Issue 4, 2023

Iridium complexes of an ortho-trifluoromethylphenyl substituted PONOP pincer ligand

Abstract

The synthesis and iridium coordination chemistry of a new pyridine-based phosphinito pincer ligand 2,6-(ArF2PO)2C5H3N (PONOP-ArF; ArF = 2-(CF3)C6H4) are described, where the P-donors have ortho-trifluoromethylphenyl substituents. The iridium(III) 2,2′-biphenyl (biph) derivative [Ir(PONOP-ArF)(biph)Cl] was obtained by reaction with [Ir(biph)(COD)Cl]2 (COD = 1,5-cyclooctadiene) and subsequent halide ion abstraction enabled isolation of [Ir(PONOP-ArF)(biph)]+ which features an Ir ← F–C bonding interaction in the solid state. Hydrogenolysis of the biphenyl ligand and formation of [Ir(PONOP-ArF)(H)2]+ was achieved by prolonged reaction of [Ir(PONOP-ArF)(biph)]+ with dihydrogen. This transformation paved the way for isolation and crystallographic characterisation of low valent iridium derivatives through treatment of the dihydride with tert-butylethylene (TBE). The iridium(I) π-complex [Ir(PONOP-ArF)(TBE)]+ is thermally stable but substitution of TBE can be achieved by reaction with carbon monoxide. The solid-state structure of the mono-carbonyl product [Ir(PONOP-ArF)(CO)]+ is notable for an intermolecular anagostic interaction between the metal centre and a pentane molecule which co-crystallises within a cleft defined by two aryl phosphine substituents.

Graphical abstract: Iridium complexes of an ortho-trifluoromethylphenyl substituted PONOP pincer ligand

Supplementary files

Article information

Article type
Paper
Submitted
09 နို 2022
Accepted
20 ဒီ 2022
First published
21 ဒီ 2022
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2023,52, 1096-1104

Iridium complexes of an ortho-trifluoromethylphenyl substituted PONOP pincer ligand

E. W. Poole, I. Bustos, T. M. Hood, J. E. Smart and A. B. Chaplin, Dalton Trans., 2023, 52, 1096 DOI: 10.1039/D2DT03608H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements