Design principles of electroluminescent devices based on different electrodes and recent advances toward their application in textiles
Abstract
Alternating current electroluminescent (ACEL) devices have become an important direction for the development of visualized smart wearable e-textiles due to their advantages of light weight, flexibility, easy integration, and convenient processing. The electrode layer is a crucial component of ACEL devices, providing the necessary electric field for the dielectric and luminescent layers, and facilitating the stable transport and recombination of electrons and holes in the luminescent layer. Herein, the structural design principles and luminescence mechanisms of ACEL are reviewed, and the newest research and remarkable results of metal-, carbon-, and ion-gel-based electrodes are introduced. This review emphasizes that optimizing the conductive pathways of electrodes, enhancing the interfacial roles of functional layers, and adjusting the thickness and microstructure of layers are crucial for developing high-brightness and stable ACEL devices. Also, increasing the electric field strength and selecting high dielectric constants are identified as key factors. On this basis, the recent progress of ACEL fibers, films, and fabrics in textiles is highlighted. Finally, the challenges and growth encountered in the development of ACEL devices are prospected, considering aspects such as voltage, luminous brightness, color, sensitivity, comfort, and large-scale processing.
- This article is part of the themed collections: Journal of Materials Chemistry C HOT Papers and Journal of Materials Chemistry C Recent Review Articles