Unveiling the recent advances in micro-electrode materials and configurations for sodium-ion micro-batteries
Abstract
The recent advances in portable and smart devices require modern microelectronics to be miniaturized, leading to the need for small, lightweight, reliable, and on-chip integrated energy storage systems like rechargeable micro-batteries (μBs). Nowadays, sodium-ion micro-batteries (SIμBs) are one of the competitive applicants and attractive candidates due to their superior performance compared to lithium alternatives in terms of cost, resources, safety, and high power. Despite these advantages, SIμBs can increase their energy density by selecting proper micro-electrodes (μEs). This review covers the latest developments in the state-of-the-art of electrode materials and one-, two-, and three-dimensional configurations for high-performance SIμBs in different applications. In particular, the focus is on selecting electrode materials based on electrodes' sodium storage mechanisms and safety issues that effectively improve SIμBs performance and future challenges. Opportunities in this area are also discussed. Subsequently, recent achievements of different configurations technology of μEs associated with the various active materials and manufacturing methods of them are explained to achieve high energy density SIμBs. Ultimately, the potential future of advanced SIμBs based on the current progress establishes practical pathways for research and industry.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles