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Enhanced sampling without borders: on global
biasing functions and how to reweight them

Anna S. Kamenik, Stephanie M. Linker and Sereina Riniker *

Molecular dynamics (MD) simulations are a powerful tool to follow the time evolution of biomolecular

motions in atomistic resolution. However, the high computational demand of these simulations limits

the timescales of motions that can be observed. To resolve this issue, so called enhanced sampling

techniques are developed, which extend conventional MD algorithms to speed up the simulation

process. Here, we focus on techniques that apply global biasing functions. We provide a broad overview

of established enhanced sampling methods and promising new advances. As the ultimate goal is to

retrieve unbiased information from biased ensembles, we also discuss benefits and limitations of

common reweighting schemes. In addition to concisely summarizing critical assumptions and

implications, we highlight the general application opportunities as well as uncertainties of global

enhanced sampling.

1 General introduction

Biomolecules in solution constantly fluctuate within an ensem-
ble of conformational states with varying probability.1 Each of
these conformational states exhibits (slightly) altered biophysi-
cal properties and provides different opportunities for interac-
tions with surrounding molecules.2–5 The dynamic nature of
biomolecules is thus essential to both fundamental and applied
research, e.g. for drug discovery and lead optimization.1,3,6

However, even after several decades of research in this area,

the complexity and longevity of the conformational rearrange-
ments of biomolecules still poses substantial challenges for
computational and experimental methods.4,7 The ideal techni-
que would be a ‘‘molecular camera’’, which records the time
evolution of the motion of a single molecule in atomic resolu-
tion. Despite massive progress in the field of experimental
integrative modeling, the tool that currently comes closest to
this ideal of a molecular camera is molecular dynamics (MD)
simulations.8,9 The theoretical framework as well as the imple-
mentation of MD simulations is built on numerous approxima-
tions to reduce the computational costs to a tractable level,
which limits the accuracy of the resulting dynamic models.10–12
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These approximations can be broadly divided into two cate-
gories: (i) inaccuracies in the underlying force field, and (ii)
uncertainties due to limited phase-space exploration. Within
this review, we will focus on the latter, which is traditionally
also referred to as the ‘‘sampling problem’’.

A typical biomolecular system is characterized by a myriad of
degrees of freedom, resulting in practically innumerable con-
formational and configurational states. This complex phase
space translates into a free-energy surface that is vast and
rugged. MD simulations offer the possibility to explore such
free-energy landscapes with a resolution of nanometers and
femtoseconds. However, in practice the system often gets
trapped in a (local) minimum as high barriers to neighboring
configurational states impose slow transition rates. With dedi-
cated state-of-the-art hardware or exa-scale cloud-computing
infrastructure, motions on the millisecond timescale can be
observed for biomolecular systems of considerable size.13–15

Unfortunately, the general access to such supercomputing
systems is limited. An alternative to brute force high-
performance computing is to speed up the sampling process
using enhanced sampling strategies.

Many different methodologies that fall into the category of
enhanced sampling have been developed over the past decades
(for previous reviews we refer the reader to ref. 16 and 17). Some
of the most popular enhanced sampling strategies are pathway-
dependent, meaning they rely on the definition of low-
dimensional order parameters, also called reaction coordinates
or collective variables (CVs). Methods such as local elevation18

or metadynamics,19 umbrella sampling20,21 or targeted MD22

increase sampling efficiency in a simulation by applying a bias
along the selected CV. Consequently, identifying representative
CVs is critical to the success of pathway-dependent enhanced
sampling techniques, but reducing the complex dynamics of
biomolecules to a few interpretable dimensions is far from

trivial.23 Substantial research efforts are currently invested in
the optimization and automatization of selecting appropriate
CVs, e.g. with the aid of machine learning.24–26 Given relevant
CVs, pathway-dependent methodologies can perform strikingly
well, for example in modelling the activation of voltage-sensing
domains of ion channels,27,28 the estimation of ligand koff

rates,29 or membrane permeation probability calculations.30,31

Despite these successes, for many interesting biomolecular
systems it is not straight-forward to derive a small number of
representative observables as CVs. For example, when we
simulate cyclic peptides in apolar environments, we usually
observe one (or a few) well-defined ‘‘closed’’ structures. These
closed conformational states can often be easily represented,
e.g., via intramolecular hydrogen bond formation.32,33 How-
ever, when we study the same system in a polar environment,
defining a unique representation immediately becomes more
difficult. The ensembles of cyclic peptides in polar environ-
ments are generally much more diverse, and observables such
as intramolecular hydrogen bonds or the radius of gyration fail
to distinguish the conformational states. Other scenarios,
which are challenging for CV-based pathway-dependent meth-
ods, include studies with the specific aim of identifying the
most flexible domains of a biomolecule,34–36 or of discovering
novel cryptic or allosteric binding sites.37–39 Whenever the goal
is to explore and compare local flexibility patterns within one
biomolecular system, a pathway-dependent bias should be
avoided as it inherently steers the results towards the user-
defined reaction coordinate.

Fortunately, also pathway-independent enhanced sampling
techniques have been developed, which do not require the
definition of CVs. Methods following the principles of
hyperdynamics40 or parallel tempering41,42 add global biasing
energies that act on the entire system simultaneously. Here, we
provide an overview of currently available pathway-independent
enhanced sampling methods, which we broadly categorize by
whether the bias is defined via the potential or kinetic energy
function. For each of the methodologies we describe in the
following sections promising results that have been reported
for various scientific problems. However, each approach also
has its limitations. As we summarize benefits and pitfalls, we
explain what can and cannot be expected from the different
methods. Furthermore, we discuss the general and central
challenge of extracting unbiased thermodynamic and kinetic
information from biased ensembles. This process, typically
referred to as reweighting, is in practice often decisive for the
applicability of biasing methods.

2 Turning up the heat: biasing the
kinetic energy

A straight-forward way to increase the velocity of motions in a
simulated system is to elevate its temperature, i.e., to introduce
a kinetic bias. At higher temperatures, the transition rates
between local minima increase, thus a larger phase space can
be explored in less computational time. Simulations at room
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temperature on the other hand ensure thorough sampling
within the minima.43,44 The tempering approaches described
below follow the same fundamental idea: Simulations at high
and low temperatures are combined based on an energetic
criterion, which retains the canonical ensemble (Fig. 1).
Through this, conformational sampling is achieved more effi-
ciently and more reliably than with conventional – single
temperature – MD simulations. The practical implementation
of this idea differs, however, greatly between individual
enhanced sampling strategies, which we will outline in detail
in the following paragraphs.

2.1 Temperature replica exchange MD

In temperature replica exchange MD (T-REMD), also referred to
as parallel tempering, multiple simultaneous simulations of
identical systems are performed at varying temperatures.41,42

Exchanges between neighboring replicas are attempted at
defined time intervals and accepted or rejected based on an
energetic criterion, which retains the canonical distribution

(Fig. 1A and B).45 Typically, this routine is based on a Metro-
polis criterion, where the exchange probability P(Tk - Tl)
depends on the reference temperature of two replicas (Tk, Tl)
and their potential energies (Vk, Vl):

46, 47

PðTk ! TlÞ ¼
1; D � 0

expð�DÞ; D4 0

�
(1)

D = (bk � bl)(Vk � Vl), (2)

with bk = 1/kBTk, bl = 1/kBTl being the inverse of the temperature
Tk and Tl multiplied by the Boltzmann constant kB. The nature
of this approach thus requires a computational setup, where
multiple simulations can be performed in parallel with suffi-
ciently fast and frequent communication between the comput-
ing nodes.43 While the parallelization posed a limitation for the
applicability of the approach in the past, nowadays parallel
computing is widely available with modern computing envir-
onments. However, the challenge increases for large biomole-
cular systems as the number of required replicas is estimated to
increase with N1/2 for a system with N degrees of freedom.48

Nevertheless, assuming that the required high-performance
computing environment is available, the main question
remaining is how to choose the number and spacing of replicas
and the overall temperature range. Various, mostly iterative
schemes have been proposed to optimize the choice of these
parameters.49,50 A quite popular tool to estimate the replica
distribution is the temperature generator for REMD-
simulations, introduced and hosted by David van der Spoel
and co-workers.47,51 Their algorithm estimates the number and
spacing between T-REMD replicas based on system size, tem-
perature range, and a user-defined exchange probability
(a practical rule of thumb is to choose an acceptance rate above
0.2 to 0.3.52) These predictions are, however, based on a certain
test setup and should be re-evaluated for the user-specific
combinations of MD engine and force field. For a detailed
practical guide on how to run T-REMD simulations, we refer the
interested reader to ref. 52.

Compared to serial simulated tempering (ST) simulations,
T-REMD simulations have been found to converge slower at a
higher computational cost,53 although depending on the stu-
died system and simulation setup, T-REMD simulations could
theoretically outperform ST simulations in terms of wall time.
In practice, the use of T-REMD is notably more popular. This
can most likely be attributed to its straight-forward implemen-
tation and the fact that no weighting factors need to be
optimized.53 Furthermore, T-REMD simulations result in exten-
sive sampling at different temperatures, which can provide
valuable information beyond enhanced conformational sam-
pling. Some of the most remarkable studies working with
T-REMD include the first study of Sugita and Okomoto on the
folding of Met-enkephalin,42 which was followed by numerous
works using T-REMD to further elucidate the protein folding
problem.54–58 Moreover, T-REMD has greatly aided the
interpretation of experimental data from various sources.59–61

T-REMD simulations have also shown promising results in the

Fig. 1 Schematic representation of four global enhanced sampling tech-
niques, where the bias is defined via the kinetic energy of the system:
Temperature replica exchange MD (A and B), simulated tempering MD
(C and D), integrated temperature MD (E and F) and multicanonical MD
(G and H). The left column (A, C, E and G) illustrates the sampled energy
distributions, while the right column (B, D, F and H) displays the energy as a
function of the simulation time.
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area of cyclic peptides, generating ensembles that agree well
with NMR interproton distances.62 In the study by Wakefield
et al.,62 the authors were furthermore able to rationalize the
varying binding affinities of the cyclic peptides through con-
formational pre-organization captured in T-REMD. In a differ-
ent study, solvent induced conformational changes could be
observed for cyclic tetrapeptides using T-REMD.63 Additionally,
T-REMD simulations have shown valuable benefits in the
parametrization of residue-specific force fields.64

2.2 Simulated tempering

ST simulations, also called serial tempering,44 follow a similar
sampling strategy as T-REMD. In ST simulations, temperature
switches are also accepted or rejected based on an energetic
criterion. The major difference in the ST setup is, however, that
only one continuous simulation is performed and the Hamiltonian
becomes dependent on the system’s reference temperature Ti in this
single simulation (Fig. 1C and D).65,66 Let’s consider a system where
H(r) is the Hamiltonian of configuration r. As we choose a discrete
set of temperatures T1 o . . . o TK, we define a generalized
Hamiltonian44 to run the ST simulation:

H(r,k) = bkH(r) � gk, (3)

here, the index k is referring to the temperature range and thus
can take values from 1 to K. The logarithmic weight corres-
ponding to the temperature Tk is denoted as gk. Consequently,
the generalized partition function Z can be written as,

Z ¼
X
k

ð
dre�Hðr;kÞ ¼

X
k

Zke
gk ; (4)

with Zk being the partition function at bk. This notation highlights
that the generalized ensemble combines the canonical ensembles at
each temperature using the weighting coefficients {gk}. With a user-
defined frequency, attempts are made during the simulation to alter
the system temperature Tk to a new trial temperature Tl, which is
taken from the discrete set of selected temperatures. Whether or not
the change is accepted is evaluated based on an energetic criterion,
which is specifically designed to maintain the canonical distribu-
tion. Similar to T-REMD simulations, the acceptance probability for
k - l is defined by min(1,e�DHk-l(r)),66 where

DHk-l(r) := H(r, l) �H(r, k) = (bl � bk) H(r) � (gl � gk).
(5)

Consequently, unbiased statistics of each temperature are
collected for ST (as well as for T-REMD simulations), which do
not need additional reweighting if analyzed individually.
Achieving uniform sampling across the selected set of tempera-
tures critically depends on the choice of the weighting coeffi-
cients gk. Optimization of these weights (and the auto-
matization of it) is thus the main challenge in working with ST
simulations.67 In practice, this is often a tedious task, which
requires numerous short trial simulations as the weights are
not known a priori.44,68 Nonetheless, ST simulations have been
found to be quite robust across various computing environments as
they only require a single computing node. The approach has

already facilitated several studies which explore the free-energy
landscapes of biomolecules (e.g. BPTI, Villin, Trp-cage, or fast
folding WW-domain peptides) at low computational cost with
speedups of several orders of magnitude.68,69 Further prominent
examples for the application of ST simulations include folding
dynamics of multiple mini-proteins in explicit solvent68,69 and
Alzheimer related peptide aggregation.67

2.3 Integrated temperature sampling

Integrated temperature sampling (ITS) introduces a sum-over-
temperature non-Boltzmann factor, which is essentially a linear
combination of Boltzmann distributions at different tem-
peratures.70,71 This means that the simulation is performed
on a temperature-biased effective potential Ṽ(r), which is
defined in the following manner for each configuration r:

eVITSðrÞ ¼ �b�10 ln
X
k

nke
�bkVðrÞ

 !
; (6)

where b0 corresponds to the the desired inverse reference tempera-
ture and {bk} denotes the the selected inverse temperature range.
{nk} are the weighting coefficients, which determine the contribu-
tion of the potential energy V(r) at each inverse temperature bk.
Typically, it is best to sample the full temperature range uniformly.
However, in theory it is straight-forward to focus the sampling to
selected temperature regions using {nk}.

72 Hence, ITS bears simila-
rities to enveloping distribution sampling,73 as it combines multiple
potentials (at different temperatures) to sample one generalized
(non-Boltzmann) distribution. The resulting effective potential thus
facilitates efficient phase-space exploration across a chosen tem-
perature range within a single simulation (Fig. 1E and F).45,72 The
main challenge in ITS is to identify suitable coefficients {nk}, which
can be estimated in an iterative procedure during the
simulation.72,74 This central process is fast for comparably simple
systems, but can become much more difficult for large-scale
biomolecular systems.70 This potential limitation is balanced
against the advantageous features of the method, i.e. that the
convergence behavior of ITS has been observed to be superior to
other global enhanced sampling techniques and that it is compu-
tationally substantially more efficient than the related T-REMD in
terms of CPU time.45

2.4 Multicanonical molecular dynamics

Multicanonical MD (McMD) simulations aim to uniformly
sample the potential-energy surface (PES) between high tem-
perature and low temperature regions (Fig. 1G and H).75,76 In
other words, the aim is to derive a flat probability distribution
function P̃McMD of the potential energy V:75

ePMcMDðVÞ ¼
1

ZMcMD
nðVÞe�beVMcMDðVÞ ¼ constant; (7)

where the partition function in the multicanonical ensemble is

defined as ZMcMD ¼
P
V

nðVÞe�beVMcMDðVÞ, n(V) is the density of

states, and eVMcMD(V) is the effective potential of the McMD
simulation. eVMcMD(V) is not known a priori and needs to be
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determined from a preceding conventional MD simulation as a
function of its unbiased potential energy, V i.e.,77

eVMcMD(V) = V + kBT0 ln(P(V, T0)), (8)

with P(V, T0) being the probability distribution of the unbiased
potential energy V and the selected temperature T0. This initial
temperature T0 is typically set to comparably high values to cover a
sufficiently broad energetic space. However, the resulting eVMcMD(V)
usually cannot be used as the final effective potential for productive
McMD runs. It rather serves as the first input for an iterative
refinement scheme that optimizes eVMcMD(V) for a particular system
under study.77 The aim of this refinement is to converge to that flat
probability distribution function between a chosen temperature
range [Tmin, Tmax], where Tmin is generally chosen to be slightly
below room temperature and Tmax is in the range of 700 K to
1000 K.78 Since its first introduction by Berg and Neuhaus in 1992,
who applied the McMD algorithm to study the two-dimensional
Potts system,79 McMD has found broad usage in the biomolecular
simulations community.77,80 In particular for investigations on the
dynamics of (bio-) pharmaceutical systems such as antibodies81,82

and cyclic peptides,76,83 McMD was successfully applied to bypass
high energetic barriers.

3 Flooding valleys and shaving peaks:
biasing the potential energy

More common than changing the kinetic component of the Hamil-
tonian is the introduction of a bias to the potential energy. Different
algorithms have been developed, which decrease the barriers between
conformational states either by ‘‘filling up’’ the minima or flattening
the maxima of the PES. The varying benefits and limitations of the
approaches described in the following paragraphs mostly stem from
differences in the functional form of the implemented bias.

3.1 Hyperdynamics

The general idea of distorting the PES with a global biasing
potential was first introduced by Arthur Voter in 1997.40 The
initial implementation of the approach required the calculation
of the Hessian matrix to identify transition states, which
inherently limited its applicability to relatively small systems.
In further development, Hamelberg et al.84 reformulated the
approach for large solvated biomolecular systems using a more
simplistic biasing potential. From then on the approach
became known as accelerated MD (aMD) simulations.

In aMD simulations, a biasing term DVaMD(r) is added to the
potential energy V(r), whenever it is below a certain threshold E.
The effective potential eVaMD(r) can thus be written as,

eVaMDðrÞ ¼
VðrÞ; VðrÞ � E

VðrÞ þ DVaMDðrÞ; VðrÞoE

�
: (9)

In the initial formulation of aMD, the biasing term DVaMD(r) –
typically referred to as boosting potential – itself is defined as,

DVaMDðrÞ ¼
ðE � VðrÞÞ2

a� ðE � VðrÞÞ; (10)

where a is the so-called tuning or acceleration parameter, which
determines the smoothness of the effective potential eVaMD(r)
(Fig. 2). Hence, the magnitude of the added biasing potential
increases when the difference between the threshold energy E and
the unbiased potential V(r) is large. This means that the minima are
elevated, which in turn decreases the height of the barriers between
neighboring conformational states. From a comparison to a milli-
second trajectory of the bovine pancreatic trypsin inhibitor (BPTI), it
has been estimated that aMD can result in an impressive speed-up
of three orders of magnitude.85, 86 This speed-up is, however,
dependent on system size and most importantly also on the chosen
acceleration parameters E and a.

Since their introduction in 2004, aMD simulations have
been employed to study a broad range of biomolecules. Some
of the most notable applications include the work of Miao
et al.,87,88 in which the free-energy surface of G-protein-coupled
receptors was elucidated, as well as the investigation from
Markwick et al.,89 where aMD predicted motions in protein
GB3 on the millisecond timescale in agreement with NMR
measurements. Generally, aMD has shown great potential in
predicting, complementing, and refining NMR data for numer-
ous biomolecular systems.86,90–94 In particular, aMD simula-
tions have also been shown to produce reliable ensembles of
macrocycles and cyclic peptides,94 which can be further utilized
for drug optimization.95,96

The central challenge when working with aMD is to select
appropriate values for the two acceleration parameters E and a.

Fig. 2 Schematic representation of three different hyperdynamics imple-
mentations: accelerated MD (A and B), integrated accelerated MD
(C and D), Gaussian accelerated MD (D and E). The left column (A, C and
E) illustrates the smoothing of the PES along a selected reaction coordi-
nate r. The right column (B, D and F) displays the corresponding distribu-
tions of the boosting potential DV for each implementation.
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In double boost aMD,97 the variant of aMD that is probably most-
widely used for biomolecules, all particles in the system are biased
together with an extra boost on the dihedral terms. For this setup,
four parameters need to be defined, i.e. threshold energy and
smoothing parameters for both the dihedral terms (Edihed and
adihed) and the total potential energy (Etexttotal and atexttotal). These
values are typically derived from short conventional MD simulations
based on empirically derived formulae that take into account the
average total energy hVtotali, the average dihedral energy hVdihedi, and
the number of atoms natom and number of residues nres,
respectively.85,98 To derive the dihedral biasing potential the follow-
ing equations are commonly applied:

Edihed = hVdihedi + 4�nres (11)

adihed ¼
4

5
� nres: (12)

For the calculation of the total energy biasing potential,
parameters can be calculated via

Etotal ¼ hVtotali þ
natom

5
(13)

atotal ¼
natom

5
: (14)

Despite these rules of thumb, choosing appropriate values for
the acceleration parameters is far from trivial as the introduced bias
should ideally increase sampling speed substantially without flat-
tening the PES too severely. In our experience, it is usually worth-
while to start multiple short aMD simulation with different sets of
parameters to assess the impact of the bias on the observed
motions. If the PES becomes too distorted, the simulation mostly
visits irrelevant high-energy states, which for proteins typically
means irreversible unfolding. The latter scenario is probably one
of the most dreaded risks of enhanced sampling in general,
although seldom discussed in the literature. To circumvent the
issue of manually selecting optimal parameters, a combination of
aMD and replica exchange simulations (RE-aMD) has been
proposed.99,100 Despite the advantages of RE-aMD, this approach
has not found a great echo within the community. This might be
due to the fact that RE-aMD requires replicas to be simulated in
parallel, while one of the main selling points of the original aMD
algorithm was that it can be carried out on a single computing
node. This was a particularly intriguing feature in the early 2000s,
when access to high-performance computing facilities was more
scarce. Although the advances in computer power since then have
worked in favor of parallel simulation techniques, the full potential
of the RE-aMD approach has not yet been exploited, probably also
due to several other intriguing advancements of aMD.

One of these more recent adaptations of the methodology is
called integrated aMD (IaMD), which combines multiple aMD
simulations with varying acceleration parameters into one
trajectory by following the principle of ITS (Fig. 2).101–103 Here,
the total boosting potential is defined as,

DVIaMDðrÞ ¼ �
1

b
ln
X
k

nke
�bDVaMD;kðrÞ; (15)

where DVaMD,k(r) is the standard aMD boosting potential as
defined in eqn (10) for the kth set of acceleration parameters.
The main challenge with IaMD is that – similar to ITS – the
weighting coefficients {nk} need to be optimized in addition to
the parameters {E} and {a}. A highly compelling argument for
IaMD is, however, the convergence speed-up of up to three
orders of magnitudes compared to aMD simulations, which has
been reported for different fast folding proteins.45,102 This
advantage arises from combining multiple biasing potentials
into one, which circumvents the problem of oversampling high-
energy states. Also for large biomolecular systems, such as the
RNase P holoenzyme in complex with pre-tRNA, IaMD simula-
tions have provided valuable mechanistic insights.104 Further
variations of the aMD approach include adaptive aMD,105,106

where the threshold energy is reevaluated and adjusted on-the-
fly during the simulation, or ‘‘lowering-barrier’’ aMD,107 where
the biasing function directly acts on the maxima instead of the
minima of the PES.

The probably most notable advancement of the aMD
approach is termed Gaussian aMD (GaMD).108 The central idea
in GaMD simulations is to inherently restrict the boosting
potential in such a way that a Gaussian distribution is obtained
(Fig. 2),

DVGaMDðrÞ ¼
1

2
kðE � VðrÞÞ2: (16)

Again, this boosting potential is only applied when the
system’s potential energy is below a defined threshold energy
E (see eqn (9)). In standard aMD simulations, the distribution
of the boosting potential is often spread across a large energy
range from tens to hundreds of kJ mol�1 in a non-Gaussian
manner.109 This can lead to slow convergence as low-energy
states are not sufficiently sampled, and additionally introduces
severe difficulties for the subsequent reweighting procedure
(see Section 4).45 By restricting the distribution of the boosting
potential in GaMD, both of these issues can be circumvented.
Nevertheless, also GaMD simulations require the definition of
several parameters. These can again be optimized in an auto-
mated manner based on a short simulation preceding the
production run. In this parameter optimization scheme, the
threshold energy E is typically set to the system’s maximum
potential energy (while it can be freely chosen in aMD).108 The
average boosting potential as well as its standard deviation
have been shown to be lower compared to standard aMD.108

With the aid of GaMD simulations, large biomolecular systems
have been studied, such as the CRISPR-Cas9 system,110

allergen-antibody complexes,111 or T-cell receptors binding to
peptide-MHC complexes.112 For more details on the methodol-
ogy and applications of GaMD, we recommend a recent and
comprehensive review from the Palermo and Miao groups in
ref. 113.

3.2 Hamiltonian replica exchange

Hamiltonian replica exchange MD (H-REMD) in principle also
includes T-REMD, as temperature scaling inherently affects the
full Hamiltonian.48 However, the term H-REMD is typically
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used to refer to methods, which alter the Hamiltonian via the
potential-energy contribution. The replica exchange mecha-
nism works as described for T-REMD, yet there is more freedom
in the form of the implemented bias. This bias can act on
selected force-field terms,114–117 or on the full energy
function.100,118,119 One prominent example of a H-REMD
approach is replica exchange with solute scaling (REST2).120

In the preceding version of this approach (i.e. replica exchange
with solute tempering (REST1)), both the temperature and the
potential energy vary between replicas.120,121 REST2 simula-
tions, on the other hand, are carried out at a constant tem-
perature T0, while the potential energy of each replica k is
scaled via,

eVREST2
k ðrÞ ¼ bm

b0
VuuðrÞ þ

ffiffiffiffiffiffi
bm
b0

s
VuvðrÞ þ VvvðrÞ; (17)

where Vuu(r) is the solute–solute interaction energy, Vuv(r) is the
solute–solvent interaction energy, Vvv(r) is the solvent–solvent
interaction energy, and bm = 1/kbTm. The main advantage of
REST2 over REST1 and T-REMD is that it requires a smaller
number of replicas and it converges faster, as shown for the test
systems Trp-cage and b-hairpin.120 In our own work, we have
used H-REMD to generate diverse conformational sets for cyclic
peptides with scaled dihedral potentials.32,122,123 Other imple-
mentations that truly act on the full potential-energy function
include the above mentioned RE-aMD99,100 as well as RE-
gaMD.119 In both cases, the replica exchange setup bypasses
the issue of choosing optimal acceleration parameters. The
approaches promise enhanced sampling of all degrees of free-
dom while retaining sufficient sampling of low-energy states.
Example applications are the folding dynamics of mini-
peptides,100 and the dynamics of the HIV protease.100,119 Some
practical challenges of all these H-REMD schemes are, however,
the setup with the parallel replicas (i.e. considerable computa-
tional demand) as well as the choice of range and distribution
of the replicas.

4 Reweighting

The purpose of MD simulations is typically to model the
dynamic behavior of a system at experimental or physiological
conditions. Yet, the bias introduced with enhanced sampling
techniques – be it on the kinetic or potential energy - distorts
the free-energy landscape and consequently does not allow
direct comparison with experimental data.124 However, as the
form and extent of the biasing potential is known at any given
simulation step, the unbiased information can be retrieved
using reweighting schemes.125, 126

Thermodynamic quantities (e.g. free-energy differences or
stationary distributions) are usually more easily accessible than
kinetic information (e.g. transition rates), which are particularly
challenging to recover.127,128 Therefore, different reweighting
approaches have been developed that either focus on recon-
struction of thermodynamic quantities, or additionally perform
reweighting of the systems kinetics. In the following, we will

discern between these two incentives as ‘‘phase-space reweight-
ing’’ and ‘‘dynamic reweighting’’. We are providing a con-
densed overview of both types of reweighting approaches, for
a more detailed discussion we refer the interested reader to
dedicated reviews and the original literature.124,127–129

4.1 Phase-space reweighting

Studies that leverage the sampling efficiency of a global biasing
potential typically focus on the systems thermodynamics. For
methods such as aMD, the most common way to reweight the
trajectory data to the unbiased ensemble is to apply a
Boltzmann-type reweighting (see the discussion in ref. 84 and
129). The probability of a configuration r on the unbiased PES
V(r) is given by,

pðrÞ ¼ e�bVðrÞÐ
Odr e

�bVðrÞ: (18)

Accordingly, the probability of configuration r on the biased
PES Ṽ(r) is,

epðrÞ ¼ e�b
eVðrÞÐ

Odr e
�beV ðrÞ ¼ e�bðVðrÞþDVðrÞÞÐ

Odr e
�bðVðrÞþDVðrÞÞ; (19)

where DV is the difference between the biased and unbiased
PES. Thus, in theory, the probability distribution on the origi-
nal PES can be reconstructed from the biased PES by multi-
plication with the Boltzmann factor of the biasing potential,

pðrÞ ¼ epðrÞ ebDVðrÞÐ
Odr e

bDVðrÞ: (20)

However, the biasing potential distribution is often very
broad in practice, which means that the simulation often
spends a substantial amount of time sampling high-energy
states. As these high-energy states do not significantly contri-
bute to the ensemble average, the reweighting is effectively
based on a relatively small number of frames from the free-
energy minima.124 Due to the nature of the exponential, the
reweighting procedure only works well for comparably narrow
distributions of the biasing potential (around 20kBT), and is
known to be fairly inaccurate for large systems with broad bias
distributions.129 This limitation has been bypassed by approx-
imating the exponential term either by a Maclaurin series or
cumulant expansion.129 The latter has been shown to provide
the most reliable results, but is only applicable when the
biasing potential follows a Gaussian distribution (which is
enforced in the gaMD approach). Still, in particular around
the transition regions, the biasing potentials are – by design –
comparably small and in practice still vanish in the statistical
noise (Fig. 3C). Consequently, relative differences in free energy
can typically be reweighted to the unbiased ensemble with
robust accuracy, while accurate estimations of barrier heights
(i.e. kinetics) remain difficult or even inaccessible (Fig. 3).

A widely used approach that has been applied to reweight
T-REMD simulations is the weighted histogram analysis
method (WHAM).130 WHAM was originally defined for a
joint analysis of independent simulations in the canonical
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ensemble and is similar to the Bennet acceptance ratio.131

However, advancements of the methodology allow now to
generally combine multiple biased ensembles to retrieve a
systems unbiased thermodynamics, e.g. from T-REMD
simulations.132,133 Most notably Chodera et al.133 have intro-
duced an extended WHAM workflow that explicitly considers
the time correlation between configurations sampled in each
replica. The estimation of the WHAM uncertainty is then
corrected by adjusting the true number of independent
samples.

The reweighting methods discussed above assume that the
input data (i.e. the trajectory frames) are uncorrelated samples.
However, in biomolecular systems with typically long correla-
tion times this assumption does not necessarily hold.134 In
particular, simulations of complex biomolecules often do not
reversibly sample the equilibrium between different states.
Even with enhanced sampling, transitions between conforma-
tional states may be observed rarely or only in one direction.
Consequently, the proper equilibrium is not sampled and a
critical assumption of WHAM is violated.

In summary, phase-space reweighting methods are straight-
forward to implement and quickly produce an estimate of the
thermodynamics of the system. In recent advances made to
GaMD (i.e. Ligand-GaMD135 and Peptide GaMD136), also kinetic
information was retrieved directly using Kramer’s rate theory.
The resulting (un)binding kinetics were found to be on the

same order of magnitude with the experimental reference.
However, to recover both thermodynamics and kinetics more
accurately, the more costly dynamic reweighting methods need
to be employed (Fig. 3E and F).

4.2 Dynamic reweighting

For unbiased MD simulations, the currently most widely used
approach to retrieve robust estimates on a system’s kinetics and
thermodynamics is to construct a Markov state model (MSM).137–140

The same information can be obtained from biased simulation data
using dynamic reweighting methods.141 The main advantage of
MSMs is that the condition of local equilibrium within the simula-
tion data is inherently enforced. The entire approach is based on
transitions between states, and in theory only motions that show
reversible exchanges between states are considered. Consequently,
MSMs provide an ideal theoretical framework for dynamic reweight-
ing strategies.

In recent years, two main classes of dynamic reweighting
methods have emerged, path-based and energy-based. The
more recently developed path-based reweighting schemes
include Weber–Pande reweighting142 and Girsanov
reweighting.143 While their implementation is far from trivial,
both have shown reliable results in reweighting dynamics, e.g.
from umbrella sampling simulations.142, 143 The main chal-
lenge with path-based dynamic reweighting methods is that
they are integrator-dependent, and in practice reweighting
needs to be performed on-the-fly and not as a post-processing
step.128 Energy-based reweighting algorithms, on the other
hand, are agnostic to the simulation engine used as they only
require information on the bias energy of each analyzed con-
formation. This less complex handling comes, however, at the
price of accuracy – energy-based reweighting does not explicitly
account for the possibility that different paths can contribute to
the same transition probability. This issue becomes critical
whenever the energy profile of the biased PES varies substan-
tially between different pathways. Typically, such a behavior is
inherent to pathway-dependent local biasing methodologies
and not as pressing with global enhanced sampling techniques.
However, in particular in studies on ligand (un)binding or
protein folding mechanisms different pathways can lead to
substantial deviations in the associated transition rates.104, 144

Hence, path-based reweighting might result in more accurate
estimates even when a global bias is applied. Prominent
examples for energy-based reweighting schemes include the
dynamic histogram analysis method (DHAM),145 the transition-
based reweighting analysis method (TRAM),134 and extensions
thereof.146

While these dynamic reweighting methods were developed
and implemented independently by different groups, we were
recently able to demonstrate the relationship between them.128

In this work by Linker et al., we show that the path-independent
DHAM equation is a special case of path-dependent dynamic
reweighting. Additionally, we show that both dynamic reweight-
ing families can be connected by introducing a path-correction
term to the energy-based method. In doing so, the strongly
limiting integrator-dependence of path-based reweighting is

Fig. 3 Schematic representation of differences in reweighting a biased
PES (A) and a biased ensemble (B). Phase-space reweighting (C and D)
reliably recovers the system’s thermodynamics, while dynamic reweighting
(E and F) additionally provides robust kinetic estimates. The colored bands
in (C and E) represent the uncertainty of the reweighted energy profile. The
circles in (B, D, and F) represent the system’s conformational states, with
the size corresponding to their thermodynamic weight.
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omitted, while retaining high accuracy and low parameter
sensitivity.128

5 Conclusion

Enhanced sampling with global biasing functions has mas-
sively advanced the field of biomolecular simulations. The
constant optimization and extension of promising algorithms
has provided our community with the means to simulate large
biomolecular complexes, and has opened the door to study
conformational changes in the millisecond range. Neverthe-
less, a common theme for all methodologies is the challenge of
choosing optimal parameters with as little pre-processing effort
as possible. First attempts towards automated parameter opti-
mization are already being developed, but will need further
efficiency improvements for global enhanced sampling to reach
its full potential in the study of large biomolecular systems.

As important as the methods for enhanced phase-space
exploration are the tools to reweight the biased simulation
data to the unbiased canonical ensemble. The development of
enhanced sampling techniques goes therefore hand in hand
with that of reweighting methods. Over the past decade, multi-
ple algorithms have been proposed that not only recover
thermodynamic but also kinetic information from biased
simulations. Most of these methods will require further refine-
ment based on ‘‘real-world’’ complex biomolecular systems.

A general question in the application of the methods dis-
cussed above is how to validate the insights extracted from the
simulations. Direct comparison with experiment is often chal-
lenging as techniques such as NMR, cryo-EM, or X-ray crystal-
lography only provide ensemble-averaged data and cannot
resolve high-energy states observed in MD simulations.
Furthermore, they only provide limited information on a sys-
tem’s kinetics. While NMR (e.g. with relaxation dispersion
experiments147,148) can provide dynamic information, the time
scale is typically too long (hundreds of microseconds to milli-
seconds) even for enhanced sampling MD simulations. One
promising strategy to generate reference data for the validation
of global enhanced sampling techniques may be the combi-
nation of experimental data and MD simulations in integrative
structural modeling studies.4 Information derived from experi-
ments can be used to augment and guide MD simulations,
which in turn provide a structural and dynamic explanation for
the measured data.149,150
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