Catechol modification as a platform for functional coatings
Abstract
Catechol-based surface functionalization has emerged as a powerful strategy for tailoring material properties and enabling diverse applications, owing to its robust adhesive capabilities and broad substrate compatibility. Inspired by mussel foot proteins and popularized by dopamine-derived polydopamine coatings, catechol grafting has evolved into a versatile platform for anchoring molecules of interest (MOI) onto surfaces. This review focuses on the synthetic strategies for direct covalent modification of active compounds—such as polymers, peptides, and small molecules—with catechol moieties, bypassing the limitations of traditional bottom-up and co-deposition approaches. By examining the reactivity profiles of catechol precursors and their coupling chemistries, we aim to provide a comprehensive framework for designing functional coatings with enhanced performance and simplified processing. This work fills a critical gap in the literature by offering practical guidelines for researchers seeking to harness catechol chemistry in advanced material engineering.
- This article is part of the themed collection: Biomaterials Science Open Access Spotlight

Please wait while we load your content...