Two different pore architectures of cyamelurate-based metal–organic frameworks for highly selective CO2 capture under ambient conditions†
Abstract
In the context of porous coordination materials toward CO2 capture and separation, two new metal–organic frameworks termed IRH-6 and IRH-7 were synthesized with square and rhombic microchannel pores, respectively. These materials exhibit high CO2 uptakes of 2.67 mol kg−1 (IRH-6) and 2.78 mol kg−1 (IRH-7) at 100 kPa and 298 K. Grand canonical Monte Carlo simulation demonstrated strong non-covalent interactions between quadripolar CO2 molecules and these nitrogen-rich frameworks. CO2/CH4 (50 : 50), CO2/N2 (15 : 85), and CO2/H2 (15 : 85) gas mixtures were investigated by ideal adsorbed solution theory and showed excellent CO2 selectivity under ambient conditions for both porous materials. In particular, a remarkable increase in the CO2 selectivity to 102 for IRH-7 over 31 for IRH-6 was observed for the CO2/CH4 binary mixture, which highlights the effect of pore aperture modification on preferential CO2 uptake over other conventional gases.