Issue 14, 2021

Phase mechanics of colloidal gels: osmotic pressure drives non-equilibrium phase separation

Abstract

Although dense colloidal gels with interparticle bonds of order several kT are typically described as resulting from an arrest of phase separation, they continue to coarsen with age, owing to the dynamics of their temporary bonds. Here, k is Boltzmann's constant and T is the absolute temperature. Computational studies of gel aging reveal particle-scale dynamics reminiscent of condensation that suggests very slow but ongoing phase separation. Subsequent studies of delayed yield reveal structural changes consistent with re-initiation of phase separation. In the present study we interrogate the idea that mechanical yield is connected to a release from phase arrest. We study aging and yield of moderately concentrated to dense reversible colloidal gels and focus on two macroscopic hallmarks of phase separation: increases in surface-area to volume ratio that accompanies condensation, and minimization of free energy. The interplay between externally imposed fields, Brownian motion, and interparticle forces during aging or yield, changes the distribution of bond lengths throughout the gel, altering macroscopic potential energy. The gradient of the microscopic potential (the interparticle force) gives a natural connection of potential energy to stress. We find that the free energy decreases with age, but this slows down as bonds get held stretched by glassy frustration. External perturbations break just enough bonds to liberate negative osmotic pressure, which we show drives a cascade of bond relaxation and rapid reduction of the potential energy, consistent with renewed phase separation. Overall, we show that mechanical yield of reversible colloidal gels releases kinetic arrest and can be viewed as non-equilibrium phase separation.

Graphical abstract: Phase mechanics of colloidal gels: osmotic pressure drives non-equilibrium phase separation

Associated articles

Article information

Article type
Paper
Submitted
11 ဒီ 2020
Accepted
21 ဇန် 2021
First published
29 ဇန် 2021

Soft Matter, 2021,17, 3784-3797

Author version available

Phase mechanics of colloidal gels: osmotic pressure drives non-equilibrium phase separation

L. C. Johnson and R. N. Zia, Soft Matter, 2021, 17, 3784 DOI: 10.1039/D0SM02180F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements