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Abstract: 

Research and practice suggest markers of drinking water quality such as trihalomethanes (THM), 

can change during treatment and distribution, potentially elevating health risk of end users. 

Models have been developed to predict THM formation at drinking water treatment plants 

(DWTP), in drinking water distribution systems (DWDS), and to a lesser extent, building 
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premise plumbing (PP). The goal of this research was to evaluate the performance of published 

THM models and their development methodology, with the purpose of improving future THM 

model development. Water quality variable data were collected from literature and used as inputs 

for collected models. Mean and variance of model prediction values were used to measure THM 

model performance compared with THM data trends from literature. The research found 

inconsistencies in model formulation, water quality variable selection, and model development 

practices, despite evaluated models being statistical in nature. These differences lead to 

substantial inconsistencies in model output behavior. Diversity of data used for model 

development was found to be the most important factor for generalizable model prediction 

capabilities. As a result, a new framework was proposed to encourage novel strategies, data 

sharing, and collaboration among researchers and practitioners to improve THM model 

development, application, and performance. Potential use of machine learning techniques for 

future model development was also discussed based on findings. 

Keywords: Chlorine; Green buildings; Machine learning; Data sharing; Water conservation and 

efficiency

Water Impact Statement:

The potential health risks of disinfection byproducts (DBPs) are a primary concern within the 

scope of drinking water treatment and distribution. Regulated DBPs including trihalomethanes 

(THMs) are of particular importance due to regulatory and carcinogenicity concerns. It has been 

demonstrated that THM concentrations can increase during drinking water distribution, and 

ultimately cause increased health risk to end users. This problem may be enhanced in green 
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buildings as lower water use leads to greater stagnation, an increased THM formation. THM 

models have been useful for predicting changes in THM concentrations during water treatment 

and distribution, however there has been limited development for premise plumbing application 

due to greater challenges imposed by differences in physiochemical phenomena influencing 

THM formation. Further, THM model development for the past 30 years has focused primarily 

on statistical models fitted for system specific data. This research evaluates the generalizability 

of recent regression based THM models to identify useful strategies for premise plumbing THM 

model development. Further, it offers a framework moving forward that promotes a more 

cohesive system of data and model development reporting that will hopefully facilitate greater 

progress and support more novel data-science based approaches to the challenges introduced by 

premise plumbing systems. Accurate prediction of THM formation in premise plumbing will 

allow us to promote sustainable water management practices while also considering the 

associated health implications.  

1. Introduction 

Ensuring drinking water quality is crucial for maintaining public health. Disinfection of 

drinking water is an important step of drinking water treatment that ensures inactivation of 

pathogens. However, disinfectants such as chlorine (Cl2), can form carcinogenic disinfection 

byproducts (DBP), such as trihalomethanes (THMs), increasing risk to consumers. The 

regulation of THMs by the USEPA underlines the significance of maintaining safe THM 

concentrations in drinking water distribution systems (DWDS) for public health. There is an 

expanding body of research that demonstrates changes in residual Cl2 and increases in THMs can 

occur during the treatment and distrbution of drinking water (1, 2).  Recent innovations in 

building design that promote water efficiency may also contribute to degraded drinking water 
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quality (3). When not appropriately accounted for, lower water use in “green” buildings can 

create increased water stagnation times, leading to lower chlorine concentration and higher 

disinfection byproduct formation (4-7). Understanding how THMs change at each point during 

water treatment and distribution is vital for maintaining public health. Although in situ water 

quality sensing capabilities are available, it is often too costly or not possible to measure certain 

water quality variables, such as THMs, in real-time. Model-based estimation of water quality 

variables may be a solution to the feasibility challenges faced by drinking water treatment plants 

(DWTP), DWDS, and building plumbing especially when combined with real-time sensor data.

Numerous models have been developed with the objective of predicting THM based on 

water quality variables attributed to their formation. Model development is referred to as the 

methodology used to generate models based on research goals, and generated models are referred 

to as the final published model or models of a study. Most models have been statistical in 

formulation where data is used to fit independent explanatory variables (water quality variables), 

to dependent variables (THM), based on correlations in the data. Data used for fitting the models 

is referred to as training data in this research, and data used for model validation is referred to as 

test data. Replicative validation is the practice of evaluating model accuracy with training data, 

while predictive validation is the practice of evaluating model accuracy with data not used for 

model development. Model evaluation is referred to as the process of measuring the outputs of a 

model compared to an expected output. Generalizability is the ability of a model to produce a 

reasonable output given new or unseen data from the same type of application (e.g., DWDS model 

given new or unseen DWDS data). Generalizable models in this context would predict similar 

THM concentrations for different systems within the same application, given the appropriate water 

quality variable data. A considerable body of research has been conducted in the past 30 years 
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dedicated to DBP water quality modeling at drinking water treatment plants (DWTP), and within 

DWDS (8, 9). However, there has been limited model development for prediction of THM in 

building premise plumbing (PP). Studies suggest that THM and other water quality variables (e.g., 

Cl2, UV254, and cATP), can change significantly from DWDS to PP (10-13). Therefore, PP models 

were considered in this study despite the lack of models within literature. 

The performance of THM models developed for one application applied to another 

application (e.g., DWTP data applied to DWDS model), are not known since there are considerable 

differences in system conditions (4). Further, THM models generated since 2010 have been 

primarily statistical in formulation (8), where formulation refers to the mathematical basis of the 

model. Although statistical models are useful tools, they may not provide widespread applicability 

to different systems due to the application specific nature of their development. A preliminary 

review of recent THM models found that research was inconsistent with explanatory variable 

usage, data preparation, statistical analysis, and validation of the models. More broadly, there was 

a limited accessibility to the data and methods used for model development. Easily accessible data 

not only provides transparency, but also provides the opportunity to develop and employ more 

generally applicable models through the use of more diverse data sets. For accurate prediction 

within real drinking water systems, water age, flow conditions, and seasonal variations in water 

quality variables are important considerations; however, many models do not consider these 

factors. There is a need for investigation and understanding of water quality modeling practices 

which may benefit future THM model development.  

The goal of the research was to evaluate existing THM models to understand how model 

development (i.e., variable selection, statistical assessment, data collection) impacted prediction 

capability and generalizable application of the models. The desired outcome was to inform and 
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advance future THM model development. The specific objectives were to: (1) compile models 

developed for THM prediction in DWTP, DWDS, and PP systems, (2) compile data from literature 

of common water quality variables used in THM models for various conditions, (3) apply the water 

quality variables to the collected models and quantitatively evaluate performance, (4) identify 

characteristics that impact variance of model outputs, and (5) make recommendations for future 

model development. 

2. Research Approach 

2.1 THM models

A literature review of THM models was conducted using Scopus and Google Scholar (14-

25). Search results were restricted to include articles with titles or abstracts containing the 

keywords “THM” / “trihalomethanes”, “model”, and “water”. Results were restricted to include at 

least one secondary term, such as; “DBP”, “chlorine”, “treatment plant”, “distribution system”, or 

“premise plumbing” to be included within the scope of the search. Using both inclusion criteria 

narrowed the search to more relevant articles. All searches were limited to papers published after 

2009 to focus on most recent advances in model development not covered by prior studies (8, 9). 

Studies with models developed for natural waters with high NOM, alkalinity concentrations (Alk), 

or other characteristics not commonly found in drinking water systems were not included. 

Mechanistic models that included unique or system specific parameters were excluded from this 

study. Multiple models were selected from the same publication if there were significant 

differences in modeling approach, formulation, and/or application. Fourteen models were found 

that fit the search criteria. Models were divided into three categories based on their intended 

application: DWTP, DWDS, or PP. 
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2.2 Water quality variable data

Water quality variable data were compiled through a literature review in Scopus (18, 19, 

23, 26-39). Search results were restricted to articles with titles or abstracts containing combinations 

of the words “trihalomethanes”, “drinking water”, and/or “model”.  Searches were further 

classified based on the inclusion of “treatment plant”, “distribution system”, “distribution 

network”, “building plumbing”, or “premise plumbing”. Data inclusion was limited to articles with 

reported number of samples (n), mean, and standard deviation (SD) values. Exceptions were made 

in the case of limited available data for a particular water quality variable, reported ranges were 

used by assuming SD = (max – min) / 6. There was no restriction on the year of publication for 

water quality variable data. Data were categorized based on application: DWTP or DWDS. There 

was insufficient data in literature to create a complete set of water quality variable conditions for 

PP application. 

The data were compiled in RStudio by combining normal distributions of each data entry 

using the rnorm() function. The data were cleaned to remove improbable extrema (e.g., pH values 

were limited to values between 6.5 and 8.5, and negative concentration values were removed). The 

fitdistrplus package was used to determine the best fitting distribution for each set of water quality 

variable data, and corresponding distribution parameters. The descdist() function was used to 

produce Cullen and Fey plots for the water quality variable data. The plots aided in choosing 

distributions that provided the best fit of the water quality variable data. Distribution parameters 

for the associated distributions were determined using the fitdist() function using the maximum 

likelihood estimate. The function rtrunc() was used to produce Monte Carlo (MC) simulated data 

sets of size n = 100,000 based on the appropriate distribution type and associated parameters for 
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each water quality variable data set. Simulated water quality variable data were analyzed using 

descriptive statistics including mean, SD, 90% confidence interval (CI), and coefficient of 

variation (CV), which was calculated as SD/mean.

2.3 Model evaluation

Figure 1 illustrates the research approach outlined in this section. Model evaluation was 

conducted using the simulated water quality variable data sets as inputs for the 14 THM models. 

Data sets for both applications were applied to all models for unbiased comparison of model 

performance. From the MC simulation, each water quality variable consisted of n random values 

from the respective distribution described in section 2.2. Since the simulated water quality variable 

data sets were used as inputs for the models, and the resulting model outputs were data sets of 

equal size (n = 100,000). Descriptive statistics of model output data were presented, including 

mean predicted THM, SD, ratios of mean predicted THM concentration/mean THM concentration 

from collected data (THMp/THMm), and CV. Mean, variance, and skewness of model outputs were 

compared to mean, variance, and skewness of THM data to quantitatively rank model 

performance. Graphical representations for the model output data were produced to visually 

compare to the distribution of THM data from the literature. In addition to quantitative evaluation 

of model outputs, qualitative comparisons were made to better understand impactful aspects of 

model development. 
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Figure 1: Simplified schematic of research methodology for evaluating THM model performance. Curves represent 

probability density functions (pdf), for water quality variables ( , and predicted THM model output pdf ( ), 𝑥𝑖) 𝑇𝐻𝑀𝑖

for corresponding models ( .𝑓𝑖)

3. Results and Discussion

3.1 THM models 

Of the 14 THM models compiled from the literature review, 8 were developed for DWTP 

application, 5 were developed for DWDS application, and 1 was developed for PP application. 

Table 1 shows model development information. The models were developed using some type of 

correlation test followed by a multiple linear regression method to determine statistical 

coefficients, with the exception of Models 9, 10, and 14. Only two of the eight models that 

conducted replicative validation discussed the training/test data split. Only three of the models 

conducted sensitivity analyses, and only Model 6 development considered and removed outlier 

data. 

Page 9 of 37 Environmental Science: Water Research & Technology



10

Table 2 shows the model formulation, number of data, and data source. The number of 

water quality variables utilized ranged from 2 to 7 and the number of data used to fit the models 

ranged from 35 to 893. Predictive validation was conducted on 8 of the 14 models, while 

replicative validation was conducted on the remaining models (i.e., goodness of fit was measured 

for training data only). Data from full-scale drinking water systems were used for development for 

11 of the models, while the other 3 models were developed with bench-scale experimental data. 
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Table 1: Development methodology for the evaluated THM models for a) DWTP application, and b) DWTP and PP application. NA is used where replicative 

validation only was performed. 

a)

Application Model # Source/Year Parameter Estimation Training/Test % Validation Method Sensitivity Analysis

1 Hong et al., 
2016

Stepwise multi linear 
regression NA

Replicative with 
independent sample t 

test
Not conducted

2 Kumari and
Gupta, 2015

Multi linear regression, 
Pearson correlation Not discussed Predictive with test data Not conducted

3 Kumari and
Gupta, 2015

Multi linear regression, 
Pearson correlation Not discussed Predictive with test data Not conducted

4
Roth and
Cornwell, 

2018

Multi linear regression, 
Pearson correlation NA Replicative, and residual 

analysis Not conducted

5 Shahi et al., 
2020

Multi linear regression, 
Pearson correlation Not discussed Predictive with test and 

independent data Not conducted

6
Godo-Pla et 

al.,
2021

Multi linear regression 
with outlier detection 80/20 Predictive with test data Differential based 

sensitivity analysis

7
Dominguez-

Tello
et al., 2017

Multi linear regression, 
Pearson correlation Not discussed Predictive, test and 

independent data Not conducted

DWTP

8
Chen and

Westerhoff, 
2010

Multi non-linear 
regression, MSE 

correlation
NA Replicative, RMSE Independent variable 

sensitivity analysis
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b)

Application Model # Source/Year Parameter Estimation Training/Test % Validation Method Sensitivity Analysis

9 Wert et al., 
2012 Linear correlation NA Predictive with 

independent data
Independent variable 
sensitivity analysis

10 Cong et al., 
2012

Empirical parameter 
estimates based on 
experimental data

NA Replicative, RMSE Not conducted

11 Osorio et al., 
2011

Multi linear regression, 
bivariate correlation, 

and one-way ANOVA 
test

NA Replicative, RMSE Not conducted

12
Tsitsifili and
Kanakoudis, 

2020

K-S test, Pearson 
correlation estimate for 
multi linear regression

NA Replicative, one-way 
ANOVA test Not conducted

DWDS

13
Dominguez-

Tello
et al., 2017

Multi linear regression, 
Pearson correlation Not discussed Predictive, test and 

independent data Not conducted

PP 14 Chowdhury
et al., 2011

Significant factors 
analysis via numerical 

and graphical techniques
65/35 Predictive with test data Not conducted
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The distribution of models developed for the different applications investigated in this 

research highlighted the disparity between predictive THM models for PP application compared 

to DWTP and DWDS application. DWTP models are important for evaluating process selection 

and performance, and ensuring regulatory requirements are met, however they may not capture the 

true concentration of THM at the tap. DWDS models bridge the gap between DWTP and PP 

systems, but may not capture the significant changes in THM concentration within buildings (6). 

Other THM models exist outside of the one used in this research; however they tend to be 

mechanistic in nature (40-42). Mechanistic models require system-specific parameters for accurate 

prediction and may not capture the impact of omitted water quality variables on THM formation. 

For example, reaction rate coefficients have been used in some models to relate changes in water 

quality variable concentrations to THM formation (22, 43). Differences in physicochemical and 

biological characteristics between systems would affect the relative impact of water quality 

variables on THM formation, as well as the values of their reaction coefficients. For these reasons, 

mechanistic models may not be as useful for predicting water quality behavior in different systems. 

The difference in number of models developed for PP compared to other applications shows that 

disproportionate effort has gone toward developing THM models for DWTP and DWDS.. To aid 

in future development of THM models, the collected models were analyzed for attributes that 

contributed to their predictive capabilities. 

Model development techniques were inconsistent between studies, and generally lacked 

the execution of important considerations such as outlier data calculation and sensitivity analyses. 

Outlier data may skew model correlation parameters leading to less accurate prediction 

capabilities. Sensitivity analyses are important for understanding bias of model outputs. The 

parameter estimation methods were mainly based on Pearson correlation tests, with the exception 
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of Models 1, 6, 11, 12, and 14, which used more comprehensive parameter estimation techniques. 

There were no clear trends in model performance based on model development methodologies. 

Further, the differences between methodologies of the models highlights the inconsistencies 

between model development and reporting.

Water quality variable selection was different for each of the models due to differences in 

model development. A summary of water quality variable usage for each model is presented in 

Table 3. Each study used a correlation test to determine which water quality variables were 

significant predictors for THM formation. The differences between models highlight the relative 

differences in phenomena affecting THM formation in different applications. The amount of data 

used for model training and validation also varied between models. For the studies that did not 

explicitly declare number of data, best estimates were used based on number of data points on 

graphs or sampling protocol descriptions. Both the amount of data and the diversity of data are 

important considerations for regression fitting since they can impact model accuracy and 

prediction capabilities under different conditions. Predictive validation is important for 

understanding the prediction accuracy of the model under conditions outside of the training data 

range. Water quality variable selection, amount of training data, data diversity, and model 

validation are further discussed in later sections. Overall, the differences in model development 

emphasize the lack of consistency with model approach. Recommendations are provided in section 

4.  
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Table 2: Collected THM models developed for a) DWTP, and b) DWDS and PP application. Test data refers to data separated from training data prior to 

parameter fitting, and independent data refers to data from outside system(s).

a)

Application Model # Source/Year Model # WQV # data Data source

1 Hong et al., 
2016

𝑇𝐻𝑀𝑠 = 10 ―2.534(𝐷𝑂𝐶)0.369(𝐵𝑟)0.212(𝐶𝐿2,𝑑

𝐷𝑂𝐶)
0.400

 

(𝑇)0.662(𝑝𝐻)2.364(𝑅𝑇)0.305
6 243

Bench scale 
experimental 

data 

2 Kumari and 
Gupta, 2015

𝑇𝐻𝑀 = ―150.833 + 40.948(𝑝𝐻) + 6.153(𝑇) ― 13.876(𝐶𝑙2,𝑟) + 8.100(𝑅𝑇) + 6.221(𝑇𝑂𝐶) + 292.308(𝑈𝑉254)6 46
in situ 

DWTP and 
DWDS data

3 Kumari and 
Gupta, 2015

𝑇𝐻𝑀 = 33.436(𝑝𝐻)0.062(𝑇)0.069(𝐶𝑙2,𝑟) ―0.048(𝑅𝑇)0.018

(𝑇𝑂𝐶)0.079(𝑈𝑉254)0.045 6 46
in situ 

DWTP and 
DWDS data

4
Roth and 
Cornwell, 

2018
𝑇𝐻𝑀 = 101.2146(𝐶𝑙2,𝑑)0.3897(𝑅𝑇)0.3142(𝑈𝑉254)0.1381 3 66

Bench scale 
experimental 

data 

5 Shahi et al., 
2020

𝑇𝐻𝑀
= 85.928 ― 5.2 ∗ 10 ―4(𝑈𝑉254 ∗ 𝐷𝑂𝐶 ∗ log (𝐶𝑙2,𝑑))2 ― 6.2 ∗ 10 ―2(𝐵𝑟 + 2) + 1.66 ∗ 10 ―5(𝐶𝑙2,𝑟)2 + 3.87 ∗ 10 ―6(𝐶𝑙2,𝑝𝑜𝑠𝑡)2 ― 10.25(𝑝𝐻) + 7 ∗ 10 ―3(𝑇)2 + 8.42 ∗ 10 ―5

(𝑈𝑉254 ∗ (𝑇)2 ∗ 𝑅𝑇 ∗ 𝐶𝑙2,𝑑)
7 120 in situ 

DWTP data

6
Godo-Pla et 

al., 
2021

𝑇𝐻𝑀 = 6.18(𝑈𝑉254 + 1)3.64(𝑇𝑂𝐶)0.462(𝐶𝐿2,𝑑)0.420(𝐵𝑟 + 1)0.471(𝑇)0.169(𝑝𝐻)0.048(𝑅𝑇)0.2987 573
in situ 

DWTP and 
DWDS data

7
Dominguez-

Tello 
et al., 2017

𝑇𝐻𝑀 = 165 ― 21.3(𝑝𝐻) + 0.232(𝐵𝑟) + 5.84(𝐶𝑙2,𝑑 ∗ 𝑅𝑇 ∗ 𝑇 ∗ 𝑈𝑉254) 6 198
in situ 

DWTP and 
DWDS data

DWTP

8
Chen and 

Westerhoff, 
2010

𝑇𝐻𝑀𝐹𝑃 = 1147(𝑈𝑉254)0.83(𝐵𝑟 + 1)0.27 2 210 in situ WTP 
data

b)
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Application Model # Source/Year Model # WQV # data Data source

9 Wert et al., 
2012 𝑇𝐻𝑀 = 0.035(𝑇𝑂𝐶)1.098(𝐶𝑙2)0.152(𝑇)0.609(𝑝𝐻)1.601(𝑅𝑇)0.263 5 172 in situ 

DWTP data

10 Cong et al., 
2012

𝑇𝐻𝑀 = (11.1(𝑇𝑂𝐶) + 20.06) ― ((11.1(𝑇𝑂𝐶) + 20.06) ― 𝑇𝐻𝑀0)

∗ exp ( 𝑘0𝐶0

7.5 ∗ 107(0.7(𝑇𝑂𝐶) ― 2.2(𝐶0)) ∗ 𝑒𝑥𝑝 ( ―
6500

𝑇 )
∗ (𝑒𝑥𝑝 ( ―7.5 ∗ 107(0.7(𝑇𝑂𝐶) ― 2.2(𝐶0)) ∗ 𝑒𝑥𝑝 ( ―

6500
𝑇 )(𝑅𝑇)) ― 1))5 49

Bench scale 
experimental 

data

11 Osorio et al., 
2011 𝑇𝐻𝑀 = ―28.826 + 1.583(𝑇𝑂𝐶) + 2.713(log (𝑐𝑜𝑛𝑑)) ― 1.307(log (𝑏𝑖𝑐𝑎𝑟𝑏)) + 3.744(𝐶𝑙2) + 2.427(𝑝𝐻) + 0.102(𝑇) 6 893 in situ 

DWDS data

12
Tsitsifili and 
Kanakoudis, 

2020
log (𝑇𝐻𝑀) = ―3.84 + 0.633(𝑝𝐻) ― 0.1056(𝑇𝑂𝐶) ―2 2 35 in situ 

DWDS data

DWDS

13
Dominguez-

Tello 
et al., 2017

𝑇𝑇𝐻𝑀 = 14.9 + 1.01(𝑇𝑇𝐻𝑀𝐸𝑓) + 0.20(𝑝𝐻𝐷𝑆) ― 0.104(𝐶𝑙2,𝑑 ∗ 𝑅𝑇 ∗ 𝑇 ∗ 𝑈𝑉254) 5 280
in situ 

DWTP and 
DWDS data

PP 14 Chowdhury 
et al., 2011

𝑇𝐻𝑀𝑃𝑃 = 21.4 + 36.9(𝐶𝑙2) + 0.986(𝑇𝐻𝑀𝐷𝑆) + 0.59(𝑇𝑂𝐶) ― 1.83(𝑇) ― 1.21((𝑇𝑂𝐶 ― 4.1)(𝑇 ― 18.7))4 350 in situ PP 
data

Table 3:  WQV use among THM models

Application Model # Cl2,d Cl2,r Br pH Temp DOC TOC RT UV254 cond Alk bicarb THM

1 x x x x x x

2 x x x x x x

3 x x x x x x

4 x x x

5 x x x x x x x x

DWTP

6 x x x x x x x
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7 x x x x x x

8 x x

9 x x x x x

10 x x x x x

11 x x x x x x

12 x x

DWDS

13 x x x x x

PP 14 x x x x

Total 5 8 5 10 11 1 9 9 8 1 0 1 3
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3.2 Water quality variable data

Descriptive statistics for water quality variable data from the MC simulation can be seen 

in Tables 4a and 4b.  The CV values for water quality variables were within 10% of each other for 

DWTP and DWDS data sets with the exception of chlorine residual (Cl2,r), pH, and dissolved 

organic carbon (DOC). Most of the water quality variable data was taken from multiple sources; 

however, DWTP DOC, residence time (RT), and alkalinity (Alk), and DWDS DOC, and 

bicarbonate (bicarb), were based on one data source due to limited data available in the literature. 

Due to very limited PP data (i.e., only one study), DWDS data were used for PP model analysis. 

Overall, there was a lack of consistency on data reporting between studies. For example, data were 

reported as a range of minimum and maximum values, confidence interval, or mean and SD either 

with or without number of data points. The exercise of collecting data from different studies was 

valuable in determining variability and average conditions for DWTP and DWDS water quality 

variables; however, the results could have been improved from increased reporting, and 

standardized reporting practices.

Table 4: Descriptive statistics for a) DWTP WQV data, and b) DWDS WQV data gathered from literature review. 

Cl2,r and Cl2,d are chlorine residual and chlorine dose, respectively. Br is bromide ion concentration, T is 

temperature, DOC is dissolved organic carbon, TOC is total organic carbon, RT is residence time, UV254 is 

ultraviolet absorbance at 254nm wavelength, Alk is alkalinity, cond is conductivity, and THM it total 

trihalomethanes.
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a)

Variable Mean SD 5% 95% CV

Cl2,d (mg/L) 2.51 0.39 1.87 3.16 0.16

Cl2,r (mg/L) 1.16 0.16 0.90 1.41 0.14

Br (mg/L) 0.39 0.17 0.17 0.74 0.44

pH 7.56 0.22 7.19 7.92 0.03

T (°C) 15.45 4.71 7.66 23.25 0.30

DOC (mg/L) 1.80 0.23 1.42 2.19 0.13

TOC (mg/L) 1.71 0.78 0.69 3.18 0.46

RT (hours) 21.18 15.46 3.03 52.79 0.73

UV254 (1/cm) 0.03 0.03 0.01 0.09 1.00

Alk 
(mg/L-CaCO3)

127.40 21.65 91.84 163.10 0.17

THM (μg/L) 35.63 23.03 8.46 81.04 0.65

b)

Variable Mean SD 5% 95% CV

cond (μS/cm) 959.39 398.79 310.89 1643.28 0.42

Cl2,r (mg/L) 0.76 0.38 0.17 1.44 0.50

Br (mg/L) 0.31 0.15 0.07 0.56 0.48

pH 7.61 0.4 6.93 8.26 0.05

T (°C) 19.1 6.33 8.5 29.58 0.33

DOC (mg/L) 0.62 0.31 0.13 1.16 0.50

TOC (mg/L) 2.02 0.99 0.44 3.74 0.49

RT (hours) 37.45 30.76 4.29 99.46 0.82

UV254 (1/cm) 0.02 0.02 0.01 0.06 1.00

bicarbonate 
(mg/L-CaCO3)

204.53 78.19 76.39 334.99 0.38

THM (μg/L) 36.97 23.1 9.19 82.19 0.62

Probability density functions (PDF) for raw water quality variable data and fitted 

distributions are presented graphically in Figures 2a and 2b. The aim was to produce distributions 

which represented standard conditions in DWTP and DWDS while also accounting for variability 

seen in real systems. Since data were collected as n, mean, and SD, data sets with greater n had 

greater bias in the shape of the raw data PDF, and subsequently the descriptive statistics. This can 
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be seen in Figures 2a and 2b where some raw water quality variable PDF have multimodal 

distributions (e.g., Cl2,r, TDWTP). The modes correspond to relatively large data sets with significant 

differences in mean values. Another important consideration for water quality variables in the 

investigated systems is interdependency. Interdependency is when a change in one variable is 

correlated to a change in another variable (e.g., Cl2 and THM are affected by RT). Due to limited 

data availability, interdependency was not a consideration for this work. Despite the differences in 

data reporting and the resulting bias, the fitted distributions accurately reproduced general trends 

of the raw data and were consistent with trends found in literature. 

a)

0.00

0.25

0.50

0.75

1.00

1 2 3 4
mg/L

Cl dose

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0
mg/L

Cl residual

0

1

2

0.0 0.5 1.0 1.5
mg/L

Br

0

1

2

6.5 7.0 7.5 8.0 8.5

pH

0.000

0.025

0.050

0.075

0 10 20 30
°C

Temp

0.0

0.5

1.0

1.5

1.0 1.5 2.0 2.5
mg/L

DOC

0.0

0.2

0.4

0.6

0.8

0 2 4 6
mg/L

TOC

0.00

0.01

0.02

0.03

0 25 50 75
hours

RT

0

10

20

30

40

0.0 0.1 0.2 0.3
1/cm

UV absorbance

0.000

0.005

0.010

0.015

0.020

50 100 150 200
mg/L-CaCO3

Alk

0.000

0.005

0.010

0.015

0.020

0 50 100 150
µg/L

THM DWTP

Page 20 of 37Environmental Science: Water Research & Technology



21
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Figure 2: Probability density functions (pdf), for raw WQV data (dashed line), and fitted distribution pdf (solid line), 

from MC simulation of a) DWTP data, and b) DWDS data.

3.3 Model performance

Descriptive statistics for model output data are presented in Tables 5a and 5b. Graphic 

presentation of DWTP and DWDS model output PDF with their respective data sets are shown in 

Figures 3a and 3b. Mean, SD, and CV of the model outputs were generally greater using DWDS 

data compared to DWTP data. Since the WQV data was not from a single source, comparison of 

model outputs was made between collected THM data. For analysis, model outputs were 

considered reasonable if the THMp/THMm was between 0.5 to 2.0. Five of the models did not meet 

this criterion when DWTP data were applied (Models 2, 7, 8, 11, and 12), and five of the models 
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did not meet this criterion when DWDS data were applied (Models 2, 5, 7, 11, and 12). The 

weighted sum of absolute difference between mean, variance, and skewness (i.e., the first three 

moments), between model output data and THM data for both DWTP and DWDS was calculated 

for each model: , where w designates the 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = ∑2
𝑗 = 1

∑3
𝑖 = 1

𝑤𝑖 ∗ |𝑚𝑜𝑚𝑖, 𝑇𝐻𝑀,𝑗 ― 𝑚𝑜𝑚𝑖,𝑚𝑜𝑑𝑒𝑙|
2

assigned weight, i designates the moment, and j designates the THM data (either DWDS or 

DWTP). The weights were chosen as 1.0, 0.1, and 1.0 for the first, second, and third moments, 

respectively. This performance value was used to quantitatively compare performance of each 

model to a reasonable estimate of what could be seen in practice. This method was chosen because 

it allowed for comparison of data shape and data distribution in addition to mean predicted THM. 

Based on this evaluation, the best performing models were Models 6, 9, 13, and 14. These models 

demonstrated reasonable mean predicted THM values as well as reasonable variance and 

distribution shape compared to THM data, as seen in Figures 3a and 3b. Although the variance in 

THM was not directly correlated to input variables, the goal of performance evaluation in this 

manner was to provide a balanced comparison. To understand why there were substantial 

differences between model outputs, water quality variable selection, training data variance, and 

model validation were compared. 

The impact of variable selection on prediction accuracy for THM models was previously 

explored by Ged et al. (8). The research found that the most accurate THM models included at 

least 5 of the 7 following water quality variables as explanatory variables: DOC, UV254, bromide 

ion concentration (Br,) pH, Cl2,d, RT, and T. These were the most commonly used water quality 

variables among the models in this study as shown in Table 3. However, the number and type of 

water quality variables used by the models were found to have no significant correlation with 

model output variance for this work. It was also hypothesized that greater variance in water quality 
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variable data would lead to greater variance in model output however, no trends between water 

quality variable variance and model output variance were found. The lack of correlation between 

model output variance and water quality variable selection/number of water quality variables 

demonstrates the differences in phenomena affecting THM formation between systems. The 

correlation between water quality variables and THM formation are system dependent due to 

differences in water quality profiles, differences in physical aspects of the systems including 

temperature, usage patterns, and pipe geometry, and differences in biofilm and subsequent effects 

(40, 44, 45). The differences in phenomena affecting THM formation subsequently impact which 

water quality variables are included in the models (i.e., which variables are statistically significant 

during model development), as well as the correlation coefficients for the variables. As a result of 

the development methods and statistical formulation of the models, the behavior between input 

data and model output variance is unique to each model. This demonstrates the lack of 

generalizable applicability of statistical models. 

Another important consideration is the vague nature of many commonly used water quality 

variables. For instance, TOC is an aggregate measurement for carbonaceous constituents and is 

considered a crucial water quality variable for THM prediction since organic carbon is one of the 

reactants in the formation of THMs. Theoretically two systems could have identical TOC 

concentrations, however the carbonaceous species could be significantly different. It has been 

demonstrated that differences in TOC characteristics (e.g., humic acid vs. fulvic acid composition) 

impact rate, and potential of THM formation (46, 47). Similarly, other water quality variables such 

as conductivity provide somewhat ambiguous characterization of water chemistry. Further, the 

previously discussed system specific differences present in DWTP and DWDS are more 

pronounced in PP systems due to stochastic flow conditions, higher surface area to volume ratio, 
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and greater differences in building design (5, 48, 49). Therefore, it can be concluded that 

statistically formulated models will not have generalizable application for different applications, 

or even different systems. 

To understand the impact of training data on model prediction capabilities, Table 6 was 

constructed which provides reported data ranges used for model development compared to 90% 

CI for the data used in this study for model performance evaluation. Some of the studies had 

limited, or no reporting for the training data. Reporting descriptive statistics for model training 

data gives the reader a better understanding for how the model was developed, and the ranges 

which the model is expected to be most accurate. In general, models with more diverse training 

data (i.e., larger ranges between min and max), tended to achieve better results for THMp/THMm 

and CV. However, unreported data values and differences in water quality variable sensitivity due 

to differences in correlation coefficients make it difficult to compare some data. 

The results of this research demonstrate that there are significant differences in THM model 

development, evaluation, and reporting among studies. This research showed that comprehensive 

data was more important than number of data for model performance when applied to independent 

data. Similarly, models developed for highly specific application may struggle to perform well 

outside their training data ranges. THM models have been developed in a relatively similar manner 

for the past 30 years (8, 50). Statistical models provide value for utilities and consumers; however, 

it has been demonstrated that they have many drawbacks. With the advent of novel modeling 

techniques in the area of machine learning, there is much to explore outside of the realm of 

statistical models. 

There have been a growing amount of research exploring the use of ML based techniques 

for predicting THMs (51-57). Most of the research uses some type of artificial neural network 
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(ANN) based model to develop non-linear relationships between water quality variables and THM 

concentration. The ML based approaches show promise by demonstrating lower error compared 

to their multiple linear regression based model counterparts (51, 55, 56). Additionally, Zhang et 

al., 2023 demonstrated that conducting a stepwise multiple linear regression for selection of 

significant input variables prior to ML model training allowed for more efficient training and 

implementation of ML model (51). Efficient implementation of ML models is particularly useful 

for real-time prediction of THM. Conducting correlation tests can also provide more detailed 

insight into the significant factors impacting THM formation for specific systems. Other sensitivity 

analysis techniques such as exclusion of variables, input variable differential analysis, and model 

weight analysis can provide insights into input variable importance even when correlation test are 

not conducted prior to training (58, 59) As software and hardware capabilities continue to improve, 

ML techniques will undoubtedly provide more accurate models for the prediction of THMs. ML 

techniques also have the potential to generate more generalizable models compared to regression 

models due to their ability to develop higher order relationships between water quality variables. 

This may be especially useful in PP model applications since there are more factors influencing 

THM formation such as water usage, pipe material, and temperature, potentially leading to highly 

non-linear relationships between water quality variables and THM formation (6, 12). It has been 

demonstrated that regression-based models can reasonably predict THM for specific systems, but 

further exploration of ML techniques for THM modeling seems like the most promising avenue 

of exploration. 

There are certain applications that may benefit from the use of a simple statistical model, 

however novel approaches could provide improved insight into THM production mechanisms, and 

more generally applicable models. Models with greater applicability have the potential for far 
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greater impact on the improvement of human health than models developed for a specific system. 

Further, data sharing and collaboration could increase the pace of THM model development. Many 

studies have attempted similar approaches with varying levels of success. The exercise of 

producing statistical models for THM in drinking waters has been demonstrated, now it is time to 

explore new approaches. 

Table 5: Mean, sd, 90% CI, ratio of mean predicted THM value/mean THM value from literature, and coefficient of 

variation (CV), for each model using a) DWTP data, and b) DWDS data generated from MC simulation. 

a)

Application Model # mean sd 5% 95% THMp/THMm CV

1 17.88 6.54 8.20 29.50 0.50 0.37

2 422.44 131.21 263.70 690.17 11.86 0.31

3 41.81 2.36 37.93 45.71 1.17 0.06

4 25.22 7.45 13.29 37.86 0.71 0.30

5 50.84 56.22 2.66 145.21 1.43 1.11

6 59.23 22.16 28.15 99.59 1.66 0.37

7 155.82 205.26 12.60 514.82 4.37 1.32

DWTP

8 71.62 43.89 23.97 155.53 2.01 0.61

9 17.97 11.13 5.32 39.43 0.50 0.62

10 39.03 8.83 27.66 55.75 1.10 0.23

11 96.54 42.96 34.94 173.91 2.71 0.44

12 8.02 3.05 3.97 13.45 0.23 0.38

DWDS

13 51.95 22.63 25.05 96.11 1.46 0.44

PP 14 - - - - - -

b)

Application Model # mean sd 5% 95% THMp/THMm CV

1 24.66 10.18 10.22 43.30 0.67 0.41

2 583.50 253.90 301.43 1091.07 15.78 0.44

3 42.60 3.00 37.30 46.92 1.15 0.07

4 29.02 8.70 15.34 44.06 0.78 0.30

5 95.19 122.58 13.13 304.67 2.57 1.29

DWTP

6 73.33 29.45 29.53 125.91 1.98 0.40
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7 247.32 333.02 15.91 842.84 6.69 1.35

8 53.19 29.82 18.20 112.87 1.44 0.56

9 26.84 17.72 4.06 60.57 0.73 0.66

10 42.63 11.08 24.91 61.85 1.15 0.26

11 91.11 53.81 18.91 191.35 2.46 0.59

12 9.61 6.25 1.91 22.28 0.26 0.65

DWDS

13 51.99 22.63 25.09 96.07 1.41 0.44

PP 14 53.34 28.79 12.73 106.42 1.44 0.54
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Figure 3: Probability density functions (pdf) for a) DWTP model outputs with DWTP WQV data, and b) DWDS and PP model 
outputs with DWDS WQV data. The black lines represent distribution of THM data from literature.
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Table 6: A comparison of model training data ranges compared to data ranges used for model performance evaluation in this research. CI stands for confidence interval (e.g., 90% 

of the data lies within the given range), NR stands for none reported. Italicized values are reported data which was not used as explanatory variables in the corresponding model. 

* = A direct value was not given, ** = mean and sd reported, provided ranges were based on assumption that ± 2(sd) = 90% CI.

Model # Data type Cl2,d Cl2,r Br pH T DOC TOC RT UV254 cond bicarb THM

- 90% CI 1.85–
3.18

0.90–
1.38

0.16–
0.75

7.18–
7.93

7.85–
22.55

1.41–
2.17

0.69–
3.86

2.59–
52.58

0.01–
0.22 - - 8.71–

80.19

- 90% CI - 0.16–
1.43

0.07–
0.57

6.95–
8.27

8.35–
29.64

0.12–
1.07

0.44–
3.73

4.46–
97.78

0.01–
0.06

298.44–
1653.19

80.06–
337.06

9.08–
84.96

1 min–max * - 0.09–
0.648 6.0–8.0 10–30 1.3–

10.34 - 6–168 - - - 5.01–
76.65

2 min–max - NR - NR NR - NR NR NR - - 231–484

3 min–max - NR - NR NR - NR NR NR - - 231–484

4 min–max - 0.2–1.5 - 7.2 22 - - 0–168 NR - - 35–135

5 min–max NR NR NR NR NR - - NR NR - - 29–39

6 80% CI 1.13–
1.29 - 0.22–

0.51
7.22–
7.72

11.28–
25.00 - 0.81–

2.78
0.00–
46.40

0.014–
0.0278 - - 0.00–

46.92

7 min–max 0.70–
5.80 - 0.02–

0.176
6.50–
7.80

10.6–
26.6 - - 0.10–

3.25
0.017–
0.076 - - 22.6–

125.5

8 min–max - - 0.0–1.0 - - 0.6–23.0 - - 0.01–
0.48 - - -

9 80% CI 2.93–
4.24 - - 7.54–

7.76
12.1–
16.4 - 2.32–

3.54 2.4–37.0 - - - 8–55

10 min–max 0.0–0.4 15–30 3.5–5.5 0–34  NR

11 mean, 
sd** - 0.18–

0.96 - NR NR - 0.53–
3.19 - - 397.4–

1490.1
123.05–
287.91

17.22–
132.31

12 min–max - 0.16–
0.80 - 7.3–8.9 - - 0.31–

39.5 - - 419.0–
1141.0 - 0.48–

68.35

13 min–max 2.97–
6.31 - 0.020–

0.176
6.73–
7.75

10.6–
26.6 - - 19.7–

30.0
0.017–
0.076 - - 27.3–

130.1

14 min–max - 0.39–
2.34 - 7.00–

8.02 11.0–28 - 1.2–12.6 - 0.019–
0.14 65–496 - -
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3.4 Limitations and future research

This research relied on assumptions that may not translate in practice, such as independent 

behavior of water quality variables, raw water quality variable data were representative of most 

systems, and differences in model CV were directly comparable. In practice, water quality 

variables are dependent on each other in a complex manner that follows general and system-

specific trends. For example, RT impacts formation of THM, and consumption of Cl2. The exact 

relationship between the variables is system specific due to water quality profiles varying by 

location. Further, the physicochemical phenomena impacting the relationships is different for 

different systems. In future work, a large enough data set with proper characterization may allow 

for consideration of the interdependence between the water quality variables. The other major 

assumption was that each model had directly comparable CV. This is a difficult comparison to 

make since each model used different combinations of water quality variables. For example, model 

12 only used 2 water quality variables, while model 6 used 7 water quality variables. Consideration 

may be possible with all training data sets; however, it was not feasible due to lack of data 

reporting. Consideration of these differences may be possible in the future if the recommendations 

provided in section 4 are utilized. Even with these limitations, this research was able to derive 

meaningful lessons for future THM model development. Moving forward, the work presented in 

this research would benefit from collection and application of water quality data from multiple 

applications and sources. This would allow for more accurate characterization of the data used, as 

well as better understanding of the interdependence of water quality variables, how they differ 

among location and application, how different models respond, and more accurate comparison of 

model output behaviors. 
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4. Proposed Framework for THM Model Development 

The following framework is proposed for future development of THM models to (1) 

promote clarity and consistency with respect to data reporting and model development 

methodology, (2) allow water quality from different sources to be accessed and utilized, and (3) 

improve THM prediction capabilities. These guidelines would improve understanding of THM 

formation in all applications discussed and are especially important for ML based THM models. 

For data reporting, it is proposed that the following be included in the research: 

1. High level description of data including geographic region(s) of collection, 

sampling timeline, sampling frequency, and any anomalies in the data;

2. Descriptive statistics of data used for model development including amount of data 

collected, mean, median, SD, and 90 or 95% CI, or equivalent; 

3. Clear presentation and description of units for each explanatory variable;

4. Inclusion of raw data in accessible form (e.g., .csv file or github link);

5. Inclusion of any code used for data cleaning, sorting, transformation, etc.;

6. Description of uncertainty with associated measuring techniques.

For model development methodology and reporting, it is proposed that the following be 

included in the research: 

1. Detailed description of rationale behind model development approach;

2. Description of novelty provided by model development;

3. Description of data usage during model development (e.g., 60% used for 

fitting/training, 20% used for testing, and 20% used for validation);

4. Inclusion of any code used for model development;
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5. Inclusion of model validation predictive performance through with test data and/or 

independent data.

With this framework, it is envisioned that future research on THM modeling will serve not 

only a local purpose (e.g., municipality), but also a global purpose to advance the field of water 

quality modeling. In particular, data sharing will allow models to be trained and validated using 

more diverse data sets, leading to more generalizable models. Modeling THM formation within 

PP is more challenging than DWTP or DWDS systems due to differences in physicochemical 

conditions, biological conditions, and stochastic water usage patterns. These differences may lead 

to different water quality variables needing to be considered. For example, it has been shown that 

copper pipes can catalyze THM formation, while PEX pipes may leach organic carbon (60, 61). 

With greater amount of data and better system characterization, higher level evaluation of system-

specific characteristics could be evaluated. With these practices, it is intended that a more cohesive, 

multi-disciplinary approach will be encouraged, leading to greater progress in the field of THM 

modeling. Additionally, larger data sets would facilitate the exploration of machine learning based 

models to address the problem of generalizable models. Machine learning techniques have the 

capability of addressing the complex mechanisms leading to THM in all systems discussed.  

5. Conclusion

Key findings of this research were:

- There has been disproportionately limited THM model development for PP application 

compared to DWTP and DWDS application.

- Although most THM models are statistical in formulation, there are inconsistencies with 

reporting of data and model development methodologies between THM studies.
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- There were considerable differences between THM model performance due to differences 

in model development including intended application, water quality variable selection, 

amount of, and diversity of data used for training.

- THM modeling approach has primarily been focused on regression-based models for the 

past 30 years, however ML based models demonstrate promise to increase the accuracy 

and generalizability of THM models. To foster more unified THM modeling efforts, a new 

framework for model development was proposed to encourage novel strategies, data 

sharing, and collaboration.
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