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NMR Characterization of Cooperativity: Fast Ligand 
Binding Coupled to Slow Protein Dimerization 

Zil E Humaa, Justin P. Ludemana, Brendan L. Wilkinsonb, Richard J. Paynec, 
Martin J. Stonea*  

We describe a general approach for analysis of 2D NMR spectra to evaluate the cooperativity 
of ligand binding and protein dimerization in coupled systems. The approach is applicable to 
systems in which NMR spectra display separate resonances for monomeric and dimeric species 
but each resonance shifts in response to ligand binding. Three experimental parameters 
(monomer chemical shift, dimer chemical shift and relative monomer:dimer peak intensity) are 
fitted globally, as a function of ligand concentration, to yield equilibrium constants for 
dimerization, monomer:ligand binding and dimer:ligand binding as well as the cooperativity 
between ligand binding and dimerization. We have applied the approach to characterise a 
system in which dimerization of the chemokine monocyte chemoattractant protein-1 (MCP-
1/CCL2) is coupled to binding of peptides derived from the chemokine receptor CCR2. The 
global fitting approach allowed evaluation of cooperativity with higher precision than is 
possible by alternative methods. 
 
 

Introduction 

Dimerization is a common property of proteins and frequently 
influences interactions with binding partners, including proteins, 
nucleic acids, polysaccharides, lipid membranes, metal ions and 
small molecules.1,2 A fundamental thermodynamic characteristic of 
such proteins is cooperativity between protein dimerization and 
ligand binding, defined as the factor by which dimerization enhances 
(or reduces) the ligand binding affinity. The classical approach to 
characterize the cooperativity in such coupled systems is to analyze 
the influence of ligand concentration on the position of the 
monomer-dimer equilibrium and/or the influence of the total protein 
concentration on the apparent ligand binding affinity.3-9 This 
typically requires an extensive series of experiments; the analysis is 
further complicated if both monomeric and dimeric species bind to 
the ligand. In such coupled systems it would be advantageous to 
measure ligand binding using a technique that simultaneously reports 
on the dimerization state of the protein. Herein, we show that 2D 
NMR can achieve this because different features of NMR spectra are 
sensitive to ligand binding and dimerization. We present a novel 
theoretical framework for analysis of such 2D NMR data and we 
demonstrate application of this approach to characterizing the 
interactions of a chemokine with fragments of a chemokine receptor. 

Chemokines are soluble proteins that activate G protein-
coupled receptors in leukocyte membranes, thereby inducing 
leukocyte trafficking in both inflammation and normal immune 
surveillance.10-11 Most chemokine receptors contain sulfated tyrosine 

residues in their extracellular N-terminal regions, the site of initial 
binding by chemokine ligands, and receptor tyrosine sulfation 
enhances chemokine binding affinity.12,13 Many chemokines 
dimerize weakly, although members of the two major chemokine 
families (CC and CXC) have distinct dimer structures.13,17 Although 
the monomeric form is sufficient for receptor binding and activation, 
the dimeric forms of some CC and CXC chemokines are also able to 
bind to the N-terminal regions of their receptors12,18,19; the dimeric 
forms of certain CXC chemokines can even activate their 
receptors.20-24 Here, we analyze the interactions of sulfated N-
terminal peptides derived from the chemokine receptor CCR2 with 
both monomeric and dimeric forms of the chemokine monocyte 
chemoattractant protein-1 (MCP-1/CCL2). 

 

Results and Discussion 

NMR Observation of Coupled Equilibria  

Wild type human MCP-1 has been shown previously to 
dimerize with a dissociation equilibrium constant (KMD) in the 
low micromolar range.14-16 The 2D 15N-1H NMR spectrum (15N-
HSQC) of MCP-1 displays peaks corresponding to both 
monomeric and dimeric species, indicating that the rate of 
exchange between these two forms is slow in comparison to the 
minimum frequency difference between corresponding 
monomer and dimer peaks, i.e. slower than ~100 s-1. Upon 
addition of sulfated N-terminal peptides derived from 
chemokine receptor CCR2, we observe that both monomer and 
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We aimed to determine each of the equilibrium constants 
and the cooperativity in the thermodynamic model from the three 
experimental observables described above and the total 
concentrations of protein (held constant) and ligand (varied) in a 
series of samples. The experimental observables are related to the 
concentrations of species in the thermodynamic model by the 
following relationships: 
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in which mmax and dmax represent the maximum changes in monomer 
and dimer chemical shifts, respectively, upon ligand binding. 
Similarly, the total concentrations of protein (Pt) and ligand (Lt) used 
in the experiment can be expressed as: 

][2][2][2][][][ 2222 LPLPPPLPPt ++++=  (10) 

and 

][2][][][][ 222 LPLPPLLLt +++=   (11) 

 

It is not possible to express the experimental observables 
explicitly in terms of the thermodynamic parameters. However, the 
relationships between these parameters can be determined using the 
iterative algorithm presented in the Supporting Information (Figure 
S2). To illustrate these relationships, we have simulated the 
dependence of the experimental observables on ligand concentration 
for a constant protein concentration (50 µM) and various 
combinations of equilibrium dissociation constants (Fig. 3). As 
expected intuitively, variation of the dimerization equilibrium 
constant (KMD, Fig. 3a) influences the relative intensities of 
monomer and dimer peaks (rMD) but has no effect on the positions of 
the two peaks (expressed as m/mmax and d/dmax, respectively). 
However, as anticipated for a coupled equilibrium system, variation 
of KML (Fig. 3b) influences not only the position of the monomer 
peak (m/mmax) but also the position of the dimer peak (d/dmax) and 
the relative peak intensities (rMD). Similarly, variation of KDL (Fig. 
3c) influences all three observable parameters. Consequently, in 
order to determine the values of KMD, KML and KDL (and therefore the 

cooperativity factor c) it is necessary to globally fit all three 
experimental parameters to the thermodynamic model. 

Figure 3. Simulation of NMR Parameters. Values of monomer and 
dimer peak positions (m/mmax and d/dmax) and the ratio of peak 
intensities (rMD) were simulated for several different values of (a) 
KMD, (b) KML and (c) KDL (2 µM, blue; 5 µM, red; 10 µM, green; and 
20 µM, cyan). In each case the other equilibrium constants were set 
to 10 µM.  

Determination of Thermodynamic Parameters from NMR Data 

We have used the above thermodynamic model (Fig. 2) to determine 
the influence of MCP-1 dimerization on binding to CCR2 
sulfopeptides. 15N-HSQC spectra were recorded for samples of 50 
µM 15N-labeled MCP-1 alone and in the presence of each of the two 
receptor peptides 1 and 2 at concentrations of 10, 20, 35, 50, 80 and 

150 μM. Spectra were analyzed to yield average values and 
estimated standard errors of m, d and rMD for the five residues for 
which both monomer and dimer resonances were resolved across the 
full range of peptide concentrations used (K19, L25, I42, F43 and 
C52). Finally, for each peptide the experimental observables were fit 
to the coupled thermodynamic model, using computational 
optimization and Monte Carlo simulations, to yield optimal values 
and standard errors for the independent equilibrium constants and 
the cooperativity factor. 

The globally fitted data are presented in Fig. 4 and the 
resulting equilibrium constants and cooperativity values are listed in 
Table 1. Overall there is excellent agreement between the fitted 
curves and experimental data points. For comparison, we have also 
fit the binding data for the monomer and dimer peaks independently 
to a simple 1:1 equilibrium model (Conventional Fits, Table 1 and 
Figure S3). Although the simple model is not strictly valid for a 
coupled system, this conventional approach yields KD values in 
reasonable agreement with those obtained from the global fitting 
approach. However, because the conventional KD determinations are 
independent for monomer and dimer species, the calculated 
cooperativity is relatively poorly defined (14-21% error). In contrast, 
for the global fitting approach, there is a strong correlation between 
the KML and KDL values determined for the many Monte-Carlo 
simulations (Fig. 5). Consequently, the cooperativity value (defined 
as the ratio of these two equilibrium constants; eqn (6)) is 
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the dimer more than the monomer and therefore contributing to the 
poorer fit of rMD data for the later titration points of sulfopeptide 2 
(Fig. 4). Nevertheless, such line broadening effects are not expected 
to influence the peak positions, which are the primary determinants 
of binding equilibrium constants (KML and KDL) and therefore the 
cooperativity values. Thus, the observed line broadening does not 
change the overall conclusion that cooperativity is higher for 
sulfopeptide 2 than sulfopeptide 1. 

Potential Applicability to Other Systems 

The method presented herein is theoretically applicable to any 
system involving two coupled equilibrium processes in which one 
process is fast and the other is slow on the NMR chemical shift time 
scale. This might include proteins whose dimerization is coupled to 
binding of oligosaccharides, small molecules, or metal ions, as 
reported previously.25-27 Alternatively the slow process of proline 
isomerization within proteins may be coupled to binding of partner 
proteins.28-29 For example, Breheny et al. have studied the slow 
equilibrium between proline cis and trans isomers within the Src 
homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk).29 
The two isomers have similar populations in the unbound domain 
but binding to a phosphotyrosine-containing peptide biases the 
equilibrium towards the trans isomer whereas binding to the Itk SH3 
domain biases the equilibrium towards the cis isomer. More broadly, 
one can envisage other slow equilibria, such as binding to a slowly-
dissociating ligand, alteration of interdomain contacts or protein 
folding, being thermodynamically coupled to fast equilibria, such as 
binding to fast-dissociating ligands or side chain 
protonation/deprotonation. 

In addition to the requirement that the two exchange 
processes occur with substantially different kinetics, several other 
factors may limit the practical application of the approach described 
here. First, the total concentration of protein used must be close 
enough to the KMD value to yield observable populations (at least 
~10%) of each species (monomer and dimer). Second, as with most 
binding experiments, the total protein concentration must be less 
than or similar to both the KML and KDL values, allowing observation 
of non-linear chemical shift changes upon addition of ligand. 
Finally, the signal-to-noise ratios of all peaks must be high enough, 
and the line widths must be narrow enough, to allow quantification 
of peak positions and intensities for all species across the full range 
of ligand concentrations used. With current NMR technology, this 
method is therefore limited to the KMD, KML and KDL values in the 
micromolar to millimolar range. However, future technological 
innovations may allow higher affinity equilibria to also be 
investigated using this approach. 

 

Conclusions 

In summary, we have presented a general framework for analysis of 
2D NMR spectra to evaluate the cooperativity of ligand binding and 
protein dimerization in coupled systems. This method is applicable 
to any system in which dimerization is slow and ligand binding is 
fast on the NMR chemical shift time scale and in which both 

monomer and dimer resonances are resolvable in a practical range of 
protein and ligand concentrations. We have applied this approach to 
a system in which the thermodynamics are well described by the 
simple thermodynamic model presented in Fig. 2. However, the 
same strategy could potentially be used for more sophisticated 
models involving, for example, higher order oligomers or non-
independent binding sites on oligomeric proteins. The approach 
presented here extends the array of NMR-based methods for 
characterisation of chemical and binding equilibria. 
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