Mechanism of methane activation and graphene growth on oxide ceramics
Abstract
Three-dimensional (3D) graphene materials have attracted significant attention across various fields, including energy storage and catalysis, due to their exceptional properties such as developed nanoporosity, corrosion resistance, electrical conductivity, and mechanical flexibility. The first step in synthesizing nanoporous 3D graphene involves the generation of the graphene framework through the decomposition of methane at high temperatures on thermally stable oxide ceramics. Thus, a thorough understanding of the reaction mechanism involved in this initial step is crucial. This article reviews recent advancements in elucidating the mechanisms of methane activation and subsequent graphene growth on various types of oxide ceramics, including alumina (Al2O3), magnesia (MgO), calcium oxide (CaO), and silica (SiO2).
- This article is part of the themed collection: Recent Review Articles