screening of catalyst for one-pot synthesis of gem-(β-dicarbonyl)arylmethanesa

image file: c3ra44568b-u1.tif

Entry Catalyst Loading (mol%) Indole (R = H) 5-Bromoindole (R = Br) 5-Fluoroindole (R = F)
Time (h) % Yieldb (4aa) % Yieldb (5a) Time (h) % Yieldb (4af) % Yieldb (5b) Time (h) % Yieldb (4ah) % Yieldb (5c)
a Experimental conditions: 4-hydroxycoumarin (3a; 1 mmol), benzaldehyde (2a; 1.2 mmol), indole (1a; 1 mmol)/5-bromoindole (1b; 1 mmol)/5-fluoroindole (1c; 1 mmol) and catalyst on grinding under solvent-free conditions at room temperature.b Isolated yield.c Not done.
1 Anhyd·AlCl3 10 0.25 20 67 2 Trace 74 1 Trace 77
2 ZrOCl2·8H2O 10 0.33 27 60 2 Trace 72   ndc  
3 Bi(NO3)3·5H2O 10 0.33 25 58 2 Trace 69   ndc  
4 [HMIM][HSO4] (IL) 10 0.33 30 59 2 Trace 71 1.5 Trace 63
5 Sodium formate 5 1 58 Trace 4 38 21   ndc  
6 Sodium formate 10 1 61 Trace 4 38 23 2.5 41 29
7 Sodium formate 20 1 61 Trace 4 40 23 2.5 45 31
8 L-Proline 5 1 68 Trace 4 45 20   ndc  
9 L-Proline 10 1 75 Trace 4 53 24 2 61 20
10 L-Proline 20 1 78 Trace 4 53 24 2 62 20
11 No catalyst 1 63 Trace 8 36 51 5 31 57


Table 2 Screening of the reactants-ratio and checking of solvent system for one-pot synthesis of gem-(β-dicarbonyl)arylmethanesa

image file: c3ra44568b-u2.tif

Entry Condition Reactants (in equiv.) (1a[thin space (1/6-em)]:[thin space (1/6-em)]2a[thin space (1/6-em)]:[thin space (1/6-em)]3a) Time (h) % Yieldb
a Experimental conditions: indole (1a), benzaldehyde (2a), 4-hydroxycoumarin (3a), and L-proline (10 mol%) under various conditions at room temperature.b Isolated yields.
1 Grinding 1[thin space (1/6-em)]:[thin space (1/6-em)]1[thin space (1/6-em)]:[thin space (1/6-em)]1 1 67
2 Grinding 1[thin space (1/6-em)]:[thin space (1/6-em)]1.1[thin space (1/6-em)]:[thin space (1/6-em)]1 1 69
3 Grinding 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2[thin space (1/6-em)]:[thin space (1/6-em)]1 1 75
4 Grinding 1[thin space (1/6-em)]:[thin space (1/6-em)]1.3[thin space (1/6-em)]:[thin space (1/6-em)]1 1 75
5 Stirred in EtOH 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2[thin space (1/6-em)]:[thin space (1/6-em)]1 24 39
6 Stirred in H2O 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2[thin space (1/6-em)]:[thin space (1/6-em)]1 24 Trace
7 Stirred in THF 1[thin space (1/6-em)]:[thin space (1/6-em)]1.2[thin space (1/6-em)]:[thin space (1/6-em)]1 24 Trace


To explore the scope and generality of the present MCR protocol for the synthesis of gem-(β-dicarbonyl)arylmethanes under the optimized conditions, a variety of aromatic aldehydes (2) containing electron donating or electron withdrawing substituents in the aromatic ring such as –Me, –OCH2O–, –F, –Cl, and –NO2 were reacted with 4-hydroxycoumarin (3a) and substituted indoles 1 (1H-indole, 5-bromo-1H-indole, 5-fluoro-1H-indole, and 2-methyl-1H-indole) to furnish diverse gem-(β-dicarbonyl)arylmethanes; butyraldehyde, an aliphatic aldehyde, was also found to undergo the reaction giving rise to the desired products 4ad and 4bd (Table 3) in 65% and 44% yields, respectively.

Table 3 L-Proline catalyzed one-pot synthesis of gem-(β-dicarbonyl)arylmethanes via three-component reactiona

image file: c3ra44568b-u3.tif

a Experimental conditions: C–H activated acid (1 mmol), aldehyde (1.2 mmol), indole (1 mmol) and L-proline (10 mol%) by grinding under solvent free conditions at room temperature.
image file: c3ra44568b-u4.tif


The present protocol was successfully extended for the other four C–H activated acids viz. 4-hydroxy-6-methyl-2H-pyran-2-one (3b), dimedone (3c), N,N-dimethylbarbituric acid (3d), and Meldrum's acid (3e) for which the desired gem-(β-dicarbonyl)-arylmethanes (4ba–4ed; Table 3) were obtained in moderate to good yields. In case of 2-methylindole, the isolated yield of the product 4ce is only 40%; it is supposed that the introduction of the electron-donating methyl group into the indole nucleus enhances its reactivity prior to the C–H activated acids leading to the rapid formation of bis-indole derivative. The overall results are summarized in Table 3. In this connection it is to be mentioned that the products 4 are non-racemic in nature as expected from the use of L-proline as a catalyst. All the entries were found to exhibit optical rotations with a varying degree of [α]D; however, enantiomeric ratio (er) of the isomers for the respective products 4 are not reported in this present communication. It is also to note that the products 4da–4dc and 4ea–4ed arising out of the reaction of N,N-dimethylbarbituric acid (3d) and Meldrum's acid (3e), respectively are expected to be of diastereoisomeric mixtures (syn and anti with respect to the α-H), and this has been observed in case of 4ea–4ed, whereas 4da–4dc were obtained with complete syn-diastereoselectivity.

We suggest herein a plausible mechanism for the L-proline catalyzed synthesis of the gem-(β-dicarbonyl)arylmethanes 4 (Scheme 2). It is well-reported in literature that L-proline can effectively participate in the formation of iminium salt17 and also can act as an efficient catalyst both in Mannich17b,25 and Michael17a,b,26 reactions. Thus the initially formed iminium salt (5) arising out of the reaction between aldehyde (2) and L-proline, undergoes Mannich reaction with C–H activated acid (3) to generate intermediate 7 which immediately takes part in Michael addition with the indole moiety (1) affording the desired product 4. L-Proline releases out for the next cycle.


image file: c3ra44568b-s2.tif
Scheme 2 Plausible mechanism for the L-proline catalyzed multicomponent synthesis of the gem-(β-dicarbonyl)arylmethanes (4).

Conclusions

In conclusion, we have developed a green and efficient organo-catalysed multicomponent reaction of C–H activated acids, aldehydes, and indoles for the synthesis of a series of biologically interesting gem-(β-dicarbonyl)arylmethane derivatives under solvent-free conditions at room temperature. L-Proline is a very useful and environmentally friendly organo-catalyst to validate this useful transformation in a facile manner. In addition to other notable outcomes such as mild and solvent-free reaction conditions, operational simplicity and good yields, the major advantage of our present protocol is an improved conditions for the synthesis of gem-(β-dicarbonyl)-arylmethane derivatives instead of the formation of usual bis-indoles. It is to be mentioned herein that all the synthesized entries are non-racemic in nature; the effect of L-proline on imparting the degree of stereoselectivity of this reaction is under study.

Experimental

General

Infrared spectra were recorded using a Shimadzu (FT-IR 8400S) FT-IR spectrophotometer using KBr disc. 1H and 13C nuclear magnetic resonance (NMR) spectra were obtained at 400 and 100 MHz, respectively, using Bruker DRX spectrometer (Bruker Instruments, Billerica, MA, USA) and DMSO-d6 as the solvent. Mass spectra (TOF-MS) were measured on a QtofMicro™ mass spectrometer. Elemental analyses were performed with an Elementar Vario EL III Carlo Erba 1108 micro-analyzer instrument (Carlo Erba Reagenti SpA, Rodano, Italy), and optical rotation was measured on a polarimeter manufactured by Bellingham Stanley Ltd. (Model ADP410). Melting points were recorded on a Chemiline CL725 melting point apparatus and are uncorrected. Column chromatography was carried out over silica gel (Merck 60–120 mesh) and TLC was performed using silica gel 60 F254 (Merck) plates.

General procedure for preparation of gem-diheteroaryl methane derivatives (4aa–4ed)

In an oven-dried watch-glass, C–H activated acid (4-hydroxycoumarine 3a or 4-hydroxy-6-methyl-2H-pyran-2-one 3b or dimedone 3c or N,N-dimethylbarbituric acid 3d or Meldrum’s acid 3e; 1 mmol), aldehyde (2; 1.2 mmol), indole (1; 1 mmol), and L-proline (10 mol%) were taken together, and instantly started to grind the mixture by a spatula. After few minutes of scratching/grinding, when the solid reaction mixture liquefied followed by semi-solidification, it was left for stipulated time (Table 3) with occasional grinding till it solidified again. After completion of the reaction (as monitored by TLC), the solid reaction mixture was subjected to column chromatography using silica gel (60–120 mesh) and petrol ether-ethyl acetate mixture to furnish the pure products (4aa–4ed), characterized by conventional spectroscopic methods and elemental analyses. It was also possible to isolate pure products of 4aa–4af and 4da–4dc without using column chromatographic resolution just by washing the crude products in ethanol—however, with ∼5–7% lower yields in comparison to the generalized method, possibly due to partial solubility of these compounds in ethanol.

Characterization data of selected entries

3-((4-Fluorophenyl)(1H-indol-3-yl)methyl)-4-hydroxy-2H-chromen-2-one (4ab). Pinkish white solid (0.312 g, 81%); mp 195–197 °C; [α]25D = +31.5 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 6.11 (s, 1H, –CH), 6.92 (t, J = 7.2 Hz, 1H, ArH), 7.06 (t, 3H, J = 8.8, 8.4 Hz, ArH), 7.13 (s, 1H, ArH), 7.36 (t, J = 7.6, 10.4 Hz, 6H, ArH), 7.60 (t, J = 7.6, 7.2 Hz, 1H, ArH), 8.04 (d, J = 7.6 Hz, 1H, ArH), 10.95 (s, 1H, –NH), 11.69 (s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 36.94, 108.82, 111.96, 114.52, 114.66, 114.87, 116.66, 116.71, 118.83, 118.91, 121.33, 123.95, 124.26, 124.74, 127.57, 130.38, 130.46, 132.38, 136.50, 139.24, 152.66, 159.79, 160.81, 162.20. IR νmax (KBr): 3437, 3317, 3284, 3095, 3043, 2901, 2850, 1687, 1612, 1534, 1497, 1336, 1159, 1099, 1036, 945, 854, 758 cm−1. TOF-MS: calcd for C24H16FNO3Na [M + Na]+: 408.1012; found: 408.1015. Anal. calcd for C24H16FNO3: C, 74.80; H, 4.18; N, 3.63; found: C, 74.82; H, 4.16; N, 3.66.
3-(1-(1H-Indol-3-yl)butyl)-4-hydroxy-2H-chromen-2-one (4ad). White solid (0.217 g, 65%); mp 139–140 °C; [α]25D = +42.3 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 0.95 (s, 3H, –CH3), 1.35 (s, 2H, –CH2), 2.09 (br s, 1H, –CH), 2.40 (br s, 1H, –CH) 4.73 (s, 1H, –CH), 6.90 (s, 1H, ArH), 7.00 (s, 1H, ArH), 7.30 (d, J = 4 Hz, 4H, ArH), 7.53 (d, J = 5.6 Hz, 2H, ArH), 8.03 (d, J = 5.2 Hz, 1H, ArH), 10.79 (s, 1H, –NH), 11.40 (br s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 14.14, 20.87, 31.21, 33.40, 108.27, 111.29, 116.03, 116.16, 116.21, 118.08, 118.31, 120.56, 122.87, 123.28, 123.66, 127.11, 131.50, 135.82, 152.01, 159.65, 161.35. IR νmax (KBr): 3412, 3217, 3176, 3149, 2955, 2930, 2858, 1677, 1612, 1564, 1497, 1448, 1340, 1207, 1157, 1105, 1040, 879, 752 cm−1. TOF-MS: calcd for C21H19NO3Na [M + Na]+: 356.1263; found: 356.1269. Anal. calcd for C21H19NO3: C, 75.66; H, 5.74; N, 4.20; found: C, 75.69; H, 5.73; N, 4.21.
3-(Benzo[d][1,3]dioxol-5-yl(1H-indol-3-yl)methyl)-4-hydroxy-2H-chromen-2-one (4ae). Brownish white solid (0.313 g, 76%); mp 242–244 °C; [α]25D = −33.2 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 5.95 (s, 2H, –CH2), 6.26 (s, 1H, –CH), 6.62 (d, J = 8 Hz, 1H, ArH), 6.71 (s, 1H, ArH), 6.76 (d, J = 8.4, 1H, ArH), 7.31–7.37 (m, 5H, ArH), 7.59 (t, J = 7.2, 8 Hz, 2H, ArH), 7.91 (d, J = 7.6 Hz, 2H, ArH), 10.81 (s {weak}, 1H, –NH), 10.89 (s {weak}, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 35.79, 100.68, 104.33, 107.50, 107.72, 115.93 (2C), 118.00, 119.49 (2C), 123.68 (2C), 123.89 (2C), 128.66, 131.57, 131.83 (2C), 133.91, 145.16, 147.27, 152.23 (2C), 164.70, 165.29. IR νmax (KBr): 3409, 3295, 3119, 3084, 3049, 2893, 1655, 1636, 1607, 1560, 1491, 1232, 1184, 1040, 933, 764 cm−1. TOF-MS: calcd for C25H17NO5Na [M + Na]+: 434.1004; found: 434.1001. Anal. calcd for C25H17NO5: C, 72.99; H, 4.16; N, 3.40; found: C, 72.95; H, 4.16; N, 3.39.
3-((5-Bromo-1H-indol-3-yl)(phenyl)methyl)-4-hydroxy-2H-chromen-2-one (4af). Brownish white solid (0.237 g, 53%); mp 138–140 °C; [α]25D = +12.8 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 6.09 (s, 1H, –CH), 7.15–7.19 (m, 2H, ArH), 7.23–7.29 (m, 5H, ArH), 7.35–7.38 (m, 3H, ArH), 7.48 (d, J = 1.6 Hz, 1H, ArH), 7.59–7.63 (m, 1H, ArH), 8.05 (dd, J = 1.6, 0.8, 8.2 Hz, 1H, ArH), 11.17 (d, J = 1.2 Hz, 1H, –NH), 11.75 (br s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 37.18, 108.63, 111.45, 114.00, 114.38, 116.67, 121.16, 123.37, 123.69, 123.99, 124.29, 126.23, 126.68, 128.24 (2C), 128.46 (2C), 129.59, 132.41, 135.08, 142.80, 152.65, 160.82, 162.15. IR νmax (KBr): 3398, 3265, 3242, 3074, 3022, 2895, 2860, 1687, 1616, 1566, 1489, 1452, 1415, 1326, 1248, 1169, 1105, 1041, 939, 887, 758 cm−1. TOF-MS: calcd for C24H16BrNO3Na [M + Na]+: 468.0211; found: 468.0218. Anal. calcd for C24H16BrNO3: C, 64.59; H, 3.61; N, 3.14; found: C, 64.63; H, 3.60; N, 3.17.
3-((5-Fluoro-1H-indol-3-yl)(phenyl)methyl)-4-hydroxy-2H-chromen-2-one (4ah). Reddish white solid (0.235 g, 61%); mp 178–179 °C; [α]25D = +23.2 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 6.06 (s, 1H, –CH), 6.88–6.92 (m, 1H, ArH), 7.01 (d, J = 10 Hz, 1H, ArH), 7.15–7.18 (m, 1H, ArH), 7.23–7.29 (m, 5H, ArH), 7.34–7.38 (m, 3H, ArH), 7.61 (t, J = 8, 7.6 Hz, 1H, ArH), 8.03 (d, J = 7.6 Hz, 1H, ArH), 11.06 (s, 1H, –NH), 11.80 (br s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 37.34, 103.42, 103.65, 108.62, 109.22, 109.47, 112.85, 112.95, 114.79, 116.67, 123.95, 124.30, 126.21, 127.03, 127.86, 127.95, 128.24, 128.48, 132.41, 133.05, 142.77, 152.63, 160.84, 162.17. IR νmax (KBr): 3480, 3328, 3278, 3107, 1686, 1614, 1564, 1494, 1219, 1161, 1061, 897, 847, 760 cm−1. TOF-MS: calcd for C24H16FNO3Na [M + Na]+: 408.1012; found: 408.1015. Anal. calcd for C24H16FNO3: C, 74.80; H, 4.18; N, 3.63; found: C, 74.88; H, 4.15; N, 3.61.
3-((4-Chlorophenyl)(1H-indol-3-yl)methyl)-4-hydroxy-6-methyl-2H-pyran-2-one (4bb). Brown solid (0.209 g, 57%); mp 107–109 °C; [α]25D = +23.6 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 2.15 (s, 3H, –CH3), 5.78 (s, 1H, –CH), 6.02 (s, 1H, –CH), 6.90 (t, J = 7.6 Hz, 1H, ArH), 7.03–7.06 (m, 2H, ArH), 7.22–7.27 (m, 5H, ArH), 7.35 (d, J = 8 Hz, 1H, ArH), 10.86 (s, 1H, –NH), 11.51 (br s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 19.35, 35.63, 100.02, 103.78, 111.49, 114.23, 118.38, 120.86 (2C), 124.13, 127.11, 127.57 (2C), 130.06 (2C), 130.10, 136.03, 142.26, 161.03, 163.90, 165.52. IR νmax (KBr): 3402, 3261, 3042, 2945, 2920, 1670, 1634, 1576, 1489, 1444, 1404, 1279, 1094, 968, 831, 742 cm−1. TOF-MS: calcd for C21H16ClNO3Na [M + Na]+: 388.0716; found: 388.0721. Anal. calcd for C21H16ClNO3: C, 68.95; H, 4.41; N, 3.83; found: C, 68.97; H, 4.39; N, 3.85.
3-((5-Bromo-1H-indol-3-yl)(phenyl)methyl)-4-hydroxy-6-methyl-2H-pyran-2-one (4bc). Deep brown solid (0.246 g, 60%); mp 110–112 °C; [α]25D = +35.3 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 2.15 (s, 3H, –CH3), 5.76 (s, 1H, –CH), 6.03 (s, 1H, –CH), 7.09 (d, J = 2 Hz, 1H, ArH), 7.12–7.15 (m, 2H, ArH), 7.23–7.24 (m, 4H, ArH), 7.32 (s, 1H, ArH), 7.34–7.37 (m, 1H, ArH), 11.07 (s, 1H, –NH), 11.46 (s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 19.28, 35.91, 101.55, 103.65, 110.84, 113.46, 114.64, 120.56, 123.10, 125.65, 125.90, 126.53, 127.70, 127.96, 128.06, 129.04, 134.62, 142.63, 163.75, 165.38, 166.32. IR νmax (KBr): 3398, 3362, 3317, 3076, 3006, 2922, 2851, 1668, 1570, 1556, 1447, 1275, 1099, 1033, 987, 878, 702 cm−1. TOF-MS: calcd for C21H16BrNO3Na [M + Na]+: 432.0211; found: 432.0218. Anal. calcd for C21H16BrNO3: C, 61.48; H, 3.93; N, 3.41; found: C, 61.46; H, 3.95; N, 3.43.
2-((1H-Indol-3-yl)(phenyl)methyl)-3-hydroxy-5,5-dimethylcyclohex-2-enone (4ca). Brownish white solid (0.242 g, 70%); mp 164–168 °C; [α]25D = +22.7 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 1.01 (s, 6H, 2CH3), 2.28 (s, 4H, 2CH2), 5.83 (s, 1H, –CH), 6.86–6.92 (m, 2H, ArH), 7.02 (t, J = 7.6, 7.2 Hz, 1H, ArH), 7.08 (d, J = 4 Hz, 1H, ArH), 7.17–7.22 (m, 5H, ArH), 7.34 (d, J = 8 Hz, 1H, ArH), 10.37 (br s, 1H, –NH), 10.73 (s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 28.42 (2C), 32.07, 35.42, 46.50, 49.38, 111.69, 116.39, 117.15, 118.41, 119.04, 120.96, 124.54, 125.32, 127.77, 127.94 (2C), 128.61 (2C), 136.43, 145.14, 165.41, 195.54. IR νmax (KBr): 3443, 3394, 3325, 3269, 3240, 3045, 2949, 2862, 1676, 1601, 1581, 1564, 1495, 1448, 1265, 1225, 1148, 1105, 1016, 863, 949, 741 cm−1. TOF-MS: calcd for C23H23NO2Na [M + Na]+: 368.1626; found: 368.1630. Anal. calcd for C23H23NO2: C, 79.97; H, 6.71; N, 4.05; found: C, 79.95; H, 6.69; N, 4.09.
2-((1H-Indol-3-yl)(p-tolyl)methyl)-3-hydroxy-5,5-dimethylcyclohex-2-enone (4cb). Reddish white solid (0.223 g, 62%); mp 88–92 °C; [α]25D = +23.8 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 1.00 (s, 6H, 2CH3), 2.16 (d, J = 8 Hz, 2H, –CH2), 2.21 (s, 3H, CH3), 2.37–2.39 (m, 2H, –CH2), 5.78 (s, 1H, –CH), 6.85–6.90 (m, 2H, ArH), 6.96–7.07 (m, 5H, ArH), 7.19 (d, J = 7.6 Hz, 1H, ArH), 7.33 (d, J = 8 Hz, 1H, ArH), 10.30 (s, 1H, –NH), 10.71 (s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 20.60, 27.97, 31.63 (2C), 34.62, 43.32, 50.45, 111.23, 116.07, 116.86, 117.94, 118.64, 120.49, 124.03, 127.49, 127.95 (2C), 128.11 (2C), 133.60, 136.01, 141.62, 170.29, 196.05. IR νmax (KBr): 3406, 3396, 3317, 3108, 2951, 2920, 2856, 1650, 1602, 1591, 1573, 1454, 1255, 1225, 1094, 1012, 742 cm−1. TOF-MS: calcd for C24H25NO2Na [M + Na]+: 382.1783; found: 382.1788. Anal. calcd for C24H25NO2: C, 80.19; H, 7.01; N, 3.90; found: C, 80.21; H, 6.99; N, 3.91.
2-((4-Fluorophenyl)(1H-indol-3-yl)methyl)-3-hydroxy-5,5-dimethylcyclohex-2-enone (4cc). Reddish brown white solid (0.244 g, 67%); mp 105–107 °C; [α]25D = +35.1 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 1.00 (s, 6H, 2CH3), 2.17 (br s, 2H, –CH2), 2.40 (br s, 2H, –CH2), 5.80 (s, 1H, –CH), 6.88 (dd, J = 7.6, 8 Hz, 2H, ArH), 6.96–7.04 (m, 3H, ArH), 7.15–7.20 (m, 3H, ArH), 7.34 (d, J = 8 Hz, 1H, ArH), 10.44 (s, 1H, –NH), 10.75 (s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 28.39 (2C), 32.06, 34.84, 43.65, 50.84, 111.73, 114.23, 114.44, 116.21, 117.01, 118.48, 118.98, 121.02, 124.48, 127.75, 130.17, 130.25, 136.48, 141.17, 159.34, 161.73, 196.45. IR νmax (KBr): 3398, 3278, 3052, 2947, 2864, 1709, 1585, 1500, 1223, 1149, 1085, 1014, 746 cm−1. TOF-MS: calcd for C23H22FNO2Na [M + Na]+: 386.1532; found: 386.1537. Anal. calcd for C23H22FNO2: C, 76.01; H, 6.10; N, 3.85; found: C, 76.05; H, 6.11; N, 3.83.
2-((5-Fluoro-1H-indol-3-yl)(phenyl)methyl)-3-hydroxy-5,5-dimethylcyclohex-2-enone (4cf). Brownish white solid (0.236 g, 65%); mp 169–171 °C; [α]25D = +44.3 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 0.92 (s, 6H, 2CH3), 2.20 (br s, 4H, 2CH2), 5.68 (s, 1H, –CH), 6.77–6.80 (m, 2H, ArH), 6.92 (s, 1H, ArH), 7.01–7.03 (m, 1H, ArH), 7.09–7.13 (m, 4H, ArH), 7.25 (q, J = 4.4, 4.8, 9.4 Hz, 1H, ArH), 10.49 (br s, 1H, –NH), 10.79 (s, 1H, –OH). 13C NMR (100 MHz, DMSO-d6): δ 28.37 (2C), 32.08 (2C), 35.38, 44.61, 103.45, 103.68, 108.86, 109.12, 112.57, 112.67, 116.70, 125.45, 126.71, 127.87, 127.99, 128.53, 135.06, 144.63, 155.68, 157.97, 195.23. IR νmax (KBr): 3487, 3366, 2949, 1682, 1548, 1473, 1253, 1163, 1084, 1024, 842, 783 cm−1. TOF-MS: Calcd for C23H22FNO2Na [M + Na]+: 386.1532; found: 386.1529. Anal. calcd for C23H22FNO2: C, 76.01; H, 6.10; N, 3.85; found: C, 76.03; H, 6.08; N, 3.87.
5-((1H-Indol-3-yl)(phenyl)methyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4da). White solid (0.329 g, 91%); mp 172–174 °C; [α]25D = +34.8 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 2.76 (s, 3H, –CH3), 2.89 (s, 3H, –CH3), 4.89 (d, J = 2.8 Hz, 1H, –CH), 4.96 (d, J = 2.8 Hz, 1H, –CH), 6.81 (t, J = 7.2, 7.6 Hz, 1H, ArH), 6.97 (t, J = 7.2, 7.6 Hz, 1H, ArH), 7.05 (d, J = 8 Hz, 1H, ArH), 7.09–7.20 (m, 5H, ArH), 7.29 (d, J = 8 Hz, 1H, ArH), 7.40 (br s, 1H, ArH), 10.98 (s, 1H, –NH). 13C NMR (100 MHz, DMSO-d6): δ 28.19, 28.32, 47.19, 55.11, 112.00, 118.80, 118.97, 121.64, 124.85 (2C), 126.75 (2C), 127.59 (2C), 128.52 (2C), 136.47, 139.96, 151.51, 168.35, 169.15. IR νmax (KBr): 3144, 3063, 3034, 2955, 1738, 1680, 1672, 1444, 1286, 1136, 1107, 1008, 927, 837, 762 cm−1. TOF-MS: calcd for C21H19N3O3Na [M + Na]+: 384.1324; found: 384.1328. Anal. calcd for C21H19N3O3: C, 69.79; H, 5.30; N, 11.63; found: C, 69.82; H, 5.28; N, 11.59.
5-((5-Fluoro-1H-indol-3-yl)(phenyl)methyl)-1,3-dimethyl pyrimidine-2,4,6(1H,3H,5H)-trione (4dc). White solid (0.353 g, 93%); mp 174–176 °C; [α]25D = +31.9 (acetone, c 1.0); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): δ 2.84 (s, 3H, –CH3), 2.96 (s, 3H, –CH3), 4.38 (d, J = 3.2 Hz, 1H, –CH), 5.00 (d, J = 2.8 Hz, 1H, –CH), 6.79–6.92 (m, 2H, ArH), 7.20–7.28 (m, 5H, ArH), 7.36 (q, J = 4.4 Hz, 1H, ArH), 7.58 (s, 1H, ArH), 11.18 (s, 1H, –NH). 13C NMR (100 MHz, DMSO-d6): δ 28.20, 28.31, 46.91, 54.93, 103.45, 103.68, 109.63, 109.89, 112.97, 113.07, 113.45, 127.00, 127.64, 128.54, 133.12, 139.73, 151.51, 155.83, 158.13, 168.32, 169.04. IR νmax (KBr): 3388, 3122, 2951, 1747, 1668, 1467, 1288, 1170, 1105, 925, 806, 761 cm−1. TOF-MS: calcd for C21H18FN3O3Na [M + Na]+: 402.1230; found: 402.1233. Anal. calcd for C21H18FN3O3: C, 66.48; H, 4.78; N, 11.08; found: C, 66.46; H, 4.75; N, 11.03.
5-((1H-Indol-3-yl)(phenyl)methyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4ea). White solid (0.234 g, 67%); mp 129–131 °C; [α]25D = +41.6 (acetone, c 1.0 for syn-isomer); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): for syn isomer: δ 1.45 (s, 3H, –CH3), 1.74 (s, 3H, –CH3), 5.17 (d, J = 2.8 Hz, 1H, –CH), 5.35 (d, J = 2.4 Hz, 1H, –CH), 6.79–6.86 (m, 1H, ArH), 6.92–7.02 (m, 2H, ArH), 7.07–7.19 (m, 4H, ArH), 7.22–7.25 (m, 2H, ArH), 7.36 (dd, J = 1.6, 2.4, 4.8 Hz, 1H, ArH), 10.95 (s, 1H, –NH). 13C NMR (100 MHz, DMSO-d6): δ 27.19, 28.14, 31.14, 52.14, 105.46, 111.90, 113.67, 119.01, 121.62, 124.38, 126.47, 126.79, 128.22, 128.42, 128.66, 129.32, 136.25, 141.66, 143.37, 165.52, 166.05. IR νmax (KBr): 3398, 2970, 2941, 1761, 1745, 1604, 1307, 1215, 1081, 1012, 904, 829, 756 cm−1. 1H NMR (400 MHz, DMSO-d6): for anti isomer: δ 1.99 (s, 6H, 2CH3), 4.27 (d, J = 12.4 Hz, 1H, –CH), 4.74 (d, J = 12.4 Hz, 1H, –CH), 6.79–6.86 (m, 1H, ArH), 6.92–7.02 (m, 2H, ArH), 7.07–7.19 (m, 4H, ArH), 7.30 (d, J = 8.4 Hz, 2H, ArH), 7.46 (d, J = 8 Hz, 1H, ArH), 10.82 (s, 1H, –NH). TOF-MS: calcd for C21H19NO4Na [M + Na]+: 372.1212; found: 372.1218. Anal. calcd for C21H19NO4: C, 72.19; H, 5.48; N, 4.01; found: C, 72.26; H, 5.45; N, 3.99.
5-((1H-Indol-3-yl)(p-tolyl)methyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4eb). White solid (0.182 g, 63%); mp 128–130 °C; [α]25D = +68.2 (acetone, c 1.0 for syn-isomer); e.r. could not be evaluated at this time. 1H NMR (400 MHz, DMSO-d6): for syn isomer: δ 1.45 (s, 3H, –CH3), 1.73 (s, 3H, –CH3), 2.21 (s, 3H, –CH3), 5.12 (s, 1H, –CH), 5.31 (s, 1H, –CH), 6.92–6.97 (m, 3H, ArH), 7.09–7.14 (m, 2H, ArH), 6.82 (q, J = 8.4, 7.6, 7.2, 15.4 Hz, 2H, ArH), 7.19–7.24 (m, 1H, ArH), 7.28–7.39 (m, 1H, ArH), 10.93 (s, 1H, –NH). 13C NMR (100 MHz, DMSO-d6): δ 27.20, 28.14, 31.14, 21.02, 52.13, 105.13, 111.87, 113.88, 117.07, 118.92, 119.03, 121.57, 124.36, 127.45, 128.81, 128.98, 129.24, 135.79, 136.26, 138.55, 165.48, 166.10. IR νmax (KBr): 3425, 3181, 2997, 2850, 1776, 1734, 1577, 1504, 1298, 1193, 1063, 902, 850, 740 cm−1. 1H NMR (400 MHz, DMSO-d6): for anti isomer: δ 2.00 (s, 6H, 2CH3), 2.10 (s, 3H, –CH3), 4.22 (d, J = 12 Hz, 1H, –CH), 4.69 (d, J = 12.4 Hz, 1H, –CH), 6.92–6.97 (m, 3H, ArH), 7.09–7.14 (m, 3H, ArH), 7.19–7.24 (m, 1H, ArH), 7.28–7.33 (m, 1H, ArH), 7.43 (d, J = 7.6 Hz, 1H, ArH), 10.79 (s, 1H, –NH). TOF-MS: calcd for C22H21NO4Na [M + Na]+: 386.1368; found: 386.1372. Anal. calcd for C22H21NO4: C, 72.71; H, 5.82; N, 3.85; found: C, 72.68; H, 5.80; N, 3.89.

Acknowledgements

The authors are thankful to IICB, Kolkata, CDRI (Lucknow) and Chemistry Department, Visva-Bharati University, India for spectral measurements. S.D. is grateful to the UGC, New Delhi for awarding him a Junior Research Fellowship. Financial support from CSIR, New Delhi [no. 02(0110)/12/EMR-II] is also deeply acknowledged. The authors are thankful to the reviewers for their useful comments.

References

  1. (a) Atta-ur-Rahman and A. Basha, Indole Alkaloids, Harwood Academic Publishers, Chichester, UK, 1998 Search PubMed; (b) M. Somai and F. Yamada, Nat. Prod. Rep., 2005, 22, 73 RSC; (c) Indoles, ed. R. J. Sundberg, Academic Press, London, 1996 Search PubMed; (d) H. C. Zhang, L. V. R. Bonaga, H. Ye, C. K. Derian, B. P. Damiano and B. E. Maryanoff, Bioorg. Med. Chem. Lett., 2007, 17, 2863 CrossRef CAS PubMed; (e) B. Jiang, C. G. Yang and J. Wang, J. Org. Chem., 2001, 66, 4865 CrossRef CAS PubMed; (f) H. Zhang and R. C. Larock, Org. Lett., 2001, 3, 3083 CrossRef CAS PubMed; (g) M. Sakagami, H. Muratake and M. Natsume, Chem. Pharm. Bull., 1994, 42, 1393 CrossRef CAS; (h) T. Fukuyama and X. Chen, J. Am. Chem. Soc., 1994, 116, 3125 CrossRef CAS; (i) R. J. Sundberg, The Chemistry of Indoles, Academic Press, New York, 1970 Search PubMed.
  2. (a) B. Bao, Q. Sun, X. Yao, J. Hong, C. O. Lee, C. J. Sim, K. S. Im and J. H. Jung, J. Nat. Prod., 2005, 68, 711 CrossRef CAS PubMed; (b) S. Hibino and T. Chozi, Nat. Prod. Rep., 2001, 18, 66 RSC; (c) A. Casapullo, G. Bifulco, I. Bruno and R. Riccio, J. Nat. Prod., 2000, 63, 447 CrossRef CAS PubMed; (d) T. R. Garbe, M. Kobayashi, N. Shimizu, N. Takesue, M. Ozawa and H. Yukawa, J. Nat. Prod., 2000, 63, 596 CrossRef CAS PubMed.
  3. (a) M. P. Leze, M. L. Borgne, P. Marchand, D. Loquet, M. Kogler, G. L. Baut, A. Palusczak and R. W. Hartmann, J. Enzyme Inhib. Med. Chem., 2004, 19, 549 CrossRef CAS PubMed; (b) M. L. Borgne, P. Marchand, B. Delevoye- Seiller, J. M. Robert, G. L. Baut, R. W. Hartmann and M. Palzer, Bioorg. Med. Chem. Lett., 1999, 9, 333 CrossRef.
  4. (a) R. D. H. Murray, Nat. Prod. Rep., 1995, 12, 477 RSC; (b) A. Estévez-Braun and A. G. González, Nat. Prod. Rep., 1997, 14, 465 RSC; (c) A. Lacy and R. O'Kennedy, Curr. Pharm. Des., 2004, 10, 3797 CrossRef CAS.
  5. (a) A. D. Patil, A. J. Freyer, D. S. Eggleston, R. C. Haltiwanger, M. F. Bean, P. B. Taylor, M. J. Caranfa, A. L. Breen, H. R. Bartus, R. K. Johnson, R. P. Hertzberg and J. W. Westley, J. Med. Chem., 1993, 36, 4131 CrossRef CAS; (b) D. Guilet, J.-J. Hélesbeux, D. Séraphin, T. Sévenet, P. Richomme and J. Bruneton, J. Nat. Prod., 2001, 64, 563 CrossRef CAS PubMed.
  6. (a) C. A. Bradfield and L. F. Bjeldanes, J. Agric. Food Chem., 1987, 35, 46 CrossRef CAS; (b) T. A. Broadbent and H. S. Broadbent, Curr. Med. Chem., 1998, 5, 337 CAS; (c) T. A. Broadbent and H. S. Broadbent, Curr. Med. Chem., 1998, 5, 469 CAS; (d) For a review, see: S. Safe, S. Papineni and S. Chintharlapalli, Cancer Lett., 2008, 269, 326 CrossRef CAS PubMed.
  7. L. Xue, J. J. Pestka, M. Li, G. L. Firestone and L. F. Bjeldanes, J. Nutr. Biochem., 2008, 19, 336 CrossRef CAS PubMed.
  8. T. O. Watsuji, S. Yamada, T. Yamabe, Y. Watanabe, T. Kato, T. Saito, K. Ueda and T. Beppu, Appl. Environ. Microbiol., 2007, 73, 6159 CrossRef CAS PubMed.
  9. M. L. Borgne, P. Marchand, B. Delevoye-Seiller, J. M. Robert, G. L. Baut, R. W. Hartmann and M. Palzer, Bioorg. Med. Chem. Lett., 1999, 9, 333 CrossRef.
  10. (a) G. Appendino, M. Ottino, N. Marquez, F. Bianchi, A. Giana, M. Ballero, O. Sterner, B. L. Fiebich and E. Muñoz, J. Nat. Prod., 2007, 70, 608 CrossRef CAS PubMed; (b) A. Rosa, M. Deiana, A. Atzeri, G. Corona, M. P. Melis, G. Appendino and M. A. Dessì, Chem.–Biol. Interact., 2007, 165, 117 CrossRef CAS PubMed; (c) P. S. Kothevade, D. M. Nagnoti, V. D. Bulani and A. R. Juvekar, Sci. World J., 2013, 986429 Search PubMed; (d) J. Bauer, A. Koeberle, F. Behm, F. Pollastro, G. Appendino, H. Northoff, A. Rossi, L. Sautebin and O. Werz, Biochem. Pharmacol., 2011, 81, 259 CrossRef CAS PubMed.
  11. (a) D. Opherk, G. Schuler, W. Waas, R. Dietz and W. Kübler, Eur. Heart J., 1990, 11, 342 CAS; (b) J. Grayson, M. Irvine and J. R. Parratt, Br. J. Pharmacol., 1969, 37, 523P CAS.
  12. (a) J. Ansell, J. Hirsh, E. Hylek, A. Jacobson, M. Crowther and G. Palareti, Chest, 2008, 133, 160S CrossRef CAS PubMed; (b) A. M. Holbrook, J. A. Pereira, R. Labiris, H. McDonald, J. D. Douketis, M. Crowther and P. S. Wells, Arch. Intern. Med., 2005, 165, 1095 CrossRef CAS PubMed; (c) J. Hirsh, V. Fuster, J. Ansell and J. L. Halperin, J. Am. Coll. Cardiol., 2003, 41, 1633 CrossRef CAS.
  13. (a) F. R. Rowe, C. J. Plant and A. Bradfield, J. Hyg. Comb., 1981, 87, 171 CrossRef CAS; (b) M. A. Stahmann, C. F. Huebner and K. P. Link, J. Biol. Chem., 1941, 138, 513 CAS.
  14. G. Appendino, L. Cicione and A. Minassi, Tetrahedron Lett., 2009, 50, 5559 CrossRef CAS PubMed.
  15. G. Brahmachari and S. Das, J. Heterocycl. Chem., 2013 DOI:10.1002/jhet.1909 , in press.
  16. (a) G. Brahmachari and S. Laskar, Tetrahedron Lett., 2010, 51, 2319 CrossRef CAS PubMed; (b) G. Brahmachari, S. Laskar and S. Sarkar, J. Chem. Res., 2010, 34, 288 CrossRef CAS; (c) G. Brahmachari, S. Laskar and S. Sarkar, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2010, 49, 1274 Search PubMed; (d) G. Brahmachari and S. Das, Tetrahedron Lett., 2012, 53, 1479 CrossRef CAS PubMed; (e) G. Brahmachari and B. Banerjee, Asian J. Org. Chem., 2012, 1, 251 CrossRef CAS; (f) G. Brahmachari and S. Das, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2013, 52B, 387 CAS; (g) S. Das and G. Brahmachari, SOA J. Org. Biomol. Chem., 2013, 1, 33 Search PubMed; (h) G. Brahmachari, S. Laskar and P. Barik, RSC Adv., 2013, 3, 14245 RSC; (i) G. Brahmachari and B. Banerjee, Org. Med. Chem. Lett., 2013, 1, 1,  DOI:10.1186/2191-2858-3-1; (j) G. Brahmachari, S. Laskar and B. Banerjee, J. Heterocycl. Chem., 2013 DOI:10.1002/jhet.1974 , in press; (k) G. Brahmachari and S. Das, J. Heterocycl. Chem., 2013 DOI:10.1002/jhet.2123 , in press; (l) G. Brahmachari and B. Banerjee, ACS Sustainable Chem. Eng., 2013 DOI:10.1021/sc400312n.
  17. (a) B. List, Tetrahedron, 2002, 58, 5573 CrossRef CAS; (b) W. Notz, F. Tanaka and C. F. Barbas, Acc. Chem. Res., 2004, 37, 580 CrossRef CAS PubMed; (c) S. Abdolmohammadia and S. Balalaie, Tetrahedron Lett., 2007, 48, 3299 CrossRef PubMed; (d) P. Renzi, J. Overgaard and M. Bella, Org. Biomol. Chem., 2010, 8, 980 RSC; (e) A. Kumar, M. K. Gupta and M. Kumar, Green Chem., 2012, 14, 290 RSC.
  18. (a) N. Elders, D. van der Born, L. J. D. Hendrickx, B. J. J. Timmer, A. Krause, E. Janssen, F. J. J. de Kanter, E. Ruijter and R. V. A. Orru, Angew. Chem., Int. Ed., 2009, 48, 5856 CrossRef CAS PubMed; (b) A. Dömling, Chem. Rev., 2006, 106, 17 CrossRef PubMed.
  19. (a) R. W. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown and T. A. Keating, Acc. Chem. Res., 1996, 29, 123 CrossRef CAS; (b) K. Kumaravel and G. Vasuki, Curr. Org. Chem., 2009, 13, 1820 CrossRef CAS; (c) S. Brauch, L. Gabriel and B. Westermann, Chem. Commun., 2010, 46, 3387 RSC.
  20. B. M. Trost, Science, 1991, 254, 1471 CAS.
  21. R. A. Sheldon, Pure Appl. Chem., 2000, 72, 1233 CrossRef CAS.
  22. (a) W. Wang, J. Wu, C. Xiaa and F. Li, Green Chem., 2011, 13, 3440 RSC; (b) R. B. N. Baig and R. S. Varma, Green Chem., 2012, 14, 625 RSC; (c) K. Arya, D. S. Rawata and H. Sasaib, Green Chem., 2012, 14, 1956 RSC; (d) T. R. Reddy, L. S. Reddy, G. R. Reddy, K. Yarbagi, Y. Lingappa, D. Rambabu, G. R. Krishna, C. M. Reddy, K. S. Kumar and M. Pal, Green Chem., 2012, 14, 1870 RSC; (e) Z. N. Tisseh, M. Dabiri, M. Nobahar, H. R. Khavasi and A. Bazgir, Tetrahedron, 2012, 68, 1769 CrossRef CAS PubMed; (f) B. S. P. A. Kumar, K. H. V. Reddy, B. Madhav, K. Ramesh and Y. V. D. Nageswar, Tetrahedron Lett., 2012, 53, 4595 CrossRef PubMed; (g) Y. Gu, Green Chem., 2012, 14, 2091 RSC; (h) Z.-J. Quan, Q. Xu, Z. Zhang, Y.-X. Da and X.-C. Wang, Tetrahedron, 2013, 69, 881 CrossRef CAS PubMed.
  23. (a) M. A. P. Martins, C. P. Frizzo, D. N. Moreira, L. Buriol and P. Machado, Chem. Rev., 2009, 109, 4140 CrossRef CAS PubMed; (b) V. Polshettiwar and R. S. Varma, Acc. Chem. Res., 2008, 41, 629 CrossRef CAS PubMed; (c) A. L. Garay, A. Pichona and S. L. James, Chem. Soc. Rev., 2007, 36, 846 RSC; (d) K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025 CrossRef CAS PubMed; (e) B. Rodríguez, A. Bruckmann, T. Rantanen and C. Bolm, Adv. Synth. Catal., 2007, 349, 2213 CrossRef; (f) L. Basolo, A. Bernasconi, E. Borsini, G. Broggini and E. M. Beccalli, ChemSusChem, 2011, 4, 1637 CrossRef CAS PubMed; (g) A. Stolle and B. Ondruschka, Pure Appl. Chem., 2011, 83, 1343 CrossRef CAS; (h) H. M. Marvaniya, K. N. Modi and D. J. Sen, Int. J. Drug Dev. Res., 2011, 3, 34 CAS; (i) M. Gupta, S. Paul and R. Gupta, Acta Chim. Slov., 2009, 56, 749 CAS.
  24. (a) S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. Ch. Shearouse, J. W. Steed and D. C. Waddell, Chem. Soc. Rev., 2012, 41, 413 RSC; (b) T. Friscic, Chem. Soc. Rev., 2012, 41, 3493 RSC.
  25. (a) B. List, P. Polariley, W. T. Biller and H. J. Martin, J. Am. Chem. Soc., 2002, 124, 823 Search PubMed; (b) Y. Hayashi, T. Urushima, W. Tsuboi and M. Shoji, Nat. Protoc., 2007, 2, 113 CrossRef CAS PubMed; (c) E. Veverková, L. Liptáková, M. Veverka and R. Šebesta, Tetrahedron: Asymmetry, 2013, 24, 548 CrossRef PubMed.
  26. (a) P. Kotrusz and Š. Toma, ARKIVOC, 2006, 100 CrossRef CAS; (b) P. Kotrusz and Š. Toma, Molecules, 2006, 11, 197 CrossRef CAS PubMed; (c) N. Moirangthem, B. Thingom, S. D. Moirangthem and W. S. Laitonjam, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2013, 52, 937 Search PubMed; (d) K. Xu, S. Zhang, Y. Hu, Z. Zha and Z. Wang, Chem. – Eur. J., 2013, 19, 3573 CrossRef CAS PubMed.

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.