Data-driven discovery of cardiolipin-selective small molecules by computational active learning†
Abstract
Subtle variations in the lipid composition of mitochondrial membranes can have a profound impact on mitochondrial function. The inner mitochondrial membrane contains the phospholipid cardiolipin, which has been demonstrated to act as a biomarker for a number of diverse pathologies. Small molecule dyes capable of selectively partitioning into cardiolipin membranes enable visualization and quantification of the cardiolipin content. Here we present a data-driven approach that combines a deep learning-enabled active learning workflow with coarse-grained molecular dynamics simulations and alchemical free energy calculations to discover small organic compounds able to selectively permeate cardiolipin-containing membranes. By employing transferable coarse-grained models we efficiently navigate the all-atom design space corresponding to small organic molecules with molecular weight less than ≈500 Da. After direct simulation of only 0.42% of our coarse-grained search space we identify molecules with considerably increased levels of cardiolipin selectivity compared to a widely used cardiolipin probe 10-N-nonyl acridine orange. Our accumulated simulation data enables us to derive interpretable design rules linking coarse-grained structure to cardiolipin selectivity. The findings are corroborated by fluorescence anisotropy measurements of two compounds conforming to our defined design rules. Our findings highlight the potential of coarse-grained representations and multiscale modelling for materials discovery and design.
- This article is part of the themed collections: Most popular 2022 physical and theoretical chemistry articles, 2022 ChemSci Pick of the Week Collection and 2022 Chemical Science HOT Article Collection