Issue 17, 2021

A technology of a different sort: microraft arrays

Abstract

A common procedure performed throughout biomedical research is the selection and isolation of biological entities such as organelles, cells and organoids from a mixed population. In this review, we describe the development and application of microraft arrays, an analysis and isolation platform which enables a vast range of criteria and strategies to be used when separating biological entities. The microraft arrays are comprised of elastomeric microwells with detachable polymer bases (microrafts) that act as capture and culture sites as well as supporting carriers during cell isolation. The technology is elegant in its simplicity and can be implemented for samples possessing tens to millions of objects yielding a flexible platform for applications such as single-cell RNA sequencing, subcellular organelle capture and assay, high-throughput screening and development of CRISPR gene-edited cell lines, and organoid manipulation and selection. The transparent arrays are compatible with a multitude of imaging modalities enabling selection based on 2D or 3D spatial phenotypes or temporal properties. Each microraft can be individually isolated on demand with retention of high viability due to the near zero hydrodynamic stress imposed upon the cells during microraft release, capture and deposition. The platform has been utilized as a simple manual add-on to a standard microscope or incorporated into fully automated instruments that implement state-of-the-art imaging algorithms and machine learning. The vast array of selection criteria enables separations not possible with conventional sorting methods, thus garnering widespread interest in the biological and pharmaceutical sciences.

Graphical abstract: A technology of a different sort: microraft arrays

Article information

Article type
Critical Review
Submitted
08 ဇွန် 2021
Accepted
24 ဇူ 2021
First published
28 ဇူ 2021

Lab Chip, 2021,21, 3204-3218

A technology of a different sort: microraft arrays

B. Cortés-Llanos, Y. Wang, C. E. Sims and N. L. Allbritton, Lab Chip, 2021, 21, 3204 DOI: 10.1039/D1LC00506E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements