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Stress response decay with aging visualized using
a dual-channel logic-based fluorescent probefy
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Diagnosing aging for preventative intervention generally relies on the tracking of aging biomarkers in the
resting state. However, the static marker levels are insufficient to fully evaluate aging, particularly given
that the stress response capacity (SRC) decay is currently viewed as a critical feature of aging. Therefore,
we have developed a dual-channel fluorescent probe ROKS capable of the logic-based visualization of
thiophenol (stressor) and HOCIL (thiophenol-activated stress response product) in vivo, which provides
a new strategy from the time dimension to precisely assess the SRC of individuals under stress using the
dual-channel fluorescence ratio. Using ROKS we observed that the SRC of live cells decayed with
senescence, and that a higher SRC was found for young vs. aged Caenorhabditis elegans. As such, our
study offers a promising strategy for the fluorescence-guided diagnosis of aging and paves the way for
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Introduction

The progressive accumulation of senescent cells in tissues is
believed to accelerate aging, which is the most serious risk
factor for diseases in later life including osteoarthritis,*?
atherosclerosis®* and cancer,>® hence detecting and quantifying
this phenotype accurately is essential for understanding and
improving preventive interventions for age-related diseases.
Increased expression of some proteins, such as lysosomal B-
galactosidase (B-gal),”® p16,>'° p21,"** IL-6,"* y-H2AX,'**®
macroH2A,"*® phosphorylated p38 MAPK," Smurf2,* or PGM**
as biomarkers have been used to define cellular senescence.
While most research directed towards the detection of senes-
cence and diagnosis of aging has focused on the levels of
senescence-associated biomarkers in the resting state.**?
Recent research suggests that the decay of redox-stress response
capacity (SRC) is a substantive characteristic of senescence and
young individuals exhibit an enhanced ability to generate
reactive oxygen species (ROS).”® Despite the wide application of
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accurate evaluation of the efficacy of anti-aging drugs.

probes for senescence-associated biomarkers,”?" to our

knowledge, there is no report describing an optical probe for
visualizing the stress process by tracking the stressor and
related stress product in order to dynamically evaluate aging.
Thiophenol (PhSH), a highly toxic chemical pollutant, has
been shown in trace amounts to induce cellular oxidative stress
by increasing the level of endogenous hypochlorous acid (HOCI,
a ROS).*> Therefore, PhSH can be considered as a stressor and
the generated HOCI as the stress product. Based on the above
observations, tools capable of sequentially and logically iden-
tifying PhSH and HOCI are essential to help monitor the
evolution of stress and assess the stress response capacity (SRC)
in order to provide a precise evaluation of aging. So far, a variety
of small-molecule based fluorescent probes for PhSH**"** or
HOCI***¢ have been successfully developed. While probes for
the detection of these two analytes can be simply used together,
the reliability of the results would be significantly reduced, due
to signal cross-talk and the lack of intercalibration between the
two probes.*” Conversely, a single dual-channel probe capable of
the logic-based sensing of PhSH and HOCI could quantify the
stress products generated during stimulation by a stressor in
complex biological systems, which is essential for the visuali-
zation of the PhSH-induced oxidative stress process in order to
facilitate the dynamic evaluation and precise diagnosis of aging.
To address the above issues, we developed a sequentially
activated and logic-based dual-channel fluorescent probe ROKS,
which can be used for the sequential and logic-based detection
of PhSH and HOCI during PhSH-induced oxidative stress in
vivo. ROKS emits almost no fluorescence due to the strong
donor photoinduced electron transfer (d-PeT) effect from its
masking group, ie., dinitrophenyl group. This group, which is
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also the recognition unit, can be selectively removed by PhSH,
resulting in the accumulation of the green fluorophore ROCL
which exhibits both excited-state intramolecular proton trans-
fer (ESIPT) and aggregation-induced emission (AIE). The
spiroring-closed structure of ROCL can be further oxidized and
hydrolyzed by HOCI to the spiroring-open structure, which
leads to extended conjugation resulting in a ratiometric signal
change in fluorescence from green to red. Importantly, the dual-
channel fluorescence ratio (Igea/Igreen) can be used to accurately
assess the SRC of different individuals as it reflects the ratio of
stress product to stressor. As such, the dynamic and accurate
visual evaluation of aging in live cells and Caenorhabditis ele-
gans (C. elegans) was successfully achieved by comparing the
SRC (Ired/IGreen) using ROKS (Fig. 1).

Results and discussion

Design, synthesis, and characterization of the probe ROKS
and control compounds ROCZ, ROZ and ROE

The synthesis starts with modification of the fluorophore ROB
based on a hybrid of rhodol and 2-(2'-hydroxyphenyl) benzo-
thiazole (HBT). For our purpose, the rhodol-HBT skeleton has
favorable characteristics: it contains a phenolic hydroxy group
on which a 2,4-dinitrophenyl can be installed as the PhSH-
targeting and quenching group, its spironolactone moiety can
be easily modified to a spirocyclic hydrazide as the HOCI-
sensitive group, and most notably, it displays rhodol-emitting
red fluorescence when present in the ring-open form, while
the HBT-emitting green fluorescence is observed when present
as the spirocyclic form. Therefore, our non-fluorescent ROKS
with PhSH-HOCI logic-based recognition function was devel-
oped based on ROB using the green fluorophore ROCL sensitive
to HOCI. Then, the spirocyclic hydrazide moiety of ROCL was
modified to generate the spirocyclic acylhydrazone with acetone
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Fig. 1 Schematic representation of working principle of ROKS in the
dynamic evaluation of aging.
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to provide the ring-locked control compound ROCZ insensitive
to HOCI. While a 2,4-dinitrobenzyl group incorporated at the
phenolic hydroxyl position of ROCZ to give another control
compound ROZ which is ring-locked but sensitive to PhSH.
Furthermore, an ethyl was introduced into the phenolic
hydroxyl position of ROCL to construct a control compound
ROE sensitive to HOCI but not to PhSH.

The detailed synthetic routes for ROB, ROCL, ROKS, ROCZ,
ROZ and ROE are given in Fig. 2A. The structures of the above
compounds were characterized by NMR, HRMS and IR, and
their absolute configurations were all confirmed by X-ray crys-
tallography. The photophysical properties and spectra of all the
above compounds are given in Fig. 2B and S1,T respectively.
Interestingly, the solid powders of compounds ROCL and ROCZ
exhibited intense yellow-green fluorescence with high fluores-
cence quantum yield (¥¢ = 0.513 for ROCL and &; = 0.647 for
ROCZ) (Fig. 3B and S12t), indicating that both of them exhibit
AIE. Furthermore, the fluorescence emission behavior of ROCL
and ROCZ in a mixed system of DMF/H,O over a wide range of
water fractions was investigated (Fig. S2t). The fluorescence
intensity of ROCL and ROCZ remains high at 470 nm in pure
DMF and decreases rapidly with increasing water percentage
from 0 to 70%. Then, when the water fraction was above 80%,
an obvious emission peak appeared at 534 nm which is
consistent with AIE. In addition, the observed dual emission
phenomenon in a mixed system is a distinct feature of ESIPT.

Verifying the capability of the probe ROKS for sequential and
logical identification of PhSH and HOCI in vitro

We then evaluated whether ROKS could achieve the logic-based
sensing of PhSH and HOCI. The free probe initially exhibited no
fluorescence, but an appreciable new emission peak at 534 nm
was observed after reaction with PhSH (Fig. 4A). With the
subsequent introduction of HOC], the 534 nm emission peak
disappeared accompanied by the appearance of a strong emis-
sion band at 602 nm (Fig. 4A). It should be noted that ROKS was
inert to up to 100 uM of HOCI (Fig. 4C). ROKS remains silent
after interacting with HOCI but not PhSH, as expected for
a logic-based probe. The above results indicate that the logical
recognition functions of ROKS are working as designed. In
addition, the photostability of ROKS for the logical detection of
PhSH and HOCI was evaluated. The results indicated that the
fluorescence intensity of the detection system remained stable
under continuous irradiation over 1 h (Fig. S371), suggesting that
ROKS possesses excellent photostability and is suitable for long-
term imaging.

Subsequently, the fluorescence spectra of the control
compounds ROZ and ROE towards PhSH and HOCI were eval-
uated, respectively. There was no fluorescence for ROZ itself.
However, after the addition of PhSH, an emission peak at
533 nm appeared. Similarly, when HOCI was added to the
system, the emission peak at 533 nm disappeared and a weak
emission peak appeared near 460 nm (Fig. 4G). For ROE, the
obvious emission peak at 508 nm disappeared upon the addi-
tion of PhSH. While, with the introduction of HOCI, there was
an obvious emission peak near 400 nm, and a weak emission

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Reagents and conditions: a) 1-Bromo-3-chloropropane, DMF, Na,CO;, 80°C; b) o-Phthalic anhydride, toluene, reflux; c) Sodium metabisulfite, DMF, reflux; d)
Methanesulfonic acid, 90°C; e) Tautomerizm; f) Hydrazine monohydrate, ethanol, reflux; g) lodoethane, acetonitrile, reflux; h) Acetone, reflux; i) 1-Fluoro-2, 4-

dinitrobenzene, DMF, K,COs, r. t..

Compound () em omon) o) ™ ) omy om (o) (sol)
ROB 573 602 29 0.630 = ROE 342 508 166 0.068 0.047
ROCL 350 534 184 0.115 0513 ROKS 319 nd. - - -
ROCZ 348 533 185 0.145 0.647 ROZ 322 nd. - - -

a. The maximum absorption wavelengths and maximum emission wavelengths of compounds were measured in PBS aqueous solution (10 mM, pH = 7.4, containing 10%
DMF). b. The relative fluorescence quantum yields of compounds were determined in PBS aqueous solution (10 mM, pH = 7.4, containing 10% DMF). Standard for ROB:

Rhodamine B (®;=

0.89 in ethylene glycol excited at 535 nm); for ROCL, ROCZ and ROE: quinine sulfate (®;=

0.55in 0.1 M H,SO, excited at 365 nm). c. The absolute

fluorescence quantum yields of compounds in solid state were determined by sphere integration. n.d., not detectable.
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Fig. 3 (A) Our dual-channel fluorescent probe ROKS for sequential
and logical identification of PhSH and HOCL, and its reaction scheme.
(B) Photographs of ROKS, ROCL and ROB in the solid state and PBS
buffer solution (10 mM, pH = 7.4, containing 10% DMF) under natural
light and UV light of 365 nm, respectively.

peak was observed at 580 nm (Fig. 4H). The above results
confirm the orthogonality of the two specific recognition groups
triggered by PhSH and HOCI which will ensure the excellent
logic-based detection capability of ROKS.

© 2021 The Author(s). Published by the Royal Society of Chemistry

(A) Synthesis of compounds. (B) Photochemical properties of ROB, ROE, ROCL, ROKS, ROCZ and ROZ.

Spectroscopic response of the probe ROKS to PhSH and ROCL
(the reaction product of ROKS with PhSH) to HOCI

The proposed sensing mechanism of ROKS for the logic-based
sensing of PhSH and HOCI is given in Fig. 3A. ROKS exhibits
no fluorescence because of the d-PeT process. To confirm the d-
PeT-based quenching mechanism of ROKS, HOMO and LUMO
energy levels of 1,3-dinitrobenzene and ROCL were determined
using density functional theory (Table S1}). The LUMO energy
level of 1,3-dinitrobenzene (—1.22 eV) was located between the
HOMO and LUMO of ROCL (—5.10 €V, 1.10 eV) (Fig. S47). This
result indicates that the electrons in the LUMO level of ROCL
tend to be accepted by the LUMO level of 1,3-dinitrobenzene
rather than their own HOMO level, thus leading to fluorescence
quenching in a d-PeT process. After treatment with PhSH, the
2,4-dinitrophenyl group of ROKS was removed through nucle-
ophilic aromatic substitution, forming ROCL and turning-on
the green fluorescence, which was ascribed to ESIPT. With
subsequent addition of HOCI, the spirocyclic hydrazide of
ROCL was opened to generate ROB which exhibits w—-m* tran-
sitions for the xanthene conjugate, resulting in a ratiometric
response from green to red. In order to demonstrate the probe
mechanism, spectral analysis was performed. As shown in
Fig. S5, the normalized fluorescence emission and absorption
spectra of ROCL almost overlap with that of a mixture of ROKS

Chem. Sci., 2021, 12, 13483-13491 | 13485
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Fig. 4 (A) Fluorescence spectra of ROKS (10 uM), the mixture of ROKS

(10 uM) with PhSH (100 pM) and the mixture of ROKS (10 puM) with
PhSH (100 uM) and HOCIL (200 pM) in PBS buffer solution (10 mM, pH =
7.4, containing 10% DMF), Aex = 350 nm. (B) Fluorescence spectra of
ROKS (10 uM) upon addition of PhSH (0-200 pM), Aex = 350 nm. Inset:
the linear relationship between fluorescence intensity (/s34 nm) and
PhSH concentration. (C) Fluorescence spectra of ROKS (10 pM) upon
addition of HOCI (0—-100 pM), Aex = 350 nm. (D) Fluorescence spectra
of ROCL (10 puM) upon addition of HOCL (0-40 puM), Aex = 350 nm.
Inset: the linear relationship between fluorescence intensity ratio (/go»
nm/ 534 nm) @and HOCL concentration. (E) Fluorescence spectra of ROCL
(10 uM) upon addition of HOCL (0-100 pM), Aex = 550 nm. Inset: the
linear relationship between fluorescence intensity (/go2 nm) and HOCL
concentration. (F) Normalized emission spectra of ROCL (10 uM) in
H,0 and D,0, Aex = 350 nm. (G) Fluorescence spectra of ROZ (10 uM),
the mixture of ROZ (10 uM) with PhSH (100 uM) and the mixture of
ROZ (10 uM) with PhSH (100 pM) and HOCIL (200 pM) in PBS buffer
solution (10 mM, pH = 7.4, containing 10% DMF), e, = 350 nm. (H)
Fluorescence spectra of ROE (10 uM), the mixture of ROE (10 pM) with
PhSH (100 uM) and the mixture of ROE (10 uM) with PhSH (100 pM) and
HOCIL (200 pM) in PBS buffer solution (10 mM, pH = 7.4, containing
10% DMF), Aex = 350 nm. Slit widths: 2.5 nm/5.0 nm.

and PhSH, confirming that the reaction product of ROKS with
PhSH is ROCL, while, the normalized fluorescence and
absorption spectra of ROB almost overlap with a mixed solution
of ROCL and HOCI (Fig. S51), confirming that the reaction
product of ROCL with HOCI is ROB. Subsequently, the HRMS
titration experiments were performed to further confirm the
proposed sensing mechanism (Fig. S61). With the addition of
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PhSH to the ROKS solution, the signal peak at m/z 725.1780
corresponding to the [ROKS + H|" disappeared and a new signal
peak appeared at m/z 581.1688, which belongs to [ROCL + Na]".
In addition, after the introduction of HOCI into a ROCL solu-
tion, a new peak appeared at m/z 545.1590, which could be
assigned to [ROB + H]'. Therefore, the fluorescence sensing
mechanism proposed in Fig. 3A was verified. In addition, the
emission spectra of ROCL exhibited a blueshift of 14 nm in D,O
compared to H,O (Fig. 4F), indicating the existence of intra-
molecular hydrogen bonds in ROCL, which supports the ESIPT
process with ROCL.

Next, the absorption titration experiments of ROKS with
PhSH were performed. The probe ROKS exhibited a maximum
absorption at 319 nm (Fig. S7At). However, after addition of
PhSH to ROKS, the absorption maxima of ROKS shifted to
350 nm (Fig. S7At). We also evaluated the concentration-
dependent changes of ROKS towards PhSH using fluorescence
spectra. ROKS exhibited negligible fluorescence due to d-PeT
(Fig. 4B). However, upon the addition of the PhSH, a marked
turn-on fluorescence signal at 534 nm was observed. The fluo-
rescence intensity at 534 nm displayed a good linear correlation
(R* = 0.9997) towards PhSH concentrations (0-200 uM) and the
limit of detection (LOD) was determined to be 84 nM. In addi-
tion, the reaction kinetics of ROKS to PhSH exhibited an
enhancement of fluorescence intensity at 534 nm after the
addition of PhSH and reached a maximum within 11 min
(Fig. S8AT). Subsequently, absorption titrations with ROCL (the
reaction product of ROKS with PhSH) towards HOCI were
investigated. As shown in Fig. S7B,{ an absorption maximum of
ROCL at around 350 nm was observed in the absence of HOCI
and the absorption maximum of ROCL was red-shifted from
350 to 573 nm in the presence of HOCI (Fig. S7Bf). Upon the
addition of HOCI (0-40 uM), the emission peak at 534 nm
significantly decreased, accompanied with an increase of an
emission peak at 602 nm (Fig. 4D). The ratiometric fluorescence
intensity ratio (Zso» nm/Is3a nm) against HOCI concentrations
exhibited an excellent linear relationship (R* = 0.9922) and the
LOD was determined to be 5 nM (Fig. 4D). Considering the
application of biological imaging, the fluorescence response of
ROCL to different concentrations of HOCI was repeated with an
excitation wavelength of 550 nm. After the addition of HOCI,
ROCL exhibited a 190-fold fluorescence enhancement at
602 nm with excellent linear correlation (R* = 0.9979) (Fig. 4E).
We also evaluated the reaction kinetics between ROCL and
HOCI and the results exhibited that ROCL reacts with HOCI
completely within 26 s (Fig. S8Bt). These results indicated that
ROKS could be used for quantitative determination of PhSH
and HOCI, respectively.

The pH-dependent fluorescent responses of ROKS towards
PhSH and ROCL towards HOCI were evaluated, respectively. It
was found that ROKS and ROCL were stable at over a pH range
of from 3-11 (Fig. S91). Better still, ROKS exhibited a good
response to PhSH at pH ranging from 6 to 9 and ROCL displayed
a good response to HOCI over a pH range from 5 to 8 (Fig. S97).
We then carried out individually selectivity studies for ROKS
and ROCL. As shown in Fig. S10A,f after the addition of
different analytes, ROKS exhibits a significant fluorescence

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sc04162b

Open Access Article. Published on 17 2021. Downloaded on 28-01-2026 07:19:37.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

A ROCL + LPS

B ROCL + PhSH

30 min

5 min 15 min 45 min 60 min

o
IS
=)

o
=

o
H
(a.u.)
oy
o

ey

P N w
o o
ntensi

Fl. Intensity (a.u.)

FI.

0 5 15 30 45 60 0 5
Time of stress (min)

15 30 45 60
Time of stress (min)

E ROZ + PhSH

30 min

15 min 45 min 60 min

m

30 G 3
= - =
s s
$20] 320
[ 7}
3 ]
10 2 I
e T
0 0

15 30 45 60 0 5 15 30 45 60
Time of stress (min) Time of stress (min)

Fig. 5 (A) Representative confocal fluorescence images from HepG2
cells treated with ROCL (30 pM, 30 min) and then stimulated with LPS
(1 pg mL™Y for different times (0, 5, 15, 30, 45 and 60 min). (B)
Representative confocal fluorescence images from HepG2 cells
incubated with ROCL (30 uM, 30 min) and then stimulated with PhSH
(10 uM) for different times (0O, 5, 15, 30, 45 and 60 min). (C) Average
fluorescence intensity in the red channel from parallel images
including (A). (D) Average fluorescence intensity in the red channel
from parallel images including (B). (E) Representative confocal fluo-
rescence images from HepG2 cells stained with ROZ (30 uM, 30 min)
and then stimulated with PhSH (40 puM) for different times (0, 5, 15, 30,
45 and 60 min). (F and G) Average fluorescence intensity in the green
channel (F) and red channel (G) from parallel images including (E).
Scale bar: 25 um. Green channel for PhSH: Aex = 488 nm, Aery = 500—
550 nm; red channel for HOCL: Aex = 561 nm, Aeyy = 570-620 nm. Error
bars are represented as the standard deviation (£S. D.) with n = 3. The
number of dots represents that of samples. Significant differences
(n. s., not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001) are analyzed with two-sided Student's t-test.
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enhancement in the presence of PhSH, whereas other analytes
did not induce any apparent fluorescence changes. Notably, the
biothiols (Cys, GSH and Hcy) with similar chemical properties
hardly caused changes in the fluorescence signals even if the
reaction time was extended to 2 h, indicating the excellent
capability of ROKS to discriminate PhSH from biothiols. In
addition, the fluorescence of ROCL did not change significantly
in the presence of other analytes apart from HOCI (Fig. S10B¥).
Concomitantly, competition assays of ROKS and ROCL were
carried out and the results indicated that there was no change
in the fluorescence intensities with the coexistence of other
interfering species (Fig. S10%). All the above results clearly
indicated that ROKS exhibits high specificity and with no
interference in complex environments, which will facilitate the
logic-based detection of PhSH and HOCI under physiological
conditions.

Verifying the capability of the probe ROKS for sequential and
logical identification of PhSH and HOCI in cells

Encouraged by the results of the in vitro analyses experiments,
we then evaluated the feasibility of using ROKS for the logic-
based sensing of PhSH and HOCI in live cells. Prior to cell
imaging, the cytotoxicity of ROKS and ROCL (the reaction
product of ROKS with PhSH) were investigated using a standard
CCK-8 assay and the results indicated negligible cytotoxicity of
the two compounds at concentrations from 0-50 pM (Fig. S117).
We then examined the feasibility of the ROCL to detect
endogenous HOCIL. It is well known the lipopolysaccharide (LPS)
can stimulate cells to produce ROS including HOCL.***° It can
be seen from Fig. S13,f without LPS stimulation, HepG2 cells
stained by ROCL exhibited negligible fluorescence in the red
channel. However, with prolonged LPS treatment time, the
fluorescence intensity of HepG2 cells incubated with ROCL
displayed a time-dependent enhancement in the red channel
(Fig. 5A and C). To eliminate interference from other ROS, the
imaging of endogenous HOCI was investigated using ROCL in
HepG2 cells stimulated using zymosan, a selective HOCI
generating agent.* Consistent with the imaging results of LPS-
stimulated cells, a time-dependent fluorescence increase was
observed in the red channel for zymosan-stimulated cells
(Fig. S1471). The above results indicated that ROCL can selec-
tively detect endogenous HOCI. Subsequently, the ring-locked
control compound ROCZ was used to image endogenous
HOCI in LPS-stimulated HepG2 cells. As expected, no signifi-
cant fluorescence intensity change was observed in the red
channel (Fig. S15t), which confirms that the spirocyclic hydra-
zide was the recognition site of HOCI. To confirm the feasibility
of PhSH as a chemical stressor, ROCL was then used to detect
endogenous HOCI in PhSH-stimulated HepG2 cells. As shown
in Fig. 5B and D, the time-dependent fluorescence enhance-
ment in the red channel was observed upon treatment with
PhSH, indicating that PhSH could indeed stimulate the cells to
produce endogenous HOCIL Next, we used the control
compound ROZ without HOCl-sensing group to verify the reli-
ability of the 2,4-dinitrophenyl moiety as a sensing group for
PhSH. As shown in the Fig. 5E-G, the fluorescence intensity in
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Fig. 6 (A) Representative confocal fluorescence images from young (Yng) HepG2 cells at passage 8 (P8) and senescent (Sct) HepG2 cells at
passage 30 (P30) induced by XL413 (5 uM) for different times (3 days and 5 days), both of which were treated with ROKS (30 uM, 10 min) and
subsequently stimulated with PhSH (40 uM) for different times (0, 5, 15, 30, 45 and 60 min), respectively. Scale bar: 25 pm. (B—D) Average
fluorescence intensity in the green channel and red channel from parallel images including (A) for P8 HepG2 cells (B) and P30 HepG2 cells treated
with XL413 for 3 days (C) or 5 days (D). Error bars represent the standard deviation (£S. D.) with n = 3. (E) Western blotting analysis of y-H2AX.
Relative molecular mass of proteins (kDa) is displayed on the right. GAPDH was chosen as an internal reference. Quantification is shown in (F).
Error bars represent the standard deviation (£S. D.) with n = 4. (G-1) Average intensity ratios (lreq//Green) from parallel images including (A) for P8
HepG2 cells (G) and P30 HepG2 cells treated with XL413 for 3 days (H) or 5 days (I). Error bars represent the standard deviation (+S. D.) withn = 3.
(J) A clear summary of (G), (H) and (I). (K) A conventional X-gal staining assay for SA-B-gal expression of P8 HepG2 cells and P30 HepG2 cells
incubated with XL413 for 5 days, scale bar: 50 um. Green channel for PhSH: A¢x = 488 nm, Aem = 500-550 nm; red channel for HOCL: Ay =
561 nm, Aem = 570-620 nm. The number of dots represents that of samples. Significant differences (n. s., not significant, *P < 0.05, **P < 0.01,

***P < 0.001, ****P < 0.0001) are analyzed with two-sided Student's t-test.

green channel was enhanced and that in red channel exhibited
no obvious change after adding PhSH, proving that the 2,4-
dinitrophenyl group was sensitive to PhSH. Furthermore, we
used fixed HepG2 cells without stress response to observe the
logic-based response of ROKS to the two analytes. These cells
incubated with ROKS displayed weak fluorescence in the green
channel and negligible fluorescence in the red channel
(Fig. S167). With the addition of PhSH an obvious fluorescence
enhancement was observed in the green channel, and there was

13488 | Chem. Sci., 2021, 12, 13483-13491

no significant change in the red channel (Fig. S161). While, with
the further addition of HOCI, the fluorescence signal in the red
channel increased significantly, accompanied by a decrease of
fluorescence signal in the green channel (Fig. S16%), which is
consistent with the results presented in Fig. 4A. All the above
results confirm the validity of our design strategy for ROKS
using a rational combination of PhSH and HOCI recognition
sites. Where ROKS is capable of the sequential and logical
detection of PhSH (stressor) and HOCI (stress product).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Dynamically tracking senescence of cells by the SRC-based
strategy

Then, SRC was evaluated using the dual-channel fluorescent
probe ROKS with young cells and senescent cells. XL413, an
effective DNA-replication kinase inhibitor,** was used to induce
senescence selectively in liver cancer cells including HepG2
cells. Thus, HepG2 cells (passage 8, P8) and XL413-treated
HepG2 cells (passage 30, P30) were selected as the young cell
model and the senescent cell model, respectively. The X-gal
assay, a common method for detecting the senescence marker
SA-B-gal,®® was used to confirm the senescence state of the
HepG2 cells treated with XL413 (Fig. 6K). Meanwhile, to further
verify the senescence state, the overexpression of another
senescence marker y-H2AX was verified using XL413-treated
HepG2 cells and a western blot assay (Fig. 6E). Under the
stimulation of PhSH, HepG2 cells treated with or without XL413
for different times were imaged after staining with ROKS. It can
be seen from Fig. 6A-D and E-G, HepG2 cells (P8) and XL413-
treated HepG2 cells (P30) exhibited a time-dependent change
in the green channel and the red channel, indicating that the
HOCI accumulation levels are different between young cells and
senescent cells when stimulated with PhSH, which indicates
that cells at different stages of senescence exhibit different SRC.
To compare the SRC in more detail, the dual-channel fluores-
cence ratio (Igea/Ireen) Was used to accurately quantify the SRC
of different individuals since it reflects the ratio of stress
product (HOC]) to stressor (PhSH). From Fig. 6], without adding
PhSH, the fluorescence ratio (Ired/IGreen) in HepG2 cells (P30)

>

ROKS

View Article Online
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treated with XL413 for 5 days is the highest, while that in HepG2
cells (P8) is the lowest, which indicates that the accumulated
level of HOCI in senescent cells is higher than that in young
cells in the resting state. However, with an increase of PhSH
stimulation time, the fluorescence ratio (Igea/IGreen) in HepG2
cells (P30) treated with XL413 for 3 days or 5 days decreased
slowly, but that in HepG2 cells (P8) increased rapidly within
15 min and then leveled off. The above results confirmed that
the SRC of young cells is higher than that in senescent cells
under the stimulation of a stressor and that SRC is reduced with
the progression of senescence.

Dynamically tracking aging of C. elegans by the SRC-based
strategy

C. elegans are widely employed as a model organism in the study
of aging and longevity due to relatively short lifespan (ca. 2
weeks) and more than 65% of the genes are related to those of
humans.*** After synchronous culture, 6 day-old C. elegans are
considered young, while 12 day-old C. elegans are considered
aged. We assessed the SRC of the C. elegans using our dual
channel ROKS probe (Fig. 7). As shown in Fig. 7, without the
addition of PhSH, the fluorescence intensity ratio (Ired/IGreen) Of
12 day-old C. elegans is higher than that of 6 day-old C. elegans,
indicating that the accumulation of HOCI in young was higher
than that in aged C. elegans in the resting state. However, upon
the addition of PhSH, the fluorescence intensity ratio (Ired/
Igreen) Of the young C. elegans (6 day-old) increased gradually
within 45 min and then stabilized, while that of aged C. elegans

ROKS + PhSH
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(A) Representative ratio images of young (Yng) C. elegans (6 day-old) and aged C. elegans (12 day-old), both of which were stained with

ROKS (30 uM, 60 min) and then stimulated with PhSH (3 pM) for different times (0, 15, 30, 45 and 60 min), respectively. (B) Schematic repre-
sentation of the variations of stress response in C. elegans with age. (C and D) Average intensity ratios (/red//green) from parallel images including
(A) for 6 day-old C. elegans (C) and 12 day-old C. elegans (D). (E) A clear summary of (C) and (D). Error bars represent the standard deviation (£S.
D.). Scale bar: 250 um. The number of dots represents that of samples. Significant differences (n. s., not significant, *P < 0.05, **P < 0.01, ***P <
0.001) are analyzed with two-sided Student's t-test.
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(12 day-old) decreased rapidly within 15 min and then reached
a stable level (Fig. 7). These results illustrated that young C.
elegans have higher SRC than aged C. elegans under stimulation
with a stressor and that SRC decreases with aging.

Conclusions

While optical probes for monitoring the resting state of aging
exist, appropriate optical probes that provide a dynamic evalu-
ation of aging are unknown. For this reason, we developed
a strategy based on the logic-based detection of stressor and
stress product to construct a probe for the precise dynamic
tracking of aging through the assessment of the SRC of indi-
viduals. Therefore, the first SRC fluorescent probe ROKS was
developed. ROKS consists of two reactive sites which can logi-
cally detect PhSH, a confirmed chemical stressor, and HOCI, the
PhSH-activated stress response product in vivo. ROKS exhibits
different fluorescence responses: an obvious turn-on green
fluorescence signal toward PhSH (LOD = 84 nM) and a subse-
quent green-to-red ratiometric response to HOCI (LOD = 5 nM).
The ratio of the dual-channel fluorescence intensities (I5,, nm/
Is3, nm) was then used to assess the SRC of individuals in
a dynamic state of stress for the precise tracking of aging. Using
ROKS the decay of SRC within live cells and C. elegans as
a function of aging was evaluated, which provided a promising
dynamic strategy to track aging. Overall, our SRC-based strategy
is unprecedented and will be particularly useful to evaluate the
precise progress of aging from a dynamic perspective.
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