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Nanoscale fluid transport is typically pictured in terms of atomic-scale dynamics, as is

natural in the real-space framework of molecular simulations. An alternative Fourier-

space picture, that involves the collective charge fluctuation modes of both the liquid

and the confining wall, has recently been successful at predicting new nanofluidic

phenomena such as quantum friction and near-field heat transfer, that rely on the

coupling of those fluctuations. Here, we study the charge fluctuation modes of a two-

dimensional (planar) nanofluidic channel. Introducing confined response functions that

generalize the notion of surface response function, we show that the channel walls

exhibit coupled plasmon modes as soon as the confinement is comparable to the

plasmon wavelength. Conversely, the water fluctuations remain remarkably bulk-like,

with significant confinement effects arising only when the wall spacing is reduced to 7

Å. We apply the confined response formalism to predict the dependence of the solid–

water quantum friction and thermal boundary conductance on channel width for model

channel wall materials. Our results provide a general framework for Coulomb

interactions of fluctuating matter under nanoscale confinement.
1 Introduction

Fluids conned at the nanometer scale underlie many technologically important
processes,1,2 including ltration, seawater desalination,3,4 blue energy harvest-
ing5,6 and electrochemical energy storage.7 Yet, they started to be fundamentally
investigated not more than 20 years ago, and their initial theoretical description
was largely inherited from macroscopic hydrodynamics, with generic walls
imposing the same boundary conditions regardless of their material
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composition.8 The rst nanouidic effects emerged from the realization that, at
the nanoscale, one may not neglect the wall's surface charge,9 which results in
coupled ion–uid transport phenomena such as electro-osmosis and streaming
currents.10 There has been, however, accumulating evidence in recent years that
surface charge is not a sufficient descriptor for the nanouidic solid–liquid
interface. From uids near conducting surfaces11,12 to strongly interacting ions
due to dielectric contrast,13–15 several studies pointed to the need of describing the
solid walls at the level of their electronic properties.

It may indeed be expected that, close enough to a solid wall, the Coulomb
potentials produced by charged particles in a liquid are screened by the
dielectric response of the wall material: this effect has been termed ‘interaction
connement’.15 Charged particles in a liquid are, rst and foremost, ions:
interaction connement produces effective Coulomb interactions between ions
in nanochannels that are modied compared to bulk Coulomb interactions,
leading to a wealth of correlation effects.13,14 But a polar liquid such as water,
even though electrically neutral aer time-averaging, has a molecular-level
charge structure: water thus exhibits thermal charge uctuations at terahertz
frequencies and on a wide range of length scales16 (termed ‘hydrons’17). The
corresponding Coulomb elds are also subject to interaction connement: they
are dynamically screened by the thermal and quantum uctuations of the
electrons in the solid wall.18,19 This solid–liquid coupling has been shown to
result in a “quantum” contribution to hydrodynamic friction, and in direct near-
eld energy transfer between the liquid and the solid's electrons.19–21 These
effects bridge the gap between uid dynamics and condensed matter physics,
opening the way to engineering nanoscale ows with the conning walls' elec-
tronic properties.17,22

Fluctuation-induced effects in nanouidics have so far been studied at the
level of a single planar interface. The relevant many-body electrostatics were
conveniently described in terms of surface response functions: surface analogues
of the dielectric function that had been widely used, for instance, in the eld of
plasmonics.23,24 Here, we introduce conned response functions, that generalize
surface response functions to a 2D nanochannel geometry (Fig. 1a), providing
a general tool for the treatment of Coulomb interactions in 2D connement. As an
illustration, we study the conned response of water, and of solid walls described
as either graphene sheets or jellium slabs:25,26 this allows us to predict the
connement dependence of solid–water quantum friction and thermal boundary
conductance.

This paper is organised as follows. In Sec. 2, we introduce conned response
functions and link them to eigenmodes of the Coulomb potential in the 2D
nanochannel geometry. In Sec. 3, we compute the conned responses of specic
media. We take the examples of a graphene sheet and a semi-innite jellium for
the solid; for the liquid, we study water in the framework of both force eld and ab
initio molecular dynamics (MD) simulations. In Sec. 4, we describe the inuence
of connement on uctuation-induced effects, specically quantum friction and
near-eld heat transfer. To do so, we carry out the eld-theory derivation of
quantum friction directly in the conned geometry, which leads to natural
emergence of the conned response functions. Finally, Sec. 5 establishes our
conclusions.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 249, 162–180 | 163
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Fig. 1 Electric response of interfacial systems. (a) Schematic of the confined geometry
under consideration, emphasizing the role of the channel walls' electronic degrees of
freedom. (b–f) Electric response in different geometries. (b) Single-interface case: the
response function is the usual surface response function. (c–f) In confined geometry there
are four situations to distinguish. The responding medium can be either in the outer space
(c & d) or in the inner space (e & f). The external potential can be either symmetric (c & e) or
antisymmetric (d & f). We observe that the inter-solid interactions bring corrections by
lowering the induced potential in the symmetric case (c) and increasing the induced
potential in the antisymmetric case (d).
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1.1 Units and conventions

We set the Boltzmann constant kB = 1 (that is, we express the temperature in
energy units), but otherwise use SI units throughout the text. In real space, we use
the cylindrical coordinates r = (r, z). The interfaces are at z = 0 for a single-
interface and at z = ±h/2 for a conned channel. We use Fourier transforms
for both r and the time but never for the z-direction. We use the following
convention for the d-dimensional Fourier transform:

F̂(q,u) =
Ð
ddrdt F(r,t)e−iq $r+ iut ,
164 | Faraday Discuss., 2024, 249, 162–180 This journal is © The Royal Society of Chemistry 2024
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Fðr; tÞ ¼
ð
ddqdu

ð2pÞdþ1
F̂ðq;uÞeiq$r�iut:

The charge densities are expressed in units of e and the electrical potentials
include an additional factor e. We denote V(r) = e2/(4p30r) the Coulomb potential
which becomes V(q,z) = e2/(230q)e

−qjzj in Fourier space.
2 Electric response of interfacial systems
2.1 Single-interface: surface response function

We rst briey recall the widely-used concept of surface response function.23,24

Consider a semi-innite medium occupying the half-space (z < 0). Given the
electrostatic potential fext applied by an external source (an appropriate charge
distribution) inside the medium, we wish to determine the potential find induced
by the medium in the half-space z > 0. The potential fext must solve the Laplace
equation for z < 0. The physically-meaningful (non-diverging) solutions are given
by the evanescent plane waves

fext(q,z,u) = fext(q,z = 0,u)F0(q,z), F0(q,z) = e−qjzj, (1)

where we have introduced the surface weight function F0: this seemingly
cumbersome notation will be useful upon generalization to a conned geometry.
Assuming that the medium has a linear charge density response function c, the
induced potential is given by (see Fig. 1b)

find(q,z,u) = −g0(q,u)fext(q,z = 0,u)F0(q,z) (2)

where we have introduced the surface response function

g0ðq;uÞ ¼ � e2

230q

ð
dzdz

0
F 0ðq; zÞc�q; z; z0;u�F 0

�
q; z

0�
: (3)

It is worth noting that g0(q, u) is a scalar. Since we are considering a linearly
responding medium, the response to an evanescent plane wave at (q, u) is an
evanescent plane wave at (q, u), so that the induced potential has the same z-
dependence as the external potential, given by the weight function F0. In other
words, the evanescent plane waves form an eigenbasis for the surface response.

Let us illustrate the role of the surface response function with a simple
example. We consider a static point charge e at distance z0 from the interface. This
charge produces an “external” potential

fextðr; zÞ ¼
ð

dq

ð2pÞ2
e2

2q
F 0ðq; z� z0Þeir$q (4)

where we have introduced a Fourier decomposition into evanescent plane waves.
Accounting for the response of the medium, the total potential is

fðq; zÞ ¼ e2

2q

�
F 0ðq; z� z0Þ � g0ðqÞF 0ðq; z0ÞF 0ðq; zÞ� (5)
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 249, 162–180 | 165
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The surface response function gives the contribution of the medium's polari-
zation to the total potential.

2.2 Double interface: conned response functions

We now generalize this approach to a two-dimensional nanochannel geometry.
We consider two interfaces at z = ±h/2 that dene the channel, with the outside
medium (jzj > h/2) being distinct from the inside medium (jzj < h/2). Later, we will
specify that we consider water inside the channel, but we remain general at this
point.

Contrary to the previous case, there is no longer a symmetry between the two
media, and we need therefore to distinguish the responses of the inner and outer
medium. All the applied and induced potentials still satisfy the Laplace equation,
but, in both media, the subspace of harmonic functions with wavevector q and
frequency u is now of dimension 2: the response function at a given (q, u) is then
in principle given by a 2 × 2 matrix. We shall, however, express the potentials in
a basis of even (symmetric) and odd (antisymmetric) harmonic functions, where
the matrix turns out to be diagonal. We call these basis functions conned weight
functions and denote them Fs/ai/o, where s/a stands for symmetric/antisymmetric
function and i/o for inner/outer medium (see Table 1). The amplitude of the
basis functions is in principle arbitrary: it is chosen so that the conned response
functions dened in the following reduce to the conventional surface response
functions in the non-conned case.

Let us start with the response of the inner medium. We consider a generic
external potential fext(q,z,u) = fs(q,u)Fsi (q,z) + fa(q,u)Fai (q,z) applied on the inner
medium of charge susceptibility ci. The induced potential is then

findðq; zÞ ¼
e2

230q

ðh=2
�h=2

dz
0
dz00e�qjz�z0 jci

�
q; z

0
; z00
�
fextðq; z00Þ: (6)

In the outer space jzj > h/2, taking advantage of the denition of the conned
weight functions (see Table 1), this reduces to

find(q,z) = −gsif
sFs

o(q,z) − gaif
aFa

o(q,z) (7)

where we have dened a generic conned response function:

gcmðq;uÞ ¼ � e2

230q

ð
dzdz

0
Fc

mðq; zÞcm

�
q; z; z

0
;u
�
F c

m

�
q; z

0�
: (8)
Table 1 Weight functions used in the definitions of the surface and confined response
functions (eqn (3) and (8))

Model Geometry Weight function

Single interface Half-space F0(q, z) = e−qjzj

Conned Symmetric Antisymmetric
Inside F s

i ðq; zÞ ¼
ffiffiffi
2

p
coshðqzÞe�qh=2 Fa

i ðq; zÞ ¼
ffiffiffi
2

p
sinhðqzÞe�qh=2

Outside
F s
oðq; zÞ ¼

1ffiffiffi
2

p e�qðjzj�h=2Þ Fa
o ðq; zÞ ¼

signðzÞffiffiffi
2

p e�qðjzj�h=2Þ
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where the interaction takes place over the domain of denition of the weight
function Fcm; m = i, o and c = s, a. To summarise, the inner medium responds to
a perturbation of the form Fs/ai by a potential of the form Fs/ao in the outer medium
with an amplitude −gs/ai (see Fig. 1c and d).

We proceed similarly for the response of the outer medium (with charge
susceptibility co). It responds to an external potential fext(q,z,u) = fs(q,u)
Fso(q,z) + fa(q,u)Fao(q,z) with an induced potential in the inner space jzj < h/2:

find = −gsof
sFs

i (z) − gaof
aFa

i (z). (9)

The two components of the outer medium response are shown in Fig. 1e and f.
To summarize, we have generalized surface response functions to a 2D

nanochannel geometry by identifying the new eigenmodes of the Coulomb
potential, given by the conned weight functions. The response to a symmetric
(antisymmetric) weight function is a symmetric (antisymmetric) weight function
with amplitude given by the conned symmetric (antisymmetric) response
function, in the same way that the response to an evanescent wave is an
evanescent wave in the single interface case.
2.3 Fluctuation–dissipation theorem and physical interpretation

To obtain a physical interpretation of the conned response functions, it is useful
to relate them to equilibrium charge density uctuations using the uctuation–
dissipation theorem (FDT). For the charge susceptibility c, the FDT reads19

Sm(r,r
′,u) = f(u)Im[cm(r,r

′,u)] (10)

where f(u) = 2T/u for classical dynamics and f(u) = ħ cotanh(ħu/(2T)) for
quantum dynamics. The structure factor S is dened as

Sm(r,r
′,t) = hnm(r,t)nm(r′,0)i, (11)

where nm is the charge density of the medium. Adapted to the conned response
function dened in eqn (8), the FDT becomes

Sc
m(q,u) = f(u)Im[gcm(q,u)] (12)

where Sc is a conned structure factor dened as

Sc
mðq; tÞ ¼

1

A

ð
drdr

0�
nmðr; tÞnm

�
r
0
; 0
��
e�iq�ðr�r0ÞF c

mðq; zÞF c
m

�
q; z

0� (13)

where A is the area of the interface.
In eqn (13), if the weight function Fcm is symmetric, the charge density nm(z)

can be replaced with (nm(z) + nm(−z))/2: the structure factor only counts the
symmetric charge uctuations. Similarly, if the weight function is antisym-
metric, the charge density nm(z) can be replaced with (nm(z) − nm(−z))/2: the
structure factor only counts the antisymmetric charge uctuations. Thus, for the
channel walls, the symmetric (antisymmetric) response function accounts for in-
phase (out-of-phase) coupled modes. For the inner medium, the symmetric
(antisymmetric) response function accounts for monopolar (dipolar) charge
uctuations.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 249, 162–180 | 167

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3fd00115f


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 2
8 

 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
9-

01
-2

02
6 

06
:0

8:
37

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2.4 Conned response function of the outer medium

We now provide an expression of the outer medium conned response function
in terms of the usual surface response functions. We distinguish the contribu-
tions of the two solid walls to the potential induced in the inside medium: we
denote them fT

ind and fB
ind for the “top” and “bottom” solids, respectively. We

need to account for the solid–solid interactions: each solid responds to the
external potential and to the potential induced by the other solid. Let us consider
an external potential fext(q,z,u) = fo(q,u)F

c
o(q,z) where the weight function Fco is

either Fso or F
a
o. The top solid induces a potential

fT
ind(z) = −g0oF

0(z − h/2)[foF
c
o(z = h/2) + fB

ind(z = h/2)] (14)

for z < h/2, while the bottom solid induces a potential

fB
ind(z) = −g0oF

0(z + h/2)[foF
c
o(z = −h/2) + fT

ind(z = −h/2)] (15)

for z > −h/2. Combining these two equations, we obtain the total induced
potential as

find(z) = fT
ind(z) + fB

ind(z) = −gcoF
c
i (z)f

0 (16)

in the inner space jzj < h/2. Comparing to eqn (9), we deduce

gso ¼
g0o

1þ g0oe
�qh; gao ¼

g0o
1� g0oe

�qh : (17)

We nd that the conned response functions reduce to surface response
functions at wavelengths 1/q � h: the deviation from the surface response
function originates from the Coulomb interaction between the two walls. As ex-
pected on physical grounds, the inter-wall interaction reduces the in-phase
(symmetric) response and enhances the out-of-phase (antisymmetric) response.
However, the induced potential does not exceed the applied potential in
connement if it does not for a single interface: there is no connement-induced
overscreening (see ESI part I†).
2.5 Interaction connement

A rst consequence of the wall electric response in a 2D channel is a modication
of the effective Coulomb interactions between charged particles inside the
channel: this effect has been termed ‘interaction connement’.15 Two conned
charges (for example, ions in water) interact not only directly, but also indirectly,
through the polarization charges induced in the channel walls. Coulomb inter-
actions near polarizable walls have been computed in various geometries and
within different models for the wall polarizability.

In ref. 15, interaction connement in a 2D channel geometry was addressed in
the framework of surface response functions, which allowed for evaluation of
effective Coulomb interactions between two ions in the channel mid-plane, for
various models of the channel wall material. For example, with walls described by
a Thomas–Fermi model, the ion–ion interaction is reinforced with respect to bulk
water at small distances, and exponentially screened at large distances.
168 | Faraday Discuss., 2024, 249, 162–180 This journal is © The Royal Society of Chemistry 2024
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Our conned response formalism generalizes the results of ref. 15, allowing for
the evaluation of the effective Coulomb interactions between arbitrary charge
distributions. Any charge distribution can indeed be decomposed into an even
and an odd part. The wall response to the even (odd) part is then given by the
symmetric (antisymmetric) response function. In ESI part II,† we provide
expressions in terms of the conned response functions for the effective Coulomb
potential produced by prototypical even (point charge) and odd (dipole) charge
distributions.

3 Confined response of model media

We now specialise to a 2D nanouidic channel of height h lled with water, and
we investigate the effect of connement and of model channel wall materials on
the electric response of water.

3.1 Outer medium: coupled plasmon modes

We consider two models for the channel wall material: a graphene monolayer and
a semi-innite jellium. The graphene surface response function is computed as
detailed in ref. 19, starting from the charge susceptibility in the Dirac cone and
zero-temperature approximations, at a chemical potential m= 100meV. The semi-
innite jellium is treated in the specular reection approximation, as detailed
also in ref. 19. In the jellium model, electrons are free in a uniform positive
background, and are completely characterised by their chemical potential m and
effective mass m. We use m = 180 meV and m = 0.1 me as a model for a doped
semi-conductor: this corresponds to an electron density parameter rs = 5.

For both systems, the surface response functions feature a sharply-dened
surface plasmon mode and a broad particle–hole continuum (Fig. 2). The effect
of connement is most clearly visible on the plasmon mode: its energy is
increased in the conned symmetric response and decreased in the conned
asymmetric response. This is consistent with the physical interpretation outlined
above: as the two solid walls face each other, in-phase (out-of-phase) charge
density oscillations have an increased (decreased) energy cost due to the Coulomb
interactions between the two solids. These interactions are signicant only for
charge uctuations whose wavelength is longer than the connement width h, so
that the conned response functions differ from the surface response function
only at small enough momenta q (see eqn (17)). We note that the polarization of
the plasmon modes does not play a role in our formalism. We expect this to
remain true as long there is no mixing of electronic densities between the two
solids, as will be the case if they are separated by even a single liquid layer.

We anticipate that the formation of coupled plasmonmodes between the walls
of a 2D nanouidic channel will affect transport inside the channel, and partic-
ularly uctuation-induced effects (see section 4).

3.2 Inner medium: conned water spectra from simulations

We now turn to the conned response functions of water. Connement may
impact water charge uctuations in two ways. First, the interaction between the
two interfaces of the water slab is expected to result in a difference between the
symmetric and antisymmetric responses. Second, the connement-induced
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 249, 162–180 | 169
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Fig. 2 Surface and confined response functions for different solids. Interfacial response
functions Im[g(q, u)] of the solid as a function of momentum q and frequency u. The first
row is for graphene with Fermi level m = 100 meV. The second row is for a jellium model
with an effective mass m = 0.1 me and a Fermi level m = 180 meV (electron density
parameter rs = 5), corresponding to a doped semi-conductor. The first column corre-
sponds to the surface response functions. The second column corresponds to the
symmetric confined response functions with a confinement of 7 Å. The third column
corresponds to the anti-symmetric confined response functions with a confinement of 7
Å.
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modications of the water structure may intrinsically affect its charge
uctuations.

We determine the water response functions in the framework of molecular
dynamics (MD) simulations. We carry out both force-eld (FF) and ab intio density
functional theory-based (DFT) simulations of water conned between two frozen
graphene sheets, for various separations h between the graphene sheets. From the
simulation trajectories, we compute the charge structure factor of water, inte-
grated along z aer multiplication by the weight functions summarized in Table
1, and determine the corresponding response functions through the uctuation–
dissipation theorem (section 2.3). DFT simulations are required to capture intra-
molecular modes: we use them to obtain the spectra at frequencies above 150
meV. At lower frequencies, we use the FF simulations to capture the contribution
of inter-molecular modes, inaccessible with the short simulation times of DFT.
Details of the numerical parameters and procedures are given in ESI part III.†

The results are presented in Fig. 3. Fig. 3b shows the water surface response
function (obtained from the simulation at weakest connement) at a xed
wavevector q0= 0.67 Å−1 and in the frequency range 0–200 meV. In this range, the
water charge response can be decomposed into four modes, in order of increasing
frequency: the Debye mode, the hydrogen-bond stretching mode, the libration
mode and the OH-bond bending mode.16,27 We note that the OH-stretch mode (at
around 450 meV) falls outside the studied frequency range. The connement
170 | Faraday Discuss., 2024, 249, 162–180 This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Water response functions from simulation. (a) Snapshot of a FFmolecular dynamics
simulation with 7 Å confinement. (b–d) Response functions Im[g(q, u)] of water as
a function of the frequency u obtained from the simulations, at fixed wavevector q = 0.67
Å−1 for FF and q = 1 Å−1 for DFT. Different confinements are used: 7 Å, 14 Å (only FF), 18 Å
(only DFT), 34 Å and 60 Å (only FF). (b) Surface response function computed from simu-
lations at weak confinement (FF at h = 60 Å and DFT at h = 34 Å). (c) Symmetric response
function for different confinements. The dashed black line is the non-confined surface
response function. (d) Antisymmetric response function for different confinements. The
dashed black line is the non-confined surface response function. (e) Schematic of
a channel containing a single water monolayer on which a symmetric potential is applied.
(f) Same as (e) with application of an antisymmetric potential.
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dependence of these modes could in principle be analysed in terms of their
molecular origin; this is, however, beyond the scope of this article, and we restrict
ourselves to a phenomenological description.

Overall, the water response functions are remarkably robust to connement.
Down to h = 1.4 nm, the lower-frequency intermolecular modes remain unaf-
fected. We observe, however, a slight red shi, and an increased oscillator
strength for the bending mode. A signicant effect on the intermolecular modes
is visible only at 7 Å connement. In the symmetric response, the Debye and
hydrogen-bond-stretch modes are amplied, while the libration mode is sup-
pressed; in the antisymmetric response, the libration peak is strongly amplied
while the other modes are unaffected. As illustrated in Fig. 3e and f, in the
symmetric case, the perpendicular component of the applied electric eld
changes direction across the channel, while it maintains a constant sign in the
antisymmetric case. This likely indicates that the libration mode is mostly excited
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 249, 162–180 | 171
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by the electric eld perpendicular to the interface, while the lower frequency
modes are excited by the parallel component.

4 Confined quantum friction and heat transfer

In this section, we discuss the effect of 2D connement on uctuation-induced
interfacial effects – solid–liquid quantum friction and near-eld radiative heat
transfer –making use of the conned response function formalism developed above.

4.1 Single-interface quantum friction

We start by briey summarising the physics of quantum hydrodynamic friction.
The classical friction between a liquid and a solid is usually determined by the
solid's surface roughness.28,29 However, it was recently shown that the classical
contribution is supplemented by a uctuation-induced or “quantum” contribu-
tion, due to the coupling of water charged uctuations (termed ‘hydrons’) to
electronic excitations within the solid.19 When undergoing quantum friction,
a liquid transfers momentum directly to the solid's electrons. Similarly, a liquid
may transfer energy directly to the solid's electrons: this is near-eld radiative
heat transfer.21,30

In the case of a single solid–liquid interface, if the liquid is owing at velocity v,
it is subject to a quantum friction force F ¼ �lA v with the quantum friction
coefficient l given by19

l ¼ ħ2

8p2T

ðN
0

dudq
q3

sinh2

	
ħu
2T


Dg
�
F 0
�
: (18)

Anticipating the generalization to the conned case, we have introduced the
notation

Dg½F � ¼ Im½geðq;uÞ�Im½gwðq;uÞ�
j1� geðq;uÞgwðq;uÞj2

; (19)

where the g's (e corresponds to the solid, w to the liquid) are generalized response
functions computed with the weight function F (see Table 1). Similarly, if there is
a temperature difference DT between the solid and the liquid, the solid–liquid
heat ux is given by Q ¼ kADT , where the thermal boundary conductance k is21

k ¼ ħ2

4p2T2

ðN
0

dudq
qu2

sinh2

	
ħu
2T


Dg
�
F 0
�
: (20)

4.2 Conned quantum friction

We now generalize the above results to the 2D conned geometry presented in
Fig. 4b. We wish to compute the total quantum friction force applied by the solid
walls on the owing liquid, and the total heat transfer rate between the liquid and the
two solid walls. The liquid and the solid's electrons are described by their uctuating
charge densities nw and ne, which have a Coulomb interaction of the form
172 | Faraday Discuss., 2024, 249, 162–180 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3fd00115f


Fig. 4 Fluctuation-induced effects. (a) Schematic of the interactions involved in single-
interface quantum friction. Friction results from the Coulomb coupling of liquid fluctua-
tions (hydrons) and electronic fluctuations. (b) Schematic of the interactions involved in
confined quantum friction. Compared to the non-confined case, there is an additional
Coulomb interaction between the charge fluctuations in the two solid walls. (c) Dyson
equation for the renormalization of the bottom wall's charge density response function
(polarization “bubble”) by the intra-wall Coulomb interactions. The bare bubble is empty
and the renormalized bubble is filled with gray. (d) Dyson equation for the electron–water
susceptibility cew. (e) Definition of the exchange term P (see text). (f) Dyson equation for
the renormalization of the bottom wall's charge density response function by the inter-
wall Coulomb interactions. The stripes indicate a fully-renormalized bubble. (g) Dyson
equation for the inter-wall charge density response function, which vanishes in the
absence of inter-wall Coulomb interactions (P = 0).
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H w�eðtÞ ¼
ð
drwdrenwðrw; tÞVðrw � reÞneðre; tÞ: (21)

The dynamics of the systems are governed by the interaction Hamiltonian that
also comprises the electron–electron Coulomb interactions: H int ¼ H e�e þ H h�e.

The friction force and heat transfer rate are given by

hFi ¼ �
ð
drwdreVVðrw � reÞhnwðrw � vt; tÞneðre; tÞi; (22)

hQ i ¼
ð
drwdreVðrw � reÞvthnwðrw; tÞneðre; tÞi; (23)
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where the integration over rw (resp. re) runs over the space occupied by the liquid
(resp. solid). The correlation functions appearing in eqn (22) and (23) may be
computed in perturbation theory with respect to H int, as has been detailed in ref.
19. Since the system is subject either to liquid ow or to a temperature gradient,
the perturbative expansion needs to be carried out in the non-equilibrium Kel-
dysh formalism.31 Ultimately, both the friction force and the heat transfer rate can
be obtained in terms of the solid–liquid charge density correlation function cew,
which, upon resummation of the perturbation series, is found to satisfy the
following Dyson equation:

cew =cew*cw + ce*cw*cew. (24)

Here * stands for convolution in space and time, multiplication by the
Coulomb potential, and contraction of the Keldysh indices. A Feynman diagram
representation of eqn (24) is given in Fig. 4d. The Keldysh indices carried by the
c′s are not important for the geometrical discussion that follows. We will there-
fore not write them out explicitly and we refer the reader to ref. 19 for further
details: once the space–time convolutions have been dealt with, the computation
is completely analogous to ref. 19.

In the single interface case, upon Fourier transformation in time and in space
parallel to the interface, eqn (24) immediately becomes a scalar equation for
surface response functions. In the channel geometry, we need to introduce
conned response functions, rst as 2 × 2 matrices in the indices n, x = T, B:

ðgabÞnxðq;uÞ ¼ � e2

230q

ð
Zn
a

dza

ð
Zx
b

dzbcabðza; zb; q;uÞ.

.eq½3aðsnza�h=2ÞÞþ3bðsxzb�h=2Þ�
(25)

where a, b = e, w, 3w = +, 3e = −, sT = + and sB = −. The space has been divided
into three regions: the central region Z w, and the bottom (B) and top (T) wall
regions: Z e ¼ Z B

eWZ T
e . In the convolution over z in eqn (24), summing over the top

and bottom solids corresponds to summing over the indices B, T. Thus, in terms
of the conned response functions, eqn (24) becomes

gew = −ge$gw + ge$gw$gew, (26)

where the dot represents the matrix product, and ga h gaa. Neglecting the off-
diagonal terms in eqn (26), we would recover two copies of the single interface
Dyson equation, one for the top and one for the bottom interface. The off-
diagonal terms represent cross-talk between the walls (for example, the top
solid wall responding to a water uctuation near the bottom wall), which is ex-
pected to vanish for weak connement.

We assume in the following that the top and bottom wall materials are the
same, so that the system is symmetric under the mirror transformation z / −z.
As a consequence, gTT = gBB and gTB = gBT. Therefore, all the conned response
matrices can be diagonalised in the form

PgP�1 ¼
 
gTT þ gTB 0

0 gTT � gTB

!
¼
 
gs 0

0 ga

!
(27)
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where we have used

P ¼ 1ffiffiffi
2

p
 
1 1

1 �1

!
; (28)

which satises P−1 = P. We thus recover the denition of the conned response
function in its eigenbasis, as introduced in section 2. Multiplying eqn (26) by P on
the le and on the right, we obtain two scalar equations for the symmetric and
antisymmetric response functions:(

gsewðq;uÞ ¼ �gseðq;uÞgswðq;uÞ þ gseðq;uÞgswðq;uÞgsewðq;uÞ
gaewðq;uÞ ¼ �gsaðq;uÞgawðq;uÞ þ gaeðq;uÞgawðq;uÞgaewðq;uÞ

(29)

Once the Dyson equation is reduced to a scalar equation, we may follow the
steps of ref. 19 and 21 to obtain the friction coefficient and thermal boundary
conductance in the conned geometry:

l ¼ ħ2

8p2T

ðN
0

dudq
q3

sin h2

	
ħu
2T


 ðDg½F s� þ Dg½F a�Þ; (30)

k ¼ ħ2

4p2T2

ðN
0

dudq
qu2

sin h2

	
ħu
2T


 ðDg½F s� þ Dg½F a�Þ: (31)

The conned response functions thus emerge naturally in the theory of
uctuation-induced effects in a 2D channel. We note that compact results
expressed in terms of conned response functions can only be obtained if the top
and bottom solid walls are made of the same material. If this is not the case, then
eqn (26) needs to be solved at the matrix level: this formally more involved situ-
ation is beyond the scope of this work.
4.3 Diagrammatic approach to conned response function

Using the diagrammatic approach developed for the uctuation-induced effects,
we may interpret the conned response functions of the solid walls as surface
response functions that have been renormalised by the inter-wall interactions
within the random phase approximation (RPA).

We start from the intra-wall response function ce(z, z
′), that has been renor-

malized by the intra-wall Coulomb interactions at the RPA level, according to the
Dyson equation shown diagrammatically in Fig. 4c. These are identical in the top
and bottom walls (cBBe = cTTe ), and, at this stage, there is no inter-wall response
cBTe , since we do not allow for electron tunneling between the walls.

In the presence of Coulomb interactions between the walls, we may introduce
the exchange term P = cBBe × cTTe (Fig. 4e). Still at the RPA level, the intra-wall
response function is then renormalised according to (Fig. 4f)

~cBBe = ~cBBe + P * ~cBBe . (32)

The inter-wall response is no longer vanishing, and satises (Fig. 4g)
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~cBTe = P + P * ~cBTe . (33)

Fourier-transforming these Dyson equations as detailed above, we obtain
relations between conned and surface response functions. Using in particular
that

e2

230q

ð
ZB

dz

ð
ZT

dz
0
P
�
z; z

0�
e�qðz�z0�hÞ ¼ �g0e�2e�qh; (34)

we obtain

gBBe ¼ g0e

1� �g0e�2e�2qh ; gBTe ¼ �
�
g0e
�2
e�qh

1� �g0e�2e�2qh : (35)

and deduce the symmetric and antisymmetric components of the conned
response function

gse ¼
g0e

1þ g0e e
�qh ; gae ¼

g0e
1� g0e e

�qh : (36)

We thus recover eqn (17), that we previously obtained from purely electrody-
namic considerations.
4.4 Effect of connement on the uctuation-induced effects

We now investigate the effect of connement on the quantum friction coefficient
and thermal boundary conductance of water in a 2D channel, with walls made of
either graphene or a semi-innite jellium, with the parameters detailed in section
3. The results are presented in Fig. 5.

We rst focus on the effect of inter-solid interactions and thus evaluate the
uctuation-induced effects using the single-interface surface response function for
water (continuous lines in Fig. 5). Interestingly, we observe opposite trends for
graphene and for jelliumwalls. In the case of graphene, for both friction and thermal
conductance, the antisymmetric contribution is enhanced and the symmetric
contribution is reduced with connement. Indeed, both effects are governed by the
coupled plasmon modes of the walls, and the out-of-phase mode has lower energy
than the in-phase mode, thus making a larger contribution. For our jellium model,
the plasmon is well above the thermal energy (around 300meV), and the uctuation-
induced effects are governed by single-particle excitations: we nd that, in this case,
the connement enhances the symmetric contribution and reduces the antisym-
metric contribution. The antisymmetric contribution dominates the behaviour of
the total friction and thermal conductance, but the overall connement effect
remains lower than 10%, except for the thermal conductance with graphene walls,
where it reaches 50%. In general, the connement effect is stronger for graphene
walls than for jellium walls because the electronic uctuations that mediate
quantum friction and near-eld heat transfer have a longer wavelength (smaller
momentum q) in the case of graphene.

We now turn to the effect of the connement-induced changes in the water
uctuations. Our simulations have shown that these changes become signicant
only at 7 Å connement (Fig. 3), with an amplication of the Debye peak in the
176 | Faraday Discuss., 2024, 249, 162–180 This journal is © The Royal Society of Chemistry 2024
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Fig. 5 Effect of confinement on the fluctuation-induced phenomena. (a) Quantum fric-
tion coefficient l normalised by the single interface quantum friction coefficient l0 as
a function of confinement between graphene walls. (b) Thermal boundary conductance k

normalised by the single interface thermal boundary conductance k0 as a function of
confinement between graphene walls. (c) Quantum friction coefficient l normalised by
the single interface quantum friction coefficient l0 as a function of confinement between
jellium walls with an effective mass m = 0.1 me and a Fermi level m = 180 meV (electron
density parameter rs = 5). (d) Thermal boundary conductance k normalised by the single
interface thermal boundary conductance k0 as a function of confinement between jellium
walls with an effective mass m = 0.1 me and a Fermi level m = 180 meV (electron density
parameter rs = 5). In all panels, the continuous lines are obtained using the single interface
surface response function for water, while the crosses are obtained with the confined
response function of water at the relevant confinement, as obtained from molecular
dynamics simulations.
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symmetric response and of the libration peak in the antisymmetric response. This
translates into an enhancement of the friction coefficient and thermal conduc-
tance for both solid models, by up to a factor of 2 in the case of graphene. The
study of uctuation-induced effects specically in 7 Å connement is thus of
particular interest. For instance, the thermal conductance of the interface
between graphene and nanoconned water may be probed with optical-pump
terahertz-probe spectroscopy: the optically-excited graphene electrons would be
expected to cool faster than in the non-conned case.21
5 Conclusions

In this paper, we have developed a theoretical framework for studying
connement- and uctuation-induced effects in two-dimensional nanouidic
channels: the effects of (uctuating) Coulomb interactions between the liquid
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 249, 162–180 | 177
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and the solid. The key element of our framework is the description of the
response of the solid walls and of the conned liquid to the Coulomb potentials
that they apply to each other. In the case of a single solid–liquid interface, the
surface response function – the reection coefficient for evanescent plane waves
– was found to be the most convenient descriptor. This convenience was due to
the evanescent plane waves being eigenmodes of the Coulomb potential: the
response to an evanescent wave is an evanescent wave. Generalizing this idea to
the 2D channel geometry, we have introduced conned response functions that
play the role of reection coefficients for the potential eigenmodes of the
conned system. Our approach is systematic, and potentially extendable to
more complex geometries.

The conned response functions reveal electrodynamic cross-talk between the
walls of a 2D nanochannel. Investigating model materials that exhibit a surface
plasmonmode, we found that the plasmons of the two walls couple as soon as the
connement is comparable to the plasmon wavelength. While the coupling of
collective modes through Coulomb interactions is in principle a well-known
phenomenon,32 our framework allows for the investigation of its effect on
nanoscale uid transport. From the uid side, we have investigated conned
water through molecular dynamics simulations. We found that the water
conned response remains essentially bulk-like in the thermal frequency range
down to 1.4 nm connement, but undergoes signicant changes when the
connement reaches 7 Å. This is consistent with previous simulation studies of
the static dielectric response of conned water.33–35

As an application of our framework, we have investigated quantum friction and
near-eld radiative heat transfer between water and the walls of a 2D nanochannel.
We have generalized the derivation of ref. 19 and 21 to a conned geometry and
found that the conned response functions naturally emerge. In channels wider
than 7 Å, the friction coefficient and thermal boundary conductance are modied
compared to their bulk values when the connement is comparable to the typical
wavelength of the relevant charge uctuations. At 7 Å connement, a signicant
enhancement occurs for both effects, due to the drastic modication of the water
response. Observing a connement-induced modication of quantum friction or
heat transfer thus appearsmost promising for systems where charge uctuations are
on longer wavelengths, yet these are also the systems where the effects are the
weakest. Nevertheless, it has been shown that graphene–water heat transfer can be
measured with ultrafast spectroscopy,21 and a small quantum friction coefficient can
still result in a large quantum friction force (termed ‘quantum feedback’) if the
electrons are driven by a phonon wind.17 Our results thus provide guidelines for
engineering uctuation-induced effects in nanoscale uid transport.
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