Open Access Article
This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence

The organophotocatalytic trifluoromethylation of 6-azauracils

Krishna Kanta Das and Alakananda Hajra*
Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India. E-mail: alakananda.hajra@visva-bharati.ac.in; Web: https://www.vbchem.ac.in/AlakanandaHajra/

Received 1st February 2025 , Accepted 28th March 2025

First published on 10th April 2025


Abstract

An efficient, cost-effective, and metal-free photocatalytic trifluoromethylation of 6-azauracils has been developed using Langlois reagent (CF3SO2Na) under ambient air. The present protocol, which utilizes an inexpensive CF3 reagent and an organophotocatalyst, provides a convenient way to prepare trifluoromethylated azauracil derivatives with a variety of functional groups. The experimental results suggest a radical mechanistic pathway for this methodology.


Introduction

Azauracils are azapyrimidinone analogs of uracils that belong to a privileged group of heterocycles and have important biological applications due to their widespread occurrence in natural products and pharmaceuticals.1 The core structure of azauracils has been used in a variety of marketed drug molecules and molecules with medicinal properties, such as a c-MeT kinase inhibitor,1a an anticoccidial drug,1b and a 5-HT1A agonist PET tracer.1c Additionally, ribonucleosides of 6-azauracil have been revealed to exhibit diverse biological properties, with examples including diclazuril and 6-azauridine, which shows antiviral activity (Fig. 1).2 In view of the high value of 6-azauracils, it is important to develop novel synthetic methods for the rapid structural diversification of azauracils. The usual methods for the functionalization of azauracils mainly include cyclization and cross-coupling reactions.3 Due to their high biological activities, a few processes have been developed for the functionalization of azauracils.4–8 The reactions demand harsh conditions and there is a need for sustainable development. Hence, recently, the direct C–H bond functionalization of 6-azauracil has gained significant interest.
image file: d5ra00743g-f1.tif
Fig. 1 Bioactive molecules containing azauracil scaffolds.

Fluorinated compounds has found extensive application in pharmaceutical chemistry and the agrochemicals industry, as well as in materials science.9 Amid the various fluorine-containing groups, the trifluoromethyl group (CF3) is highly useful in organic synthesis due to its strong electron-withdrawing nature, metabolic stability, and high lipophilicity.10 Therefore, various trifluoromethyl reagents, such as Umemoto's reagent,11 Togni's reagent,12 Ruppert–Prakash reagent,13 and Langlois reagent,14 have been created for the incorporation of trifluoromethyl (CF3) into chosen pharmaceutical molecules, especially heteroarenes. Among these reagents, Langlois reagent has the advantages of good stability, low cost, and easy handling.15 Hence, with Langlois reagent as a trifluoromethyl source, a series of methodologies has been created.16

Considering the importance of both the trifluoromethyl group and the azauracil moiety, we decided to incorporate the trifluoromethyl group into azauracils. Our focus is to advance the reaction by the application of visible-light photocatalysis due to the synthetic versatility, low toxicity, mild reaction conditions, and eco-friendliness of the organic transformations.17 Visible-light-induced organic reactions have gained a lot of value in organic synthesis.18 Hence, visible-light-induced transformations are in higher demand for rapid trifluoromethylation when contrasted to metal-catalyzed methods.19

In addition, in recent times, various research groups, such as the groups of Kim,4 Yu,5 Zhao,6 Murarka,7 Zhu,8d Huang8e and others,8 have developed several methods for the synthesis of methylated, alkylated, and arylated azauracils via C(sp2)–H bond functionalization. Recently, Zhao et al. have demonstrated the phosphonation of azauracils.8f To the best of our knowledge there is no report on the direct trifluoromethylation of azauracils. Therefore, herein we report the visible-light-mediated organophotocatalytic trifluoromethylation of 6-azauracils (Scheme 1).


image file: d5ra00743g-s1.tif
Scheme 1 The direct trifluoromethylation of 6-azauracils.

Results and discussion

To start our investigation, we initially selected 2,4-dibenzyl-1,2,4-triazine-3,5(2H,4H)-dione (1a) as a test substrate and sodium trifluoromethanesulfinate (CF3SO2Na) (2) as a commercially available trifluoromethylating reagent (Table 1). At first, we performed the reaction between 1a and 2.0 equiv. of sodium trifluoromethanesulfinate (2) with 3 mol% eosin Y as the photocatalyst in 1.5 mL of DMSO with irradiation with blue LEDs at room temperature under an open air atmosphere for 24 h (Table 1, entry 1). Delightfully, we observed the trifluoromethylated product 3a with 37% yield (Table 1, entry 1). To improve the efficiency of the reaction in terms of yield, we have screened various photocatalysts, such as 4CzIPN (1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene), rose bengal, Mes-Acr+ClO4, and Ru(bpy)3Cl2 (Table 1, entries 2–5). Among them, 4CzIPN was found to be an effective photocatalyst and gives the desired product 3a with 83% yield (Table 1, entry 2). Encouraged by this result, we have tested various solvents like DCE, CH3CN, DMF, toluene and 1,4-dioxane (Table 1, entries 7–11), but no improvement was found. Without a photocatalyst, it was not possible to afford the desired product (3a) (Table 1, entry 6). Moreover, reducing the amount of sodium trifluoromethanesulfinate (2) to 1.0 equiv., resulted in a lower yield (Table 1, entry 12). Next, we checked the reaction under a nitrogen atmosphere, but no desired product was formed (Table 1, entry 13). Finally, the optimized reaction conditions were determined to involve 3 mol% 4CzIPN as the organophotocatalyst and 2.0 equiv. of sodium trifluoromethanesulfinate (2) in 2 mL of DMSO with irradiation with blue LEDs at room temperature under an open air atmosphere for 24 h (Table 1, entry 2).
Table 1 Optimization of the reaction conditionsa

image file: d5ra00743g-u1.tif

Entry Photocatalyst Solvent Yield (%)
a Reaction conditions: reactions were carried out with 1a (0.3 mmol) and 2 (2.0 equiv.) in the presence of 3 mol% photocatalyst in 1.5 mL of solvent, with irradiation with blue LEDs at room temperature for 24 h under air.b 1.0 equiv. of CF3SO2Na was used. nr = no reaction.
1 Eosin Y DMSO 37
2 4CzIPN DMSO 83
3 Rose bengal DMSO nr
4 Mes-Acr+ClO4 DMSO 55
5 Ru(bpy)3Cl2 DMSO nr
6 DMSO nr
7 4CzIPN DCE 19
8 4CzIPN CH3CN 40
9 4CzIPN DMF 45
10 4CzIPN Toluene nr
11 4CzIPN 1,4-Dioxane <10
12 4CzIPN DMSO 49b
13 4CzIPN DMSO nr


After optimizing the reaction conditions, the substrate scope of the visible-light mediated trifluoromethylation was explored, as shown in Table 2. We investigated the scope for a variety of N2,N4-disubstituted azauracils by reacting them with Langlois reagent (CF3SO2Na) (2) under the optimal conditions. Various N4-benzylated azauracils with diverse N2-substituents, such as benzyl, phenacyl, –CH2COOEt, n-butyl, and methyl groups afforded the desired products 3a–3e in 59–94% yields. Furthermore, N2,N4-disubstituted azauracils (1f–1i) fruitfully delivered the expected products in good to excellent yields. Several N4-4-nitro benzylated 6-azauracils connecting different N2-substituents, such as 4-nitro benzyl, 4-bromo benzyl, 2-bromo benzyl, and 3,5-dimethyl benzyl, afforded the desired products 3j–3m in 57–76% yields. The diverse disubstituted azauracils 1n, 1o and 1p were also reacted with 2a to produce the desired products (3n, 3o and 3p) in good yields. The use of ethyl and n-butyl groups as N2,N4-substituents was also tolerated, giving the corresponding products 3q and 3r in 85% and 95% yields, respectively. In addition, 1,2,4-triazine-3,5(2H,4H)-diones with an N4-monosubstituted compound (1s, 1t and 1u) were well-suited to the transformation and produced the trifluoromethylated products in moderate to good yields. Interestingly, azauracils contained within some pharmaceuticals, such as gemfibrozil and ibuprofen, resulted in the respective products (3v–3x) in good yields (55–84%).

Table 2 The substrate scope for the synthesis of 6-azauracilsa
a Reaction conditions: 0.3 mmol of 1 and 2.0 equiv. of 2 in the presence of 3.0 mol% 4CzIPN in 1.5 mL of DMSO, with irradiation with blue LEDs at room temperature for 24 h under air.
image file: d5ra00743g-u2.tif


To help determine the scalability, a scaled-up reaction was carried out using 2,4-dibenzyl-1,2,4-triazine-3,5(2H,4H)-dione (1) and Langlois reagent (CF3SO2Na) with the presented laboratory setup on a 5 mmol scale. Delightfully, the reaction offered the corresponding product (3a) with a yield of 72%, which clearly shows the practical applicability of the presented methodology (Scheme 2a). To determine the mechanistic pathway of the proposed trifluoromethylation reaction, some control experiments were performed to explore the reaction pathway. The reaction did not progress in the presence of radical scavengers like 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 2,6-di-tert-butyl-4-methylphenol (BHT) (Scheme 2b). However, the radical scavenger 1,1-diphenylethylene (DPE) formed an adduct with the trifluoromethyl radical species generated from Langlois reagent (CF3SO2Na), which was detected using HRMS (Scheme 2c, see ESI S6). These results point toward the fact that the present reaction follows a radical mechanistic pathway. Moreover, fluorescence quenching experiments were performed to investigate the reaction mechanism. Stern–Volmer fluorescence quenching studies of the reaction components show that the excited-state photocatalyst was most effectively quenched by sodium trifluoromethanesulfinate (CF3SO2Na) (2), with an observed KSV value of 5.93 × 103 M−1 (see the ESI for more information).


image file: d5ra00743g-s2.tif
Scheme 2 Scaled-up and control experiments.

Based on literature reports19b,20 and the results of the control experiments, a plausible mechanism for the reaction pathway is shown in Scheme 3. We suggest that a radical mechanism occurs via an oxidative quenching pathway. First of all, photoexcitation of 4CzIPN, which is irradiated under blue light, generates the excited state of 4CzIPN*. Next, a single electron transfers from the excited photocatalyst 4CzIPN* to sodium trifluoromethanesulfinate (2) to form a trifluoromethyl radical and 4CzIPN˙ species. The subsequent attack by this radical of 2,4-dibenzyl-1,2,4-triazine-3,5(2H,4H)-dione (1a) forms intermediate A, which undergoes a 1,2-hydrogen shift process to produce intermediate B. Now, another single electron transfer (SET) process takes place between the 4CzIPN˙ species and O2 to provide an O2˙ species, by which 4CzIPN is regenerated. Afterward, the intermediate B is consequently oxidized by the O2˙ species to give the intermediate C and O22−. Lastly, the deprotonation of intermediate C affords the desired product 3a.


image file: d5ra00743g-s3.tif
Scheme 3 A plausible mechanistic pathway.

Conclusions

We have developed the metal-free visible-light-induced organophotoredox-catalyzed radical trifluoromethylation of 6-azauracils using 4CzIPN as a photocatalyst under aerobic reaction conditions. Both the trifluoromethyl source and organophotocatalyst are low-cost and readily available. A variety of trifluoromethylated 6-azauracil derivatives have been produced in moderate to good yields under mild conditions. The present photocatalytic trifluoromethylation reaction possibly follows a radical pathway. We believe this approach will gain much significance in medicinal chemistry, organic synthesis, and materials science.

Experimental section

Experimental procedures

Typical experimental procedure for 3a. A mixture of 2,4-dibenzyl-1,2,4-triazine-3,5(2H,4H)-dione (1a) (0.3 mmol, 88.1 mg), Langlois reagent (CF3SO2Na) (2) (2.0 equiv., 93.6 mg) and 4CzIPN (3 mol%, 7.0 mg) was taken in an oven-dried reaction tube. Then, DMSO (2 mL) was added to an oven-dried reaction vessel (tube) equipped with a magnetic stirrer, and the reaction vessel was irradiated with a Kessil 34 W blue LED at room temperature under an open-air atmosphere for 24 h. The progress of the reaction was monitored by TLC, and extraction was with ethyl acetate. The organic phase was dried over anhydrous Na2SO4. The crude residue was obtained after evaporating the solvent under vacuum and it was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate.
2,4-Dibenzyl-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3a). White solid (83%, 89.9 mg); Rf = 0.50 (PE/EA = 90[thin space (1/6-em)]:[thin space (1/6-em)]10); mp: 107–108 °C; 1H NMR (400 MHz, CDCl3): δ 7.52–7.49 (m, 2H), 7.45–7.42 (m, 2H), 7.41–7.37 (m, 3H), 7.36–7.31 (m, 3H), 5.01 (s, 2H), 5.08 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.2, 148.3, 134.6, 134.3, 131.4 (q, J = 36.0 Hz), 129.9, 129.1, 129.0, 128.9, 128.8, 128.6, 119.3 (q, J = 273.0 Hz), 55.4 44.7; 19F NMR (376 MHz, CDCl3) δ: −67.74; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C18H15F3N3O2]+: 362.1111; found: 362.1103.
4-Benzyl-2-(2-oxo-2-phenylethyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3b). Colorless gummy mass (59%, 68.9 mg); Rf = 0.50 (PE/EA = 83[thin space (1/6-em)]:[thin space (1/6-em)]17); 1H NMR (400 MHz, CDCl3): δ 7.96 (d, J = 7.6 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 8.0 Hz, 2H), 7.49–7.47 (m, 2H), 7.36–7.29 (m, 3H), 5.45 (s, 2H), 5.13 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 190.5, 152.3, 148.7, 134.7, 134.5, 134.0, 131.9 (q, J = 37.0 Hz), 129.9, 129.2, 128.8, 128.6, 128.2, 119.2 (q, J = 273.0 Hz), 58.2, 44.8; 19F NMR (376 MHz, CDCl3) δ: −67.85; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C19H15F3N3O3]+: 390.1060; found: 390.1049.
Ethyl 2-(4-benzyl-3,5-dioxo-6-(trifluoromethyl)-4,5-dihydro-1,2,4-triazin-2(3H)-yl)acetate (3c). White solid (86%, 92.1 mg); Rf = 0.50 (PE/EA = 85[thin space (1/6-em)]:[thin space (1/6-em)]15); mp: 109–110 °C; 1H NMR (400 MHz, CDCl3): δ 7.48–7.45 (m, 2H), 7.35–7.28 (m, 3H), 5.10 (s, 2H), 4.73 (s, 2H), 4.28–4.23 (m, 2H), 1.28 (t, J = 7.2 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 166.5, 152.1, 148.4, 134.4, 132.1 (q, J = 36.0 Hz), 129.6, 128.8, 128.6, 119.1 (q, J = 272.0 Hz), 62.4, 53.4, 44.7, 14.1; 19F NMR (376 MHz, CDCl3) δ: −67.92; HRMS (ESI-TOF) m/z: [M + K]+ calcd for [C15H14F3N2O2K]+: 396.0568; found: 396.0574.
4-Benzyl-2-butyl-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3d). Colorless gummy mass (94%, 92.2 mg); Rf = 0.50 (PE/EA = 90[thin space (1/6-em)]:[thin space (1/6-em)]9); 1H NMR (400 MHz, CDCl3): δ 7.52–7.50 (m, 2H), 7.36–7.29 (m, 3H), 5.10 (s, 2H), 4.03 (t, J = 7.6 Hz, 2H), 1.79–1.71 (m, 2H), 1.42–1.33 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.3, 148.3, 134.8, 131.1 (q, J = 36.0 Hz), 129.8, 128.8, 128.5, 119.4 (q, J = 273.0 Hz), 52.6, 44.6, 30.1, 19.7, 13.6; 19F NMR (376 MHz, CDCl3) δ: −67.77; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C15H17F3N3O2]+: 328.1267; found: 328.1257.
4-Benzyl-2-methyl-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3e). Colorless gummy mass (90%, 77.0 mg); Rf = 0.50 (PE/EA = 90[thin space (1/6-em)]:[thin space (1/6-em)]10); 1H NMR (400 MHz, CDCl3): δ 7.52–7.49 (m, 2H), 7.36–7.26 (m, 3H), 5.10 (s, 2H), 3.69 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.4, 148.5, 134.7, 131.2 (d, J = 37.0 Hz), 129.9, 128.8, 128.6, 119.4 (q, J = 272.0 Hz), 44.6, 40.4; 19F NMR (376 MHz, CDCl3) δ: −67.83; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C12H11F3N3O2]+: 286.0798; found: 286.0793.
2,4-Bis(4-methylbenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3f). White solid (62%, 72.4 mg); Rf = 0.50 (PE/EA = 91[thin space (1/6-em)]:[thin space (1/6-em)]9); mp: 112–113 °C; 1H NMR (400 MHz, CDCl3): δ 7.39 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.10 (s, 2H), 5.03 (s, 2H), 2.35 (s, 3H), 2.33 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.3, 148.3, 138.9, 138.5, 131.7, 131.6 (q, J = 36.0 Hz), 131.3, 129.9, 129.7, 129.5, 129.1, 119.3 (q, J = 273.0 Hz), 56.2, 44.5, 21.3; 19F NMR (376 MHz, CDCl3) δ: −67.77; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C20H19F3N3O2]+: 390.1424; found: 390.1411.
4-(4-Methylbenzyl)-2-(4-nitrobenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3g). White solid (75%, 94.5 mg); Rf = 0.50 (PE/EA = 86[thin space (1/6-em)]:[thin space (1/6-em)]14); mp: 118–119 °C; 1H NMR (400 MHz, CDCl3): δ 8.22–8.19 (m, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.23 (s, 2H), 5.04 (s, 2H), 2.32 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.9, 148.3, 148.2, 141.1, 138.7, 132.1 (q, J = 37.0 Hz), 131.5, 129.97, 129.92, 129.5, 124.3, 119.2 (q, J = 273.0 Hz), 55.4, 44.7, 21.3; 19F NMR (376 MHz, CDCl3) δ: −67.82; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C19H16F3N4O4]+: 421.1118; found: 421.1129.
Ethyl 2-(4-(4-methylbenzyl)-3,5-dioxo-6-(trifluoromethyl)-4,5-dihydro-1,2,4-triazin-2(3H)-yl)acetate (3h). Colorless gummy mass (65%, 72.4 mg); Rf = 0.50 (PE/EA = 865[thin space (1/6-em)]:[thin space (1/6-em)]15); 1H NMR (400 MHz, CDCl3): δ 7.36 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.07 (s, 2H), 4.73 (s, 2H), 4.29–4.23 (m, 2H), 2.32 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 166.5, 152.1, 148.4, 138.5, 132.3 (q, J = 36.0 Hz), 131.5, 129.7, 129.5, 119.2 (q, J = 273.0 Hz), 62.4, 53.4, 44.6, 21.2, 14.1; 19F NMR (376 MHz, CDCl3) δ: −67.92; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C16H17F3N3O4]+: 372.1166; found: 372.1155.
2-Isobutyl-4-(4-methylbenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3i). White solid (87%, 89.0 mg); Rf = 0.50 (PE/EA = 93[thin space (1/6-em)]:[thin space (1/6-em)]7); mp: 68–69 °C; 1H NMR (400 MHz, CDCl3): δ 7.40 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.6 Hz, 2H), 5.07 (s, 2H), 3.84 (d, J = 7.6 Hz, 2H), 2.33 (s, 3H), 2.23–2.13 (m, 1H), 0.94 (d, J = 6.8 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.2, 148.6, 138.4, 131.8, 131.2 (q, J = 36.0 Hz), 129.8, 129.4, 119.4 (q, J = 273.0 Hz), 59.5, 44.6, 27.8, 21.2, 19.8; 19F NMR (376 MHz, CDCl3) δ: −67.78; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C16H19F3N3O2]+: 342.1424; found: 342.1425.
2,4-Bis(4-nitrobenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3j). White solid (66%, 89.3 mg); Rf = 0.50 (PE/EA = 81[thin space (1/6-em)]:[thin space (1/6-em)]19); mp: 208–209 °C; 1H NMR (400 MHz, CDCl3): δ 8.17 (d, J = 8.4 Hz, 2H), 8.09 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 5.25 (s, 2H), 5.15 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 151.9, 148.2, 148.0, 141.1, 140.7, 132.2 (q, J = 37.0 Hz), 130.8, 130.0, 124.2, 124.0, 119.0 (q, J = 274.0 Hz), 55.6, 44.1; 19F NMR (376 MHz, CDCl3) δ: −67.79; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C18H13F3N5O6]+: 452.0812; found: 452.0790.
2-(4-Bromobenzyl)-4-(4-nitrobenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3k). White solid (57%, 82.9 mg); Rf = 0.50 (PE/EA = 85[thin space (1/6-em)]:[thin space (1/6-em)]15); mp: 113–114 °C; 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.14 (s, 2H), 5.11 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.0, 148.1, 148.0, 141.2, 132.8, 132.3, 131.9 (q, J = 36.0 Hz), 130.9, 130.7, 124.0, 123.4, 119.1 (q, J = 274.0 Hz), 55.9, 44.0; 19F NMR (376 MHz, CDCl3) δ: −67.76; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for [C18H12BrF3N4O4Na]+: 506.9886; found: 506.9871.
2-(2-Bromobenzyl)-4-(4-nitrobenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3l). White solid (76%, 110.6 mg); Rf = 0.50 (PE/EA = 85[thin space (1/6-em)]:[thin space (1/6-em)]15); mp: 111–112 °C; 1H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 8.8 Hz, 2H), 7.65–7.59 (m, 3H), 7.34–7.26 (m, 2H), 7.24–7.20 (m, 1H), 5.33 (s, 2H), 5.18 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.0, 148.2, 148.0, 141.4, 133.5, 133.3, 131.5 (q, J = 36.0 Hz), 130.78, 130.70, 130.4, 127.9, 124.0, 123.9, 119.1 (q, J = 273.0 Hz), 56.1, 44.0; 19F NMR (376 MHz, CDCl3) δ: −67.77; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C18H13BrF3N4O4]+: 485.9994; found: 485.0089.
2-(3,5-Dimethylbenzyl)-4-(4-nitrobenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3m). White solid (68%, 88.5 mg); Rf = 0.50 (PE/EA = 85[thin space (1/6-em)]:[thin space (1/6-em)]15); mp: 126–127 °C; 1H NMR (400 MHz, CDCl3): δ 8.16 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 5.15 (s, 2H), 5.09 (s, 2H), 2.31 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.1, 148.1, 148.0, 141.4, 138.8, 133.9, 131.3 (q, J = 36.0 Hz), 130.7, 130.6, 126.7, 124.0, 119.2 (q, J = 273.0 Hz), 56.6, 43.9, 21.3; 19F NMR (376 MHz, CDCl3) δ: −67.72; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C20H18F3N4O4]+: 435.1275; found: 435.1281.
2,4-Bis(4-bromobenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3n). White solid (74%, 115.2 mg); Rf = 0.50 (PE/EA = 91[thin space (1/6-em)]:[thin space (1/6-em)]9); mp: 132–133 °C; 1H NMR (400 MHz, CDCl3): δ 7.50 (d, J = 8.4 Hz, 2H), 7.46–7.43 (m, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 5.09 (s, 2H), 5.01 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.0, 148.1, 133.4, 133.0, 132.2, 132.0, 131.7, 131.6 (q, J = 36.0 Hz), 130.8, 123.3, 122.9, 119.2 (q, J = 273.0 Hz), 55.8, 44.1; 19F NMR (376 MHz, CDCl3) δ: −67.76; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for [C18H12BrF3N3O2Na]+: 539.9141; found: 539.9125.
4-(4-Bromobenzyl)-2-(3,3-dimethyl-2-oxobutyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3o). White solid (82%, 110.2 mg); Rf = 0.50 (PE/EA = 82[thin space (1/6-em)]:[thin space (1/6-em)]18); mp: 102–103 °C; 1H NMR (400 MHz, CDCl3): δ 7.45–7.43 (m, 2H), 7.33 (d, J = 8.4 Hz, 2H), 5.02 (s, 2H), 5.96 (s, 2H), 1.25 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3): δ 206.5, 152.1, 148.3, 133.4, 132.1, 131.3, 131.9 (q, J = 37.0 Hz), 122.7, 119.2 (q, J = 273.0 Hz), 56.8, 44.0, 43.4, 26.1; 19F NMR (376 MHz, CDCl3) δ: −67.85; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C17H18BrF3N3O3]+: 448.0478; found: 448.0490.
2,4-Bis(2-oxo-2-phenylethyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3p). White solid (61%, 76.3 mg); Rf = 0.50 (PE/EA = 80[thin space (1/6-em)]:[thin space (1/6-em)]20); mp: 198–199 °C; 1H NMR (400 MHz, CDCl3): δ 7.99–7.96 (m, 4H), 7.67–7.62 (m, 2H), 7.54–7.49 (m, 4H), 5.50 (s, 2H), 5.40 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 190.5, 189.5, 151.9, 148.4, 134.6, 134.4, 134.3, 134.0, 132.1 (q, J = 37.0 Hz), 129.2, 129.1, 128.3, 128.2, 119.2 (q, J = 273.0 Hz), 58.2, 46.9; 19F NMR (376 MHz, CDCl3) δ: −67.83; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C20H15F3N3O4]+: 418.1009; found: 418.1010.
2,4-Diethyl-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3q). White solid (85%, 60.4 mg); Rf = 0.50 (PE/EA = 90[thin space (1/6-em)]:[thin space (1/6-em)]10); mp: 96–97 °C; 1H NMR (400 MHz, CDCl3): δ 4.12–4.07 (m, 2H), 4.04–3.98 (m, 2H), 1.37 (t, J = 7.2 Hz, 2H), 1.26 (t, J = 7.2 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.2, 148.0, 131.1 (d, J = 36.0 Hz), 119.5 (q, J = 272.0 Hz), 48.0, 36.8, 13.3, 12.3; 19F NMR (376 MHz, CDCl3) δ: −67.89; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C8H11F3N3O2]+: 238.0798; found: 238.0793.
2,4-Dibutyl-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3r). Colorless gummy mass (95%, 83.5 mg); Rf = 0.50 (PE/EA = 91[thin space (1/6-em)]:[thin space (1/6-em)]9); 1H NMR (400 MHz, CDCl3): δ 4.02 (t, J = 7.6 Hz, 2H), 3.92 (t, J = 7.6 Hz, 2H), 1.78–1.70 (m, 2H), 1.66–1.57 (m, 2H), 1.41–1.31 (m, 4H), 0.96–0.91 (m, 6H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.3, 148.3, 130.9 (q, J = 36.0 Hz), 119.5 (q, J = 273.0 Hz), 52.5, 41.3, 30.1, 29.1, 20.2, 19.7, 13.68, 13.64; 19F NMR (376 MHz, CDCl3) δ: −67.93; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C12H19F3N3O2]+: 294.1424; found: 294.1405.
4-Benzyl-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3s). White solid (92%, 74.8 mg); Rf = 0.50 (PE/EA = 80[thin space (1/6-em)]:[thin space (1/6-em)]20); mp: 133–134 °C; 1H NMR (400 MHz, CDCl3): δ 10.88 (s, 1H), 7.50–7.48 (m, 2H), 7.35–7.30 (m, 3H), 5.08 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.1, 149.3, 134.2, 133.0 (q, J = 35.0 Hz), 129.8, 128.9, 128.7, 119.2 (q, J = 273.0 Hz), 44.2; 19F NMR (376 MHz, CDCl3) δ: −68.19; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C11H9F3N3O2]+: 272.0641; found: 272.0652.
4-(4-Methylbenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3t). White solid (77%, 65.8 mg); Rf = 0.50 (PE/EA = 80[thin space (1/6-em)]:[thin space (1/6-em)]20); mp: 142–143 °C; 1H NMR (400 MHz, CDCl3): δ 10.67 (s, 1H), 7.39 (d, J = 7.6 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.05 (s, 2H), 2.32 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.1, 149.2, 138.7, 133.1 (q, J = 37.0 Hz), 131.4, 129.8, 129.5, 119.2 (q, J = 273.0 Hz), 43.9, 21.2; 19F NMR (376 MHz, CDCl3) δ: −68.19; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C12H11F3N3O2]+: 286.0798; found: 286.0780.
4-(4-Bromobenzyl)-6-(trifluoromethyl)-1,2,4-triazine-3,5(2H,4H)-dione (3u). White solid (60%, 63.0 mg); Rf = 0.50 (PE/EA = 80[thin space (1/6-em)]:[thin space (1/6-em)]20); mp: 164–165 °C; 1H NMR (400 MHz, CDCl3): δ 10.60 (s, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 5.03 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 152.0, 149.0, 133.23, 133.20 (q, J = 36.0 Hz), 132.1, 131.6, 123.0, 119.1 (q, J = 273.0 Hz), 43.6; 19F NMR (376 MHz, CDCl3) δ: −68.18; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C11H8BrF3N3O2]+: 349.9747; found: 349.9735.
3-(4-(4-Nitrobenzyl)-3,5-dioxo-6-(trifluoromethyl)-4,5-dihydro-1,2,4-triazin-2(3H)-yl)propyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (3v). Yellow gummy mass (55%, 100.0 mg); Rf = 0.50 (PE/EA = 74[thin space (1/6-em)]:[thin space (1/6-em)]26); 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 7.2 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.59 (s, 1H), 5.14 (s, 2H), 4.15–4.10 (m, 4H), 3.92 (s, 2H), 2.29 (s, 3H), 2.14–2.09 (m, 5H), 1.71 (d, J = 2.8 Hz, 4H), 1.21 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3): δ 177.6, 156.9, 152.0, 148.2, 148.0, 141.3, 136.6, 131.5 (q, J = 36.0 Hz), 130.7, 130.4, 124.0, 123.5, 120.8, 119.2 (q, J = 273.0 Hz), 112.0, 67.9, 60.8, 49.8, 43.9, 42.2, 37.1, 27.4, 25.27, 25.21, 21.5, 15.8; 19F NMR (376 MHz, CDCl3) δ: −67.74; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C29H34F3N4O7]+: 607.2374; found: 607.2381.
3-(4-Benzyl-3,5-dioxo-6-(trifluoromethyl)-4,5-dihydro-1,2,4-triazin-2(3H)-yl)propyl 2-(4-isobutylphenyl)propanoate (3w). Yellow gummy mass (76%, 117.9 mg); Rf = 0.50 (PE/EA = 75[thin space (1/6-em)]:[thin space (1/6-em)]24); 1H NMR (400 MHz, CDCl3): δ 7.51–7.49 (m, 2H), 7.36–7.29 (m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 5.08 (s, 2H), 4.13 (d, J = 6.0 Hz, 2H), 4.06–3.94 (m, 2H), 3.68–3.63 (m, 1H), 2.43 (d, J = 6.8 Hz, 2H), 2.10–2.03 (m, 2H), 1.86–1.79 (m, 1H), 1.47 (d, J = 7.2 Hz, 3H), 0.87 (d, J = 6.4 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3): δ 174.6, 152.1, 148.2, 140.7, 137.6, 134.6, 131.4 (q, J = 36.0 Hz), 129.9, 129.5, 128.8, 128.6, 127.2, 119.3 (q, J = 273.0 Hz), 61.3, 49.8, 45.17, 45.13, 44.7, 30.2, 27.3, 22.4, 18.4; 19F NMR (376 MHz, CDCl3) δ: −67.76; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C27H31F3N3O4]+: 518.2261; found: 518.2272.
3-(3,5-Dioxo-6-(trifluoromethyl)-2,5-dihydro-1,2,4-triazin-4(3H)-yl)propyl 2-(4-isobutylphenyl)propanoate (3x). Yellow gummy mass (84%, 107.7 mg); Rf = 0.50 (PE/EA = 74[thin space (1/6-em)]:[thin space (1/6-em)]25); 1H NMR (400 MHz, CDCl3): δ 10.93 (s, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 4.19–4.07 (m, 2H), 4.01–3.90 (m, 2H), 3.77–3.67 (m, 1H), 2.42 (d, J = 7.2 Hz, 2H), 2.02–1.96 (m, 2H), 1.85–1.77 (m, 1H), 1.48 (d, J = 7.2 Hz, 3H), 0.87 (d, J = 6.8 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3): δ 175.1, 152.1, 149.1, 140.7, 137.4, 132.6 (q, J = 37.0 Hz), 129.4, 127.2, 119.2 (q, J = 273.0 Hz), 62.1, 45.1, 45.0, 38.1, 30.2, 26.3, 22.4, 18.4; 19F NMR (376 MHz, CDCl3) δ: −68.22; HRMS (ESI-TOF) m/z: [M + H]+ calcd for [C20H25F3N3O4]+: 428.1792; found: 428.1786.

Data availability

All data including experimental procedures, compound characterization and NMR spectra are recorded in the ESI.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

A. H. acknowledges financial support from CSIR, New Delhi (grant no. 02(0455)/21/EMR-II). K. K. D. (CSIR-SRF) thanks CSIR, New Delhi for the fellowship.

Notes and references

  1. (a) J. Liu, Y. Gong, J. Shi, X. Hao, Y. Wang, Y. Zhou, Y. Hou, Y. Liu, S. Ding and Y. Chen, Eur. J. Med. Chem., 2020, 194, 112244 CrossRef CAS PubMed; (b) O. Vanparijs, R. Marsboom and L. Van Der Flaes, Poult. Sci., 1989, 68, 489 CrossRef CAS PubMed; (c) T. Kishi, H. Y. Meltzer and N. Iwata, Int. J. Neuropsychopharmacol., 2013, 16, 1259 CrossRef CAS PubMed; (d) N. Deng, Y.-Y. Wu, Y. Feng, W.-C. Hsieh, J.-S. Song, Y.-S. Lin, Y.-H. Tseng, W.-J. Liao, Y.-F. Chu, Y.-C. Liu, E.-C. Chang, C.-R. Liu, S.-Y. Sheu, M.-T. Su, H.-C. Kuo, S. N. Cohen and T.-H. Cheng, Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2204779119 CrossRef CAS PubMed; (e) T. A. Shaw, C. J. Ablenas, G. F. Desrochers, M. H. Powdrill, D. A. Bilodeau, J.-F. Vincent-Rocan, M. Niu, A. Monette, A. J. Mouland, A. M. Beauchemin and J. P. Pezacki, Bioconjugate Chem., 2020, 31, 1537 CrossRef CAS PubMed.
  2. (a) J. M. Crance, N. Scaramozzino, A. Jouan and D. Garin, Antiviral Res., 2003, 58, 73 CrossRef CAS PubMed; (b) A. J. Duplantier, M. A. Dombroski, C. Subramanyam, A. M. Beaulieu, S.-P. Chang, C. A. Gabel, C. Jordan, A. S. Kalgutkar, K. G. Kraus, J. M. Labasi, C. Mussari, D. G. Perregaux, R. Shepard, T. J. Taylor, K. A. Trevena, C. Whitney-Pickett and K. Yoon, Bioorg. Med. Chem. Lett., 2011, 21, 3708 CrossRef CAS PubMed.
  3. (a) H. Wojtowicz-Rajchel, I. Bednarczyk, A. Katrusiak and H. Koroniak, Mendeleev Commun., 2004, 14, 63 CrossRef; (b) J.-F. Vincent-Rocan, R. A. Ivanovich, C. Clavette, K. Leckett, J. Bejjani and A. M. Beauchemin, Chem. Sci., 2016, 7, 315 RSC.
  4. (a) P. Ghosh, N. Y. Kwon, S. Kim, S. Han, S. H. Lee, W. An, N. K. Mishra, S. B. Han and I. S. Kim, Angew. Chem., Int. Ed., 2021, 60, 191 CrossRef CAS PubMed; (b) P. Ghosh, N. Y. Kwon, Y. Byun, N. K. Mishra, J. S. Park and I. S. Kim, ACS Catal., 2022, 12, 15707 CrossRef CAS.
  5. (a) K. Sun, A. Shi, Y. Liu, X. Chen, P. Xiang, X. Wang, L. Qu and B. Yu, Chem. Sci., 2022, 13, 5659 RSC; (b) F. Cheng, L. Fan, Q. Lv, X. Chen and B. Yu, Green Chem., 2023, 25, 7971 RSC.
  6. (a) Y. Tan, W. Xuekun, Y.-P. Han, Y. Zhang, H.-Y. Zhang and J. Zhao, J. Org. Chem., 2022, 87, 8551 CrossRef CAS PubMed; (b) H.-Y. Zhang, J. Chen, C.-C. Lu, Y.-P. Han, Y. Zhang and J. Zhao, J. Org. Chem., 2021, 86, 11723 CrossRef CAS PubMed.
  7. (a) S. P. Panda, S. K. Hota, R. Dash, L. Roy and S. Murarka, Org. Lett., 2023, 25, 3739 CrossRef CAS PubMed; (b) R. Dash, S. P. Panda, K. S. Bhati, S. Sharma and S. Murarka, Org. Lett., 2024, 26(34), 7227 CrossRef PubMed.
  8. (a) C. Zhang, D. He, Z. Ma, M. Wang, Y. Zhu, Y. Liu, J. Chen, L. Guo, G. Lv and Y. Wu, J. Org. Chem., 2024, 89, 10112 CrossRef PubMed; (b) C. Pan, D. Chen, M. Zeng, H. Tian and J.-T. Yu, Eur. J. Org Chem., 2024, 27, e202301177 CrossRef; (c) J. Zhu, Y. Hong, Y. Wang, Y. Guo, Y. Zhang, Z. Ni, W. Li and J. Xu, ACS Catal., 2024, 14, 6247 CrossRef; (d) X. Huang, D. Zhang, Q. Li, Z. Xie, Z.-G. Le and Z.-Q. Zhu, Org. Lett., 2024, 26, 3727 CrossRef PubMed; (e) Y. Pan, Y. Zhu, S. Li, G. Li, Z. Ma, Y. Qian and W. Huang, Chem. Commun., 2024, 60, 3665 RSC; (f) Z. Cai, Y. Han, Y. Zhang, H.-Y. Zhang, J. Zhao and S.-D. Yang, Green Chem., 2023, 25, 5721 RSC; (g) F. Mahato, A. K. Ghosh and A. Hajra, Chem.–Eur. J., 2024, 31, e202403685 CrossRef PubMed; (h) Y. Yu, M. You, J. Yu, W. Kong, C. Zhang, J. Bai, W. Li and T. Li, Adv. Synth. Catal., 2024, 367, e202400857 CrossRef.
  9. (a) B. R. Langlois, T. Billard and S. Roussel, J. Fluorine Chem., 2005, 126, 173 CrossRef; (b) K. Muller, C. Faeh and F. Diederich, Science, 2007, 317, 1881 CrossRef PubMed; (c) W. Zhu, J. Wang, S. Wang, Z. Gu, J. L. Acena, K. Izawa, H. Liu and V. A. Soloshonok, J. Fluorine Chem., 2014, 167, 37 CrossRef; (d) P. Ghosh and A. Hajra, J. Org. Chem., 2021, 86, 10883 CrossRef PubMed.
  10. (a) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320 RSC; (b) T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470–477 CrossRef; (c) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, Germany, 2004 CrossRef.
  11. (a) D. J. Wilger, N. J. Gesmundo and D. A. Nicewicz, Chem. Sci., 2013, 4, 3160–3165 RSC; (b) S. Jana, A. Ashokan, S. Kumar, A. Verma and S. Kumar, Org. Biomol. Chem., 2015, 13, 8411 RSC.
  12. J. Charpentier, N. Früh and A. Togni, Chem. Rev., 2015, 115, 650 CrossRef PubMed.
  13. (a) L. L. Chu and F. L. Qing, J. Am. Chem. Soc., 2012, 134, 1298 CrossRef PubMed; (b) M. Shang, S.-Z. Sun, H.-L. Wang, B. N. Laforteza, H.-X. Dai and J.-Q. Yu, Angew. Chem., Int. Ed., 2014, 53, 10439 CrossRef PubMed.
  14. Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14411 CrossRef PubMed.
  15. (a) B. R. Langlois, E. Laurent and N. Roidot, Tetrahedron Lett., 1991, 32, 7525 CrossRef; (b) B. R. Langlois, E. Laurent and N. Roidot, Tetrahedron Lett., 1992, 33, 1291 CrossRef.
  16. (a) A. Deb, S. Manna, A. Modak, T. Patra, S. Maity and D. Maiti, Angew. Chem., Int. Ed., 2013, 52, 9747 CrossRef PubMed; (b) S. Jana, A. Verma, R. Kadu and S. Kumar, Chem. Sci., 2017, 8, 6633 RSC; (c) P. Ghosh, S. Mondal and A. Hajra, J. Org. Chem., 2018, 83, 13618 CrossRef PubMed; (d) M. E. Firuz, S. Rajai-Daryasarei, F. Rominger, A. Biglari and S. Balalaie, J. Org. Chem., 2023, 88, 10599 CrossRef PubMed; (e) N. Meng, L. Wang, Q. Liu, Q. Li, Y. Lv, H. Yue, X. Wang and W. Wei, Org. Chem., 2020, 85, 6888 CrossRef PubMed; (f) B. Kaboudin, M. Ghashghaee, A. Bigdeli, A. Farkhondeh, M. Eskandari and H. Esfandiari, ChemistrySelect, 2021, 6, 12998 CrossRef; (g) K. Monir, A. K. Bagdi, M. Ghosh and A. Hajra, J. Org. Chem., 2015, 80, 1332 CrossRef PubMed.
  17. (a) Q. Liu and L.-Z. Wu, Natl. Sci. Rev., 2017, 4, 359 CrossRef; (b) L. Marzo, S. K. Pagire, O. Reiser and B. König, Angew. Chem., Int. Ed., 2018, 57, 10034 CrossRef PubMed.
  18. (a) Y. Liang, L. Tang, Y. Wang, Q. He and H. Cao, Green Chem., 2019, 21, 4025 RSC; (b) W. Cui, G. Guo, Y. Wang, X. Song, J. Lv and D. Yang, Chem. Commun., 2023, 59, 6367 RSC; (c) H. Ding, Z. Wang, C. Qu, Y. Lv, X. Zhao and W. Wei, Org. Chem. Front., 2022, 9, 5530 RSC; (d) J. Z. Wang, H. A. Sakai and D. W. C. MacMillan, Angew. Chem., Int. Ed., 2022, e20220715 Search PubMed; (e) A. Mathuri, B. Pal, M. Pramanik and P. Mal, J. Org. Chem., 2023, 88, 10096 CrossRef PubMed; (f) S. Roy, H. Paul and I. Chatterjee, Eur. J. Org. Chem., 2022, 2022, e202200446 CrossRef; (g) K. K. Das and A. Hajra, Org. Biomol. Chem., 2024, 22, 1034 RSC; (h) K. K. Das and A. Hajra, Chem. Commun., 2024, 60, 10402 RSC; (i) S. Mondal, S. Ghosh and A. Hajra, Chem. Commun., 2024, 60, 9659 RSC; (j) J.-L. Tu, Y. Zhu, P. Li and B. Huang, Org. Chem. Front., 2024, 11, 5278 RSC; (k) B. Huang, Green Chem., 2024, 26, 11773 RSC; (l) B. Huang, Tetrahedron Chem, 2024, 12, 100116 CrossRef.
  19. (a) S. Soni, P. Pali, M. A. Ansari and M. S. Singh, J. Org. Chem., 2020, 85, 10098 CrossRef; (b) Z. Wei, S. Qi, Y. Xu, H. Liu, J. Wu, H. Li, C. Xia and G. Duana, Adv. Synth. Catal., 2019, 361, 5490 CrossRef; (c) N. Meng, Y. Lv, Q. Liu, R. Liu, X. Zhao and W. Wei, Chin. Chem. Lett., 2021, 32, 258 CrossRef.
  20. Q. Yang, B. Wang, M. Wu and Y.-Z. Lei, Molecules, 2023, 28, 2513 CrossRef PubMed.

Footnote

Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5ra00743g

This journal is © The Royal Society of Chemistry 2025
Click here to see how this site uses Cookies. View our privacy policy here.